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THE EXACT SEQUENCE OF A LOCALIZATION FOR
WITT GROUPS II: NUMERICAL INVARIANTS OF

ODD-DIMENSIONAL SURGERY OBSTRUCTIONS

WILLIAM PARDON

The propose of this paper is to define numerical invariants
of odd-dimensional surgery obstructions, computable in a way
similar to that used to compute the index and Arf invariants
of even-dimensional surgery obstructions. The main result
is that a system of integral congruences ("numerical in-
variants") suffices, modulo the projective class group, to
determine whether or not an odd-dimensional surgery obstruc-
tion vanishes, when the f undumental group is a finite 2-group.
In addition, the numerical invariants turn out to be Euler
characteristics in certain cases of topological interest, in-
cluding the existence of product formulas.

Let π be a group and Zπ its integral group ring, with the
involution induced by g —> g~\ g e π. The even-dimensional surgery
obstruction group L2n(Zπ) is, roughly speaking, the Grothendieck
group on isometry classes of hermitian forms over Zπ, modulo the
subgroup generated by hyperbolic forms. A striking fact, discovered
by C. T. C. Wall {[56, §6]), is that the odd-dimensional surgery
obstruction group. L2n+1(Zπ), is (again roughly) the commutator
quotient of the group of isometries of the stable hyperbolic form.
An important consequence of this result is that the obvious analogy
between L2n and L2n+1 on the one hand, and KQ and Kt on the other,
can be used to translate techniques from algebraic iΓ-theory to
unitary Z-theory. This has been done by many authors.

In spite of this conceptual connection between L2n and L2n+ι,
however, there remains an important difference between them.
Classical invariants of quadratic forms, such as the index or Arf
invariant, have been easier to compute than any known algebraic
invariants of the unitary group; and, on the geometric side, the
braid diagram (in [56, §6]) necessary to construct the odd-dimen-
sional obstruction seems to contain more delicate geometric informa-
tion than the intersection and self-intersection forms of the even-
dimensional case. The purpose of this paper is to define algebraic
invariants of odd-dimensional surgery, by a procedure analogous to
the one furnishing the signature of a quadratic form.

To see what is meant by this, recall the ingredients necessary
for the computation of the signatures of a hermitian from over Zπ.
Let π be a finite group and Rπ its real group ring. Any element
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of L2n(Zπ) yields, by extension of scalars, an element of L2n(Rπ)
which is determined by its collection of classical signatures, usually
called the multisignature ([56, p. 165]). In order to compute the
multisignature one needs to know, first, the matrix components of
the product decomposition

(0.1) Rπ^ΐlMnt(Di)

(furnished by the Wedderburn theorem) where each Dt is a real
division algebra (only A = R, C, or H are possible); and, second,
one must understand how the involution on Rπ, induced by g —> g~x,
is translated to an involution

(0.2) σtiM^Dt) >Mni(Di)

on each of the factors in (0.1). With this information, the given
element of L2n(Rπ) is projected into each factor L2n(Mni(Dt)), is then
translated by "Morita theory" to an element of L2m(A), where m — n
or n + 1 depending on σif and, finally, the classical signature is
evaluated if Dt = C or if m is even and Di — Roτ H. The subject
of this paper is the construction of invariants of L2n+1(Zπ) from
similar, but somewhat more delicate information about Qπ, where
π is a finite 2-group. This is Theorem B below. A very special
case, π = Z/2, exemplifies the method.

Suppose given a degree—one normal map (/, 6): (ikf4fc+3, v)-*(X9 ξ)
(π,X = Z/2, k :> 1), for which the kernel groups Klf) = 0, i Φ 2k + 1,
and

(0.3) S: = K2k+1(f) is odd torsion .

Let φ:S x S-*Q[Z/2]/Z[Z/2] be the linking form. (See [57]; we
neglect the self-linking form because S is odd torsion so that it is
determined by φ.) It follows from [57, 5.6] that (/, b) is normally
cobordant to a homotopy equivalence if and only if there is a free
Z[Z/2]-module Q and an even hermitian form g: Q x Q —> Z[Z/2] such
that there exists a short exact sequence, where Q = Horn (Q, Z[Z/2])
and dg is the adjoint of g,

(0.4) Q - ^ Q - ^ S

and such that if s19 s26S, qlf q2eQ satisfy j(q%) = si9 and neZ
satisfies nSi = 0, then

(0.5) φ{8ί9 82) = -M(d9r\nqi\ (d9)~\nq2)) (mod Z[Z/2]) .

The pair (Q, g) will be called a resolution of (S, 0). (This is just
a translation of the geometric data: If (F, B): (Wiίc+\ v) -> (X x J,



THE EXACT SEQUENCE OF A LOCALIZATION FOR WITT GROUPS II 125

ξ x I) is a highly-connected normal cobordism of / to a homotopy
equivalence, then Q = K2k+2(F), Q = K2k+2(F, dF), and g is the inter-
section form of jff2Jb+2(TP*+4), restricted to K2k+2{F). Thus, (0.4) is a
homology exact sequence and (0.5) is an easily derived relation
between linking numbers on the boundary and intersection numbers
in the interior of a manifold.) To test whether σ(f, b)eL^k+s(Z[Z/2])
is trivial, it suffices to analyze the obstruction to finding a pair (Q, g)
satisfying (0.4) and (0.5). (For the definition of L*, see (1.4).)

Let p±: Z[Z/2] ->Z be defined by p+(a + bt) = a ± bt, where
a,beZ and (t) = Z/2. Applying p± to σ(f, 6), one obtains
(P±)Mf9 δ) 6 Ll+z(Z), represented by (S±9 φ±): = (S, φ) ®zιz^Z±y

where Z± has Z[Z/2]-module structure given by t-n= ±n, neZ.
It is well-known that Llk+z{Z) = 0, so that to each linking pair
(S+, φ+) and (S_, φ_) we may associate a pair (Q+, gr+) and (Q_, g_)
satisfying (0.4), (0.5).

Consider the cartesian square (pull-back diagram) of rings

Z[Z/2] -^-> Z

(0.6)

Z -2-

where r2 is reduction mod 2. In terms of this diagram, we have
started with (S, φ) over Z[Z/2] and found resolutions (Q±f g+) of
(P±)*(S9 φ) over the anti-diagonal copies of Z. A standard ("glueing")
argument now shows that a resolution (Q, g) of (S, φ) can be found
satisfying (p±)*(Q, 0) = (Q±, g) if and only if the mod 2 reductions
are isometric:

(0.7) (r2)*(Q+, ff+) s (r2),(Q_, ff_) .

But, as cok (dg±) is odd torsion, (r2)*(Q±, flf±) is nonsingular over F2,
and so, possibly after a rank adjustment, (0.7) holds if and only if
the Arf invariants agree:

Arf ((r2)*(Q+, g+)) = Arf ((r2)*(Q_, flr_)) .

Now a remarkable theorem of Levine ([29]) asserts that these Arf
invariants depend only on |S ± | , the number of elements in S+:

(0.8) Arf ((r2)*(Q±, g±)) = 0 *=> | S± | Ξ ± 1 (mod 8) .

Putting these results together yields

(0.9) PROPOSITION. σ(f, b) = 0 if and only if \S+\ = ±\S__\
(mod 8). (This has a more intrinsic formulation using the fact that
S+\ Ξ ± | S _ | ~ | S | - ± | S U 2 ~ ! S | = ± 1 (mod8).)
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From the observation that the map (p+, p_): Z[Z/2] -> Z x Z is
the inclusion of Z[Z/2] into a maximal Z-order (see [42]) in Q[Z/2],
one is led to generalize the construction leading to (0.9) as follows.
Let π be an arbitrary finite 2-group. A theorem of J.-M. Fontaine
[13] permits a description of the matrix algebras Λfmi(-D€)

 o yer division
algebras Dt appearing in the product decomposition Qπ = Π Mm(Dt)
(compare (0.1)); and a more careful analysis yields a precise descrip-
tion of a maximal order ^ ^ in each Mm(D%) and of the involution
induced on it (compare (0.2)). Then

(0.10) ^T: = Π Λϊ

is a maximal order in Qπ containing Zπ. Also, Levine's theorem
can be generalized to cover forms over certain rings of algebraic
integers.

To state the main theorem of this paper say a factor Mmi(Di)
of Qπ has type (m,, nτ) if Dt is the real subfield Q(ζ + ζ"1) of Qζ,
where ζ = ζ2n. is a primitive 2TOίth root of unity, and if the in-
volution on Mmi(Di) is matrix transpose. (In this case ^ £ =
Mmi(Z(ζ + ζ"1)).) Suppose the factors corresponding to i = 1, , k
have type (mt, n%). If S is any odd torsion Zτr-module, define
bteZ/2t i = 1, ...,fc, by

(0 , if IS ®z* Λl I = ± 1 (mod mt2
n*+1)

(1 , otherwise .

Recall from [38] the definition of Ll(Zπ). (See also (1.4).)

THEOREM B. Let (/, 6): (MiM, v) -* (X, {) δβ α degree-one normal
map where Kt(f) = 0, ΐ Φ 2k + 1, α^cί S: = K2k+1(f) is odd torsion.
Then σ(f, b) e LlM{Zπ) vanishes in L%k+3(Zπ) if and only if

Theorem B follows from Theorem A and the generalized Levine
theorem.

THEOREM A (for Llh+z(Zπ)). If the integer k is as above, there
is an isomorphism

Theorem A is found in (3.9) below, where Lϊk+1(Zπ) is also calculated.
There is a version of Theorem B in (3.16) for L?k+1(Zπ), but it is
weaker since a large part of these groups seem inaccessible using
a generalization of Levine's theorem.
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One weakness of Theorem B is the assumption that K2k+1(f) be
odd torsion. At the end of §3, a method is given for converting
any unitary matrix giving σ(f, δ), to one for which K2k+1(f) is odd
torsion. The method is easy to carry out in practice. A more
serious weakness, at least as Theorem B compares to the multisigna-
ture discussion above, is that (/, b) must be highly-connected. It
seems likely that, given an explicit degree-one normal map, one
may complete surgery to a Z/2-homology equivalence, keeping track
of the remaining odd torsion in K*{f). If this is so, then Theorem
B should be generalized by replacing the numbers | S ( x ) ^ ^ | by an
analogously defined Euler characteristic. Indeed, we will carry out
this procedure to derive a simple product formula in (3.22). Perhaps
the most serious drawback is that Theorem B detects only Lp, not
Lh, the group of greater geometric interest. However, since this
paper was written I. Hambleton and R. J. Milgram [16] have used
Rothenberg sequences and the calculations of Lp

±1(Zπ) to make fairly
complete calculations of Lh

±ι(Zπ).

The geometric considerations above motivated this work, but
methods themselves are entirely algebraic. Here is an outline of the
paper. In §1 definitions of the Witt groups are recalled, together
with the localization sequence and the notion of resolution of a form;
for the most part the reader is referred to [32] for details. In §2,
some qualitative relations between Witt groups of UT-orders, maximal
Z-order and their mod p reductions (p e Z) are studied; this leads
naturally to the notion of Dickson and Arf invariants (mod 2 re-
ductions) in (2.5). §3 begins with a statement of the theorem
which describes the factors in (0.10) above and tabulates their Arf
and Dickson invariants in (3.2). Assuming these results, the proof
of Theorem A is given in (3.9) and that of Theorem B in (3.16).
The product formula mentioned above is proved in (3.22). The
remaining §§4-7 are devoted to proving (3.1) and (3.2). In §4, (3.1)
is proved and (3.2) is reduced by Morita theory to calculations in
cyclotomic extensions of Q, their subfields, and quaternion algebras
over them. Finally, these latter calculations are carried out in §§5-7.

Let us very briefly compare these results to those of other
authors. First G. Carlsson and R. J. Milgram have independently
proved Theorem A for Lξ(Zπ) in [16]. Second, A. Bak has announced
computations of Lp

h

Λ}S(Zπ) in [4], where π has abelian, normal 2-
Sylow subgroup, and he has listed generators in many cases when
n is odd. Theorem A is relatively easy when π is abelian; also
Bak's class of groups excludes, for example, dihedral groups, where
the semi-characteristics studied in [35] appear. However, Bak's
list of computations is complete for L%h, groups which are not
reached in this paper. Another major program for computation of
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L-groups is [48]-[53]. In [53] Wall studies the "intermediate" L-
groups Ll(Zπ), Y = ker {Kx(Zπ) -> Kt(Qπ)}. When π is a 2-group,
fairly general results are obtained in [53, 5.2], but the lack of a
good description of Y makes complete computations difficult. (Indeed,
our success with 2-groups comes about partly because we ignore
KQ- and ^-difficulties, which would have to be confronted to compute
Lh or ZΛ) S. Cappell has pointed out to me that WalΓs technique
of lifting elements of L^(Zπ) back to L*(Zπ —> Zs

2π) corresponds to
our method of making KJJ) odd torsion. This is probably the way
to see the relation between Theorem B and Wall's results.

Since this paper was written, several further results have been
obtained. As mentioned above the groups Lh

±1(Zπ), π a 2-group,
where studied in [16]. Working independently, A. Bak and M.
Kolster [5] and C. Wright [59] have further computed Lh

±1(Zπ) and
Lp

±1(Zπ) when π is 2-hy per elementary.
This work has been underway for several years and I have

proίitted from conversations with several people, including Hyman
Bass, John Morgan, Andrew Ranicki, David Carter, Ted Petrie,
Julius Shaveson, and Sylvain Cappell. I also thank the referee for
many suggestions leading to the present complete revision of the
original version of this paper.

Notational conventions* The word "prime" will mean a prime
ideal or a valuation, unless otherwise specified. A dyadic prime is
one dividing the principal ideal generated by 2. A finite (infinite)
prime is one which is nonarchimedean (archimedean). If p is a prime
ideal in the ring R, then Rp denotes completion at pf Rw denotes
localization, and R/p is the quotient ring. Fg denotes the field of q
elements. "ζm" always denotes a primitive rath root of unity.

The symbol (a, b, c, •••> denotes the quadratic form whose
matrix is diagonal, with entries a,b,c,

Direct sum is denotes by " + ", unless φ is used to avoid con-
fusion; [*] denotes bibliographical reference to *; (*) denotes reference
to (*) in this paper.

1* Review of basic definitions • localization sequence, resolution
of forms*

(1.1) Let A be a ring-with-involution containing 1, where the
involution is denoted "—": α + 6 = α + 6, ab = ba, ϊ = 1, for all
a, be A. All A-modules will be right A-modules, unless otherwise
specified. Let S £ A be a central multiplicative subset, S = S, con-
taining 1 and no zero-divisors. Let B: = A[S~X] be a semi-simple
ring containing 1/2 and inheriting an involution from A in the
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obvious way. A projective A-module M is called B-free if M®A B
is l?-free, and has rank n, if M®AB is 5-free of rank n;

(1.2) DEFINITION. Let FWoKA), FBo

λ(B/A) denote the groups
defined in [32, 1.13] (denoted (op. cit.) W&A), W&B/A)). By
replacing free modules of even rank (resp. S-torsion modules with
short free resolution) in [32, 1.13] by projective modules of even
rank (resp. S-torsion modules with short projective resolution) define
groups fWo(A), fWi(BJA). By removing the even rank hypothesis
from the definition of fWi(A), define L{-λ(A). Finally, by removing
the quadratic forms from the definitions of fWo

λ(A), fW£(B/A), and
replacing hyperbolic forms by metablic forms [60] in that of fWo(A),
one obtains groups denoted fWLτm(A), fW£eΐm(B/A).

It is understood that all definitions above involving A alone
apply to B in place of A. The objects underlying fW0\A) or FWQ\A)
(resp. fWi(B/A) or FW£(B/A)) will be called X-quadratίc forms over
A (resp., over B/A).

(1.3) DEFINITION. Let FW}{A) (resp. FW}(B/A)) denote the
groups defined in [32, 1.23] (resp. in [32, 1.34]). By replacing in
[32, 1.34] S-torsion modules having short free resolution by those
having short projective resolution, define fWl(B/A); if A-+B as in
(1.1), the group fW0\A) is obtained by replacing in [32, (1.28-.34)]
torsion modules by projective modules of even rank using relations
(i)-(iv) (with projectives of even rank) in [32, 1.34] (cf. [32, 1.35]).
Finally, L%A) is defined as fW}(A), this time using arbitrary pro-
jectives, modulo relations (i)-(iv) in [32, 1.34].

(1.4) REMARKS, (a) When π is a finite group, then

FWKZπ) = LUZπ)

for the groups L%(Zπ) of [56, §17D]; and

fWoKZπ) = LUZπ)

for the groups Ll(Zπ) of (1.2) or [38].
(b) A triple (P, Q, (a, 7)) is called a X-formation over A (see

[32, 1.30]) if P and Q are projective and (a, Ύ):P->Q + Q (Q =
ΈLomA(Q, A)) is the inclusion of a subkernel [32, 1.13] (or sub-
lagrangian in [38]) into the λ-quadratic hyperbolic form on Q + Q.
These are the objects underlying the groups fWl(Zπ) and L%Zπ),
and
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(1.5)

moreover, this group agrees with that of [38].
More precisely, the following holds.

(1.6) PROPOSITION. If A is a ring-with-involution> and there
is a surjection of rings-with-involution, A —> F2, then there is an
isomorphism

where the Z/2-summand of fW}(A) is represented by

/Ό 0\ /I 0\

Proof. It is left to the reader to show that θefW}(A) has
order at most two (compute in FWftA) using [32, 4.9]). Thus, there
is a sequence

which is claimed to be split exact. For by [39, 5.4], if σefWl(A)
vanishes in Lχ(A), it is stably isomorphic to a graph formation [38],
7 = (P9 pf (a, Id)). Stable isomorphism corresponds to operations (i)
and (iv) in [32, 1.34]; in using stabilization the ranks of the projec-
tives used in the definition of σ may change from even to odd. If
P has odd rank, then add to 7 the λ-formation (A, A, (1, 0)) (stabili-
zation): if P has even rank leave 7 unchanged. By an operation of
type [32, 1.34 (iii)], 7 is either

(Q, Q, (0, Id)) , or (P© A, P θ A, (0 0 1 , Id 0 0))

where Q has even rank, and P has odd rank. By an operation of
type [32, 1.34 (ii)], the first type is trivial in fW}(A); the second
type may be written, for sufficiently stable P, as θ + (R, R, (0, Id))
where P = J Ϊ 0 i . Hence the sequence above is exact at fW}(A).
Define an inverse to i by the induced fWl(A) ->fWl(F2) ~ Z/2, where
the isomorphism is by [33, (4.1)] and the generator of fW}(F2) is
precisely θ.

(1.7) There are several reasons for the even rank hypotheses
in (1.2) and (1.3) above. The first is that the discriminant

(1.8) dis: fW0\B) > FX/NKX
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becomes a homomorphism for B a central simple algebra over K, F
the fixed field of the involution on K. In fact, define, for a λ-
hermitian form g: B2n x B2n -> B,

dis(£r) = (~X)nnr(G)eFx

where G is a matrix for g and nr: Mn(B) -> .Px is the reduced norm
([42, §9]). Since nr is a homomorphism and dis (g) e NKX if g is
hyperbolic, (1.8) is a well-defined homomorphism.

Also the Morita equivalences of (4.3) increase ranks in general,
while if the even rank hypotheses above are made, no change is
caused on the Witt group level. Finally, the rank distinction
between fW}(A) and L%A) is essentially detected by the Dickson
invariant (2.5), which is central to the proof of Theorem A in §3.

(1.9) The groups fW&A), fWi(B), etc. are essentially classical.
The following results show the same is true of fWi(B/A), under
appropriate conditions. Let R be Dedekind ring, K its fraction
field; assume A (as in (1.1)) is an i2-algebra, B a iΓ-algebra, S =
R — {0}. Each S-torsion A-module M splits uniquely as a direct sum
of q-torsion A-modules, Λf(q), q e Spec (22). It follows from [19, Thm.
B, p. 124] that M has homological dimension 1 if and only if each
Λf(t|) does, and from [20, App. 5, Lemme] if and only if each com-
pletion Mq does. There are similar splittings B/A = Π (B/A)w ~
U B/Aw = Π BJAq, such that the involution on B/A induces one on
each B/Aw and BJAq if c\ = q, and on B/Aw + B/A^ and BJAq +
B7/A7 (switching the summands) if c\ Φ<\. The following is now
clear.

(1.10) PROPOSITION. With the above notation, there are iso-
morphisms

fWiiβlA) = UfWi(B/Aw) ~ JIfWKBJA,)
q=q q=q

induced by localization, splitting and completion. {It is easy to
show there is no contribution from those summands of B/A for which

(1.11) PROPOSITION. Keep the notation of (1.10) and assume in
addition that K is a number field, and q = q £ R is a nondyadic
prime for which Aw is a maximal Reorder in B. Then there is
a natural isomorphism

L?+UA/q) s

If, in addition, q ramifies in K/F, F = fixed field of the involution,
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then

fWΛBJA,) = f

Proof. The first statement for i — 0 and the trivial involution
is proved in [40, 4.2.3 (iv)] and the argument works for any in-
volution; for i = 1, one must use relations (i), (ii) in [32, 1.34],
which is left as an exercise. The second statement follows from
"scaling" [3], if a skew-symmetric unit in R can be found. Let
Sp = ring of integers in Fp, where q lies over pQ S = ring of
integers of F. By [44, I. 6] Rq = Sy%', for some uniformizer π'
of p. Setting π = i/JF" yields π = I/TF = — i/π 7 = ~τr, so that π/π
is a skew-symmetric unit of Rq.

For any ring-with-involution A, let W(A) denote the group
studied in [60], where symmetric bilinear forms are replaced by
hermitian forms. Then completely analogous arguments work, under
more general circumstances, to prove the following.

(1.12) PROPOSITION. With the notation of (1.10), there are
natural isomorphisms

(a) W(A/q) s fWieUBJA,), q finite
(b) fWLUB/A) = Πfl finitefWLUBJA,).

Here is a result which will be used often and is stated here
for the reader's convenience.

(1.13) PROPOSITION [SO, Lemma 5]. Let Abe a ring-with-involu-
tion and IξZA an involution invariant ideal such that A is complete
in the I-adic topology. Then the map A-+A/I induces isomorphisms

fWί(A)~fWi(A/I).

(1.14) The localization sequence. The following is a variation
on Theorem (2.1) of [32]. The proof given there was for FWi
(denoted op. cit. "Wi"); except at one very important point it is
routine to modify to work for the groups fWi. Namely, Sharpes
normal form [46] used in [32, §5] must be replaced by a protective
version, due to Ranicki [39, 5.4]. Or one may refer to Ranicki's
proof in [40].

(1.15) THEOREM. Let Abe a ring-with-involution and B a ring
of quotients as in (1.1). Then there is a long exact sequence of
abelian groups

»fWl(A) —i» fWKB) —'-> fWKBIA) —'-+ fWi(A) —-U
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fWo\B) — fWKBIA) — fWΛ A) —U fWΛB)

(1.16) The map £f{ in (1.15) has to be discussed in detail (see
[32, §3]). Let g:B2m x B2m-> B be λ-hermitian. There is a projec-
tive A-submodule (integral lattice) L Q B2m, L (x) B = B2m, such that
g(LxL)^A (in fact, g\L x L e Sesq^ (L), c.f. [2, I. 3.3]). Let
U: = {xe B2m \ q(L, x) £ A) (the dual lattice), S: = cok (L -» !/)> i?: =
the resolution of S, { L - > L ' i S } , and τ: - </|L' x Π:U x L' -> B.
Then the class [(S, & ψ)] e fWo

λ(B/A) is by definition <2?l{[B2m, g}),
where ψ: S x S-> B/A and ^: S -> 5Λ(A) are defined by

(1.17) φ(jm, jn) = τ(m, ti) mod A , ψUni) = τ(m, m) mod

where Sλ(A): = {α e A | α = 6 + λ6, b e A}.

(1.18) DEFINITION. If the λ-quadratic form over B/A arises as
above from (I?2m, g) and L, then (L, g) (or equivalently (R, τ)) is
said to be a resolution of (S, ,̂ α/r). (This notion is also studied in
[12], where "lifting" is used for "resolution".)

(1.19) PROPOSITION. With the notation above, a X-quadratic
form over B/A, (S, φ, ψ), is resolvable if and only if [S, φ, ψ] e

Proof "Only if" is definition; so suppose given [V,g]efWi(B)
such that V = B2n and

^fi[V9g] = [S,φ,ψ].

Choosing an integral lattice L, it follows that there is a resolvable
form (S', φ\ ψ') such that (S'f φ', ff) ± (Hlf φlf ψ,) = (S, ̂ , ψ) 1
(H2, φ2, ψ 2), where the (if;, ^, ^ ) are kernels ([32, 1.13(b)]). Since
kernels are resolvable (see [32, 5.2]), one can take ΈLλ — 0. The
proof is finished by taking K — subkernel of H2 in the following
lemma.

(1.20) LEMMA. Suppose given (Γ, v, μ), a resolvable X-quadratic
form over B/A} and KQ T such that v\K x K = 0 = μ\K and K
has a short protective resolution. Then the naturally induced form
on Kλ/K is resolvable.

Proof Let (R, τ) be the resolution, R = (L >-> U 4> S), r: U x
Lr —> J5, and let &: S —> S/JBΓ be the quotient map. Defining JkΓ: =
ker (fci), it follows from the hypotheses on K that τ(M x M) Q A
and L g J l ί S M ' S L ' . It is now easily shown that M'/M = iΓ1/^
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and that (M >-> Mf -» KL\K, τ \ M') is the desired resolution.

2* Qualitative properties; Arf and Dickson invariants*

(2.1) Let A be a maximal Z-order in the semi-simple Q-algebra
B. Then

x + r2: fWi(A) >fWoλ(B) + fWi(A/2A)

is injective, where J%lλ is from (1.15) and r2 is induced by A ->
A/2A.

Proof. If p e Z is prime, then modulo its (nilpotent) radical,
A/pA is semi-simple, whence, by (1.13) and [33, 4.1], LftA/pA) = 0
if v is odd. By (1.10), fWl(B/A) = fWi(B/A[t)) s fWRBJA*). Thus,
there is a commutative diagram

from which the result follows if /3 is injective. But fW}(A2) —>
fWl(B2) is surjective, because [33, 4.1] gives representatives for
the elements of fW}(Bt); and the maximality of A2 means that if
ft — Π &i is a product of simple algebras, then A2 = Π *-̂ J where
each Ĵ < is maximal in ^ so that representatives can be pulled
back.

(2.2) REMARK. When A is not maximal, J%^λ + r2 is no longer
injective. In fact, there is an exact sequence

HXZ/2; K^AV-^fWoKA) >fW0\B) + fWi(A/2A)

valid when A is any Z-order in B; and i is nontrivial, for example,
when A = ZQ1Q, Q16 = the generalized quaternion group of order 16
and λ = — 1.

The following sort of result is important in Petrie's theory
[37] and was also useful in [35].

(2.3) Let A be a Z-order in the Q-algebra B. Then for any
prime p, the map
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rp: FWί(Alp)) > FWKA/pA)

is injective.

Proof. Suppose a = \Z ^) e Uin(A{p)) is given, representing

[σ] 6 FWί(Aw), and σp: = (Zp ^p) € U}n(A/pA) represents zero in
FWKA/pA). It follows from* the normal form of [46] that after
multiplying σp (on the left and right) by matrices X+f X_, and w{,
n even (see [32] for this notation), it becomes H(p), for some
peGLn(A/pA) (it may also be necessary to stabilize). But each
matrix of type X+, X__, or w\ can be lifted to a matrix of the
same type over A{p); this uses the fact that S_λ(A{p)) -> S_λ(A/pA) is
surjective. Thus, one may assume σ has the property that a is
invertible mod p; by Nakayama's lemma, this means a is invertible.
By [2, II. 2.5(b)], [σ] = 0.

The next result is central to the present style of computation.

(2.4) COROLLARY. Let A be a Z-order in the Q-algebra B =
A[S-% S= Z- {0}. Let fWi(B/A[l/2]) £ fWi(B/A) be the subgroup
consisting of forms supported on odd Z-torsion A-modules, and & £
fW£(B/A[l/2]) the subgroup generated by resolvable forms. Then
&o (from (1.15)) induces an isomorphism

V s ker {r2: fWΛA) > fWϊ\A/2A)}

and by (1.6) this equals L1X(A) if there is a surjection A->F2 of
rings with involution.

Proof. By definition, if (S, φ, ψ) is a λ-quadratic form over B/A,
then 3fl[S9 φf ψ] = [P, Q, (α, 7)]: = [σ] where cok{α: P-> Q} = S. Thus
r2[σ] has corresponding a (denoted a2 in the proof of (2.3)) invertible,
so by [33, 3.1, 4.1] represents zero in fWrx(A/2A). Conversely,
noting that, if P is A-projective, then Sλ(P) —»Sλ(P/2P) is surjective,
and replacing the use of Sharpens normal form in (2.3) by [39, 5.4],
it follows that if r2[σ] = 0, then σ = (P, Q, (α, 7)) may be assumed
to satisfy cok (α(2)) = 0. Again by the definition of 3f\9 [σ] —
&l(S, φ, ψ), where S is odd torsion. Thus,

ker r2 = im

By (1.19), the proof is complete.
The preceeding results (2.3) and (2.4) show there are no non-

trivial invariants to be found by reducing representatives of fW}(Zπ)
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modulo odd primes, π a 2-group (even through for p odd the groups
fWί(Fpπ) are, ingeneral, nontrivial—c.f. [35, 3.9], [33, 3.1]). For
suppose [σ[ e fW&Zπ) has nontrivial image in fWliF^π), p an odd
prime. By results of Swan [10, 77.2], (2.3) applies to show [σ{p)] Φ 0.
By [35, (3.1), (3.9)], [σ(x)Q] ΦθefW}(Zπ); but this contradicts the
main result of [18].

To single out mod 2 reduction, the following definition is made.

(2.5) DEFINITION. Let B be a finite-dimensional Q-algebra,
A £ 5 a Z-order or any localization, completion or quotient of such
an A. Given xefWi(A) its mod 2 reduction r2(x) in fWl(A/2A) is
called the Arf invariant of x if * = 0 and the Dickson invariant
if * = 1.

Modulo its radical, A/2 A is a product of matrix rings over finite
fields of characteristic 2. By Morita theory and reduction (1.13),
to compute fWl(A/2A) the following suffices.

(2.6) PROPOSITION. Let Fq be the field with q elements. Then

(Z/2 , if the involution is trivial
fWi(Fq) =

1 0 , if the involution is nontrivial ,
where the nonzero representative is that given in (1.6), if * is odd.

Proof. If * = 1, results follow from [33, 4.1]; if * = 0 and the
involution is nontrivial this is the Arf invariant; if * = 0 with non-
trivial involution, see [60, p. 117, Ex. 1].

REMARK. In his study [11] of the orthogonal group of a
quadratic form over a finite field F, char (F) = 2, Dickson proved
(among many other things) that fW}(F) = Z/2 and derived a "normal
form" (the generalization of which was used in (2.4)). The invariant
of [33] is a generalization of Dickson's to the case of semi-simple
algebras with involution. An interesting historical point is that
Dickson also classified quadratic forms over F, using what is now
called the Arf invariant. This was 40 years before Arf's work.

3* Proof of Theorem A and B*

(3.1) THEOREM. Let π be a finite 2-group. There is an involu-
tion-invariant maximal order

where each ̂ C is involution-invariant and maximal in some simple
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component of Qπ {from which it inherits its involution) and has
one of the following four forms

( I ) M2m(Zζ2n), some m ;> 0, n ̂  1
(II) M2m(Z(ζ2n - ζf 1)), some m ^ 1, n ̂  3
(III) M2m(Z(ζ2n + ζ2~*)), some m ^ 1, n ̂  2
(IV) M2m(^<;), some m^ 0, n^ 2, where ̂ K is a maximal order

in the quaternion algebra (--1, — 1/Q(ζ2« + ζ^1)) (see [25] /or

Each type has a uniquely determined involution, which need not
be specified until the theorem is proved in (4.16). The following
table summarizes the calculations found in (5.3), (5.4), (6.18), (6.19),
(7.14), (7.15), (4.3), and (4.16). Notice that, because of (2.4), the
second column is the kernel of the Dickson invariant. Thus, the
Arf and Dickson invariants over the ^ C in (3.1) are precisely what
is needed to compute Lχ(Zπ).

(3.2) Table.

^ " " ^ ^ ^ Properties

^i ^ " ^ \ ^

( I ) MMZζ)

(II) MMZ(ζ - ζ-1))

(III) M2m(Z(ζ + ζ-1))

(IV) Mt'niΛ'n)

r2: fWl(^tx) -*fWi(^eϊl2^tt)

fW?6(^t)-+Z!2

fWί{^i)-*Zl2

fW^)-Z!2{tή™\λ = 1

^surjective,

n = 2:fWi(^ri)-+0

.trivial, λ — 1

^3:/^M- : )-.Z/2{ s u r j e c t i y e >

(c.f. (2.4))

trivial

trivial

trivial

__ (ZI2 + ZI2, λ=-l
U~ ^trivial, ^ = 1

> <{ZI2Γ-\ λ=-l
n~ 'Urivial, ^ - 1

(3.3) PROPOSITION. For rings A, B as in (1.1), let
denote the set of isometry classes of X-quadratic forms (S, φ, ψ) over
BjA. If π, ^ and ^ ^ are as in (3.1), then there is a set
isomorphism

Π

(S, φ) i

where S^t: = S®zπ^i9 φ^t: = Φ®^^i and ^ = ^/A®Q is the
simple component of Qπ containing ^ ί j . (Since S and the S^t are
odd torsion, the quadratic part ψ of (S, φ, ψ) is omitted from the
notation here and below.)



138 WILLIAM PARDON

Proof. By [42, 41.1], 28^t C Zπ, 2S = |ττ|. Thus, inclusion

induces Z [ l / % 5 ^[1/2] : = ^ ( g ) Z[l/2], from which the result is
immediate.

Given cc e L&Zπ), let <S, 0> denote the corresponding coset (cf.
(2.4)) in fWo\Qπ/Z[l/2]π)/^ef and (S^if φ^) the elements of
42~\&i\^fi) corresponding to (S, φ). Let Spn (π) denote the number
of factors in ^ of type (3.1) (IV). (These are of type Sp, in the
language of [48].)

(3.4) PROPOSITION. With the above notation, there is a surjec-
tion

Ll(Zπ) - ^ (Z/2)lβ"(*} + Σ (Z/2yn-2**"{π)

7l>2

such that R(x)=0 if and only if[S^i9 Φ^]=0 in fWϊXέ%/^[l/2])/<^,
for each i (i.e., each (S^i9φ^t) is resolvable).

Proof. R is defined by taking the class [S^if φ^J in
fWϊ\&i/ΛΪ[l/2])/& and using the Table. It is well-defined because
of (3.3) and the fact that if (S, φ) is resolvable over Zπ, then each
OSL'o Φ*i) is resolvable over ^^ it is surjective because of (3.3).

If \π\ = 2% then 2 8 ^^ S ZTΓ by [42, 41.1]. The following is a
Cartesian square of rings-with-involution, the "conductor situation"
of [1, p. 535].

Zπ > ^ (=j

(3.5) J Jty
Zπβ*^? >^\2*^ (=/Zt^/28.^)

It is not difficult to show that for some r, 2rZπ £ 2s^£, from which
it follows there are surjections

Zπβ*^? > Zπ\2rZπ • F 2 7 Γ > F2

where the last map is the augmentation. The kernel of the compo-
site is nilpotent by [47, 4.3] and because 2s^fέ Q 2sZπ. By reduction
(1.13), the induced map

fWoλ(Zπ/2°^) >fWo\F2) ̂ + Z/2

is an isomorphism. Thus, the isometry class of a nonsingular λ-
quadratic form over Zπ\2s^£ is determined by its rank and Arf
invariant.

(3.6) PROPOSITION. Referring to the rings and maps of (3.5),
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the isometry class of a X-quadratic form over Zπ\2s^ or /
is determined by rank and Arf invariant) if ^£1 is of type (3.1)
(IV) with n = 2, then the Arf invariant is always trivial. A non-
singular X-quadratic form over Zπ/2S^€ has nontrivial Arf
invariant iff its image does, in each component ^^i/28^^ o
except for those of type (3.1) (IV) with n = 2 .

Proof. The first statement for Zπfe*^ was proved above; for
£i it follows from the Table. Let (N, g, q) be the nonsingular

λ-quadratic form over N, a free rank 2 Z7r/2s^f-module, where if
N has basis {e, /}, g has matrix (^ + λ

 χ ^ A and q(e) = 1 = ?(/).
Clearly, both it and its image in ^l/2s^£l have Arf invariant 1, for
each i.

(3.7) DEFINITION. A nonsingular λ-quadratic form over
^' \2S^ = Π^lβ'^ti is said to have equal Arf invariants if either
the Arf invariants of its components in each ^i\2s^£i are all zero;
or are all equal to 1, except in components of type (3.1) (IV) with
w = 2.

(3.8) DEFINITION. Let π be a finite 2-group. Define O(π) to be
the number of components in ^f of type (3.1) (III), and Sp(τr) to be
the number of type (3.1) (IV) with n>2.

(3.9) THEOREM A. Let π be a finite 2-group, and let R be as
in (3.4). Then there is an isomorphism

(a) E: LU(Zπ) — (Z/2)0M-1

and a split short exact sequence

(b) (Z/2f^ > L*(Zπ)

Proof. By the Table (3.2), given xefWi(Qπ/Z[l/2]π)/&
(~ΊJLγ(Zπ), by (2.4)), the corresponding coset (S,φ), S an odd Z-
torsion Zπ-module, is such that each (S^., φ^.) is resolvable for all
ί9 say, by (Lif gt) over ^^. By [55] (or exactness at /TΓo(^) in
(1.15)), (Lif gώ is uniquely determined by (S_^, φ^i), up to orthogonal
sum with a nonsingular (+ l)-quadratic form over ^ < .

Each (Lu g%){2) is nonsingular because, by construction,
cok (Ad (gτ)) = S^y/i is odd torsion. Thus, the mod 2s reduction
r2s(Lif gt) is nonsingular over ^Hffi^fί. By the result of Wall referred
to above, together with the data in the first column of (3.2), the
Arf invariant of rzs(Lu gt) is determined by (S^if φ^ if and only
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if ^£t is of type III in (3.1); otherwise it can be changed by adding
to {Li, Qt) a nonsingular form over ^tif whose Arf invariant is 1,
without changing the form (S^i9 φ^) being resolved.

Let Δ\ ZJ2 -> (Z/2)0(π) be the diagonal inclusion, and define E{x) e
(Z/2)mπ)/imJ to be the coset in (Z/2)σ(ίr) whose components are the
Arf invariants of the r2s(Li9 g%) for ^£i of type III. Thus E(x) = 0
iff the forms r2s(Lί9 gt) have equal Arf invariants, for all i.

Finally, by (3.6) and a theorem of Bass [2, III. 2.2], E(x) = 0
iff the collection of forms (Lif gt) (for all i) lift back to a form (L, g)
over Zπ9 in which case it is easily seen that (L, g) resolves (S9 φ).
This means x = (S9 φ) represents zero in fW}(Qπ/Z[l/2])/& ^LΊ^Zπ).

Exactly the same argument, applied to keri?, replacing type
(3.1) (III) factors by type (3.1) (IV) factors of ^ shows k e r # =
Sp(τr). A splitting will be exhibited in (3.16).

The esthetic and practical difficulties in the proof of Theorem A
are evident. What will be shown next is that, in the construction
of E (3.9) (a), the Arf invariant of a form resolving (S^i9 φ^t) {^£1
of type (3.1) (III)) depends only on the number of elements |S^J of
S^t; in particular, it is indepndent both of the structure of S^t as
an ^£c or Zπ-module, and of the hermitian form φ. This generalizes
a well-known theorem of Levine [29].

(3.10) LEMMA [28, 2.7]. Let R denote the p-adic completion of
Z(ζ + ζ"1), ζ = ζ2n9n ̂  2, where p is its unique dyadic prime. The
map R —> Rx/Rx2 defined by r —» 1 + 4r, r eR9 induces an isomorphism

j : Zj2 = Rip -=-> ker a2

where a2: R
x/Rx2 —> (i2/4i?)x(i2/4JB)x2 is induced by reduction mod 4.

There is a commutative diagram of isomorphisms.

FWo\R) - ^ * kerα2

(1.13)U

EXAMPLE. When n = 2 in (3.10), R = Q29 the 2-adic rationale.
Let g: Zn x Zn —>Z arise as g\L x L in the construction of (1.16)
and suppose #{2): (Z[2))

n x (Z(2))
n-> Z(2) is nonsingular. Then {Zn

9 g)
resolves (in the sense of (1.18)) a symmetric form (S, φ), φ: S x S—>
QIZ, where S is odd torsion (because g{2) is nonsingular). It is well-
known that dis g = ± |S] , where \S\ is the number of elements in
S (because S is the cokernel of Ad (g): Zn -> Horn {Zn

9 Z)9 the adjoint
of g). As kerα2 is represented by the class of 5 in Z2

X/Z2

X2

9 and
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aeZ2 is a square if and only if a == I(mod8), Lemma (3.10) asserts
that the Arf invariant of (Zn, g) is nontrivial if and only if \S\ Ξ=
±5(mod8). This is the theorem of Levine referred to above.

Another way of starting Levine's result uses the fact that for
neZ, n = ±5(mod 8) if and only if the Legendre symbol (2/n) = — 1.
Lannes [28] generalized this replacing Z by a ring of integers in
a number field, 2 by an arbitrary unramified (over Z) dyadic prime,
and the Legendre symbol by the Artin symbol. In the case of
present interest, of course, the ring of integers Z(ζ + ζ"1), ζ = ζ2*,
is totally ramified over (2) £ Z, so that the generalization of Levine's
result given below in (3.13) seems to be new.

(3.11) LEMMA. Let Rn = Z(ζ + ζ~% ζ = ζ2 , n ^ 2, where p is
the unique dynamic prime of Z(ζ + ζ""1). Let N: Rn -» Z2 he the
norm. Then

(a) N(Rp £ (1 + 2n+1Z2Y
(b) If N: Λϊ/JBϊ2 -> Z2

X/_(1 + 2W+1Z2)
X

is ίfee induced map, then JV|kerα2 is injective, where a2: R%/R%2 —>
(i?J4i2n)

x/(i2n/4i2n)
x2 is reduction mod 4.

Proo/. (2) Since iSΓ = iV3 o . . . o iSΓn-1 o Nn, where iVΛ: Rl -> i ί ^ j is
the norm, since R%2 = (1 + AπnRn)

x, where πn is the uniformizer of
Rn ([31, 63:1a]), and since ττ2, the uniformizer of R2 = Z2, is (2), it
suffices to show that

(3.12) Nk(l + 2ιuπk) = l(mod 2ι+1πk_x) ,

for each ueRk, 3 ^ Jfc ̂  n, and Z ^ 2 . By [44, V. 3, Lemma 5],

Nk(X + 2ιuπk) = 1 + Nk(2ιuπk) + Ύτk (2ιuπk)(moά Ύvk (4zττ|)) ,

where Trfc: J?fc —> i?fc_! is the trace. It follows from [44, V. 3, Lemma
4], that

Ύγk(2ιuπk) 6 2ι+1πk_ JRh^ and Tr ( 4 ^ | ) 6 22l+1πk_1Rk_1 .

Evidently Nk(2ιuπk) = Aιuΰ7tkπk e 4ί7Γfc_1i2A._1. These facts prove (3.12)
and hence part (a).

Part (b) follows from the fact that kerα 2 s Z / 2 (see (3.10)), is
represented by 5, and has norm N(5) = 52ίι"2 ^ I(mod2n + 1).

Let A - Z(ζ + ζ"1), C = C2 , ^ ^ 2, and let g: An xAn-> A be a
symmetric form such that g e Sesq! (A) (i.e., g = h + h = h + h\ for
some sesquilinear h), and ^ r A ^ xAf2 )-^A ( 2 ) is nonsingular. By
the construction of (1.16), (An, g) resolves some hermitian form
(S, ψ) where S is a nondyadic torsion A-module. Let \S\ denote
the number of elements in S.
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(3.13) THEOREM. With the notation above, the Arf invariant
of (A71, g) is trivial if and only if \S\ = ±l(mod2n + 1), and is non-
trivial if and only if \S\ s 2n ± I(mod2n+1).

Proof. By [44, I, §5], | S | = ±N (die?), where N: Am -» Z(2) is
the norm. By (3.10) and (3.11) the first statement is proved. The
second follows from [58, 7.2.4].

Unfortunately, the ring of integers Z(ζ + ζ"1) does not itself
appear as a factor of the maximal order ^ f containing Zπ in (3.1).
However, its Morita equivalent, M2m(Z(ζ + ζ""1))* does, so (3.13) will
be translated to this context.

Let ^ be a component of ^ of type (3.11) (III) where ^ =
M2m(Z(ζ + ζ"1)), ζ = ζ2n, n^2. Let (S^o Φ^) be a hermitian form over
BJ^fi, where Bt is the corresponding simple component of Qπ and
S^r<® Z(2) = 0 (S^>t is odd torsion). Suppose (^ίίn, g) is a resolution
of (SLr£, £^ t). Let ISLril denote the number of elements in S^v

(3.14) THEOREM. With the above notation, the Arf invariant of
n, g) is trivial if and only if \S^\ = ±5(modm2n+1).

Proof From [3], the inverse to the isomorphism m(B/A) of (7.3)
is given (without the quadratic form ψ since S is odd torsion) by
[S, φ]-*[S®A A2m, φ'] where (S, φ) is λ-hermitian over B/A, S is odd
torsion, S ® 4 A

2™ is given an ikf2m(A)-module structure, φf is λ-
hermitian over Mt*(B)IM%~(A)f and A = Z(ζ + ζ"1), 5 = Q(ζ + ζ"1).
In particular, | S | = ±l(mod2n + 1) if and only if |/S®^A2m| = ± l
(mod m2n+1); and the Arf invariant of a form resolving (S, 0) is
trivial if and only if its Morita equivalent form over M2m(A) (which,
by the construction of m(B/A), resolves (S® iA

2 W,^')) has trivial
Arf invariant. This completes the proof.

Before stating the main result of this paper, Theorem B, fix
the following notation. Let x e L\{Zπ) be given where π is a finite
2-group. Using (2.4) suppose x = &ϊλ(y), y efWόx(Qπ/Z[l/2]π),
where y is represented by (S, φ) and S is odd torsion. Let
^ ί " 1 , , ^ff1 be the components of the maximal order Λ€ which
are of type (3.1) (III), and ^ Λ •• , ^ 1 1 those of type (3.1) (IV)
with n ^ 3. Then ^ r 1 = Mm(Z(ζ + ζ-1)), ζ = ζ2^, l£i£k,
rrii ^ 0, nt ^ 2; and . ^ 1 = i ^ i - i C ^ ^ ) , - ^ ^ maximal in ( — 1,-1/
Q(ζ + ζ"1)), ζ = Ci o w, ^ 1, % ^ 3. Define b\{S)eZj2 by

(3.15) b\(β) = j
(1 , otherwise .

(3.16) THEOREM B. Let π be a finite 2-group. Then (3.15)
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defines homomorphisms

b\:UXZπ) >Z/2

such that
(a) when λ = — 1, xeLχ(Zπ) is zero if and only if br\x) =

b~\χ) - . . . = bϊ\x).
(b) when λ = 1, the homomorphism (6J, , b\): Lf(Zπ) —> Sp (π)

splits (3.9) (b).

Proof. Assume λ = — 1. Recall from the proof of (3.9) (a) that
E{%) = 0 if and only if the resolutions of the form (S^if φ^\ —
(S, φ)® ^fi have equal Arf invariants, ^ C of type (3.1) (III). (Arf
invariants for other types can be chosen as desired.) By Theorem
(3.14) these Arf invariants equal the corresponding b~ι defined above.

The proof in case λ = 1 is left as an exercise.

REMARK, (a) Given a geometric context, i.e., x eLt^Zπ), (3.16)
gives a gairly strong necessary condition for the vanishing of x.
For example, since K0(ZDn) — 0 where π — Dn is the dihedral group
(see (7.4) (a) and [14]), L%(Zπ) = Ll(Zπ). If Qn is generalized
quaternion ((7.4) (c)), K0(ZQn) = ZJ2 by [14]. In general, it is
necessary to understand the maps in the Rothenberg sequence to
know how strong (3.16) is in any given case. For this, see [16].

(b) Given xeLh

λ(Zπ), how difficult is it to find (S,φ)e

fWϊ\Qπ/Zπ) such that £&Q~\S9 φ) = x and S is odd torsion? Suppose

xeL\(Zπ) is represented by σ = yt ^) e UL(Zπ) (see (1.4)). Let a2,
9, Ί1SΓ

72 denote the image of a, 7 under the map Zπ > Z'—> F2f t h e
mod 2 augmentation. Since fW}(F2) = Z/2, represented by w{ =
( θ) e 2̂(̂ 2)9 either σ or σ _L w\ has the property that there is a
symmetric matrix p e Mn(F2) having zeros on the diagonal such that
72 + pa2 is invertible. (Finding p in practice is not too difficult
since one works over the field F2.) Choose any peMn{Zπ) such that
p is ( —λ)-quadratic and ρ2 — p. This is also easy. Since 72 + pa2e
GLn(Z2), cok (7 + pa) is odd torsion. This cokernel is S (see the
construction [32] of &Ό~λ)f whose Zπ-module structure (actually just
the order of S ( g ) ^ Λ ^ of type (3.1) (IV) ^ f r 1 of type (3.1)
(III)) is what is needed to apply (3.16).

(3.17) If the reader is familiar with the difficulties encountered
in finding the surgery obstruction of a nonhighly-connected surgery
problem, he will recognize that the reduction to odd torsion used
above allows him to hope for a simple definition of the surgery
obstruction of such a problem. Moreover, the fact that in the



144 WILLIAM PARDON

analysis above, the Zπ-modules involved (not the quadratic forms
on which they are supported) alone determine the surgery obstruc-
tion, leads to the conclusion that an Euler characteristic invariant
ought to work. This will now be made relatively precise. Since
we will give no applications of the product formula (3.22), the
proofs will only be sketched.

(3.18) DEFINITION. Let π be a finite group. GQ(Qπ/Z[l/2]π) is
the free abelian group on isomorphism classes [M] of odd torsion
Ufa-modules M, modulo the subgroup generated by elements [Mr] +
[ikf"] — [M], whenever there is a short exact sequence M' >-» M -» M.
GU}(Qπ/Z[l/2]π) is the quotient of GQ(Qπ/Z[l/2]π) by the subgroup
generated by [M] for which there is a nonsingular λ-form M x M —>
Qπ/Z[l/2]π.

(3.19) PROPOSITION. Let π be a 2-group. Then

Next, let K be a finite complex with πxK = π. Denote by
LfZίm](K) the cobordism group of normal maps (g, b): (N, dN; vN) -»
(Y, X; ξ), and maps ω: Y—>K where g\dN is a homotopy equivalence
and the homology kernels K*(g) with T îΓ-coefficients are odd torsion;
cobordisms are to have the same restriction on homology kernels.
(For a precise definition see [33, 1.6]. This group is computed in
[33, §§6, 7], replacing Z by Z[l/2].)

Let n be odd, and if M is an odd torsion Zτr-module let {M}
denote its class in GU£(Qπ/Z[l/2]π). If (g,b) is a normal map as
above, define (its Euler characteristic)

(3 20) PROPOSITION. Let πxK = π. Then X defines a homomor-
phism

X:

Proof. X is clearly additive so it suffices to show X(g) = 0 if
(g, b) is null-cobordant. If (G, B) is a normal cobordism with
boundary (g, 6), then from the exact sequence of the pair ((?, g) it
follows that X(G) = X(g) + X(G, g), or X(g) = X(G) - X(G, g). Since
Ki{G, g) = K2k+i-i(Gy and M + ΛP always supports the hyperbolic
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form, X(g) = 0 as claimed.
To use these results, recall the product pairing L\{Zn) x Ωn{p) -»

L^+n(Z[π x p]). Supposing n — 21 and p is a finite 2-group, a given
class in Ωn(p) may be represented by Mn -> K{ρ, 1) where H*{M)
has no odd torsion (for example by doing surgery on Mn —> BSO x
K(p, 1) to make it an (I — Inequivalence, where M-+BSO classifies
the normal bundle of M). If m = 2k + 1 and TΓ is a afinite 2-group,
then any element of L£(Zττ) can be represented by normal map (g, b)
with Kt(g) — 0, i Φ k; and JΓ^) odd torsion (see remark following
(3.16)). Thus, if (/, c): = (g x lN,b x 1UM) is the product normal
map and M is the universal cover of M9

Kt(J) = Kk(g) ® ^ ^ ( i ί ί ) ,

an odd torsion Z[π x |θ]-module. Since Kk{g) is odd torsion, Kt(f) —
Kk(g) (g) flί^iϊ; Z[l/2]) Here ίί^iίί; Z[l/2]) is a Z[l/2]/9-module. If
[•] denotes its isomorphism class, then an Euler characteristic
X(M; Z[l/2]ρ) 6 G0(Z[l/2]ρ), the Grothendieck group of Ztl^-modules,
is defined by X(M; Z[l/2]p) = Σ!L0 ( —l)*[fii(j(ϊ; Z[l/2])]. The usual
argument using the equality of the Euler characteristic of a chain
complex with that of its homology shows

(3.21) PROPOSITION. For M as above,

where X(M) is the (usual) Euler characteristic of M and R e G0(Z[l/2]p)
is the class of Z[l/2]p.

(3.22) THEOREM. With the notation above, suppose the surgery
obstruction σ(g, b) e L%k+1(Zπ) is nonzero in Llh+1(Zπ) and I is even.
Then σ(f, c) is zero in Lξ{k+l)+1(Z[π x p]) if and only if X(M) is
even.

Proof. (Sketch) Notice first that Z[l/2]π appears as ring factor
of Z[l/2][π x p], so that the invariants of (3.9) or (3.15) for (g9 b)
appear for the product (/, c) as well. By (3.21) and the fact that
(with obvious notation) X(f) = Kk(g) 1(M; Z[lj2]p), these invariants
are multiplied by the Euler characteristic of M. Since the invariants
are of order two, the proof is complete.

4* The structure of the rational group ring of a 2-grouρ
and the existence of an involution-invariant maximal order in it
(Proof of Theorem 3*1) Let the ring-with-involution C be a
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product of matrix algebras, C = Π Mni(Dt). The involution either
takes a given factor of C to itself, or interchanges two factors; if
it preserves a given factor Mn(D), denote it 6 —• bτ. According to
a theorem of Bass [2, I. 8.3] (generalization of a theorem of Albert)
there is an involution σ: D-+ D and k e GLn(D) such that, for each
beB

(a) bτ = hCb^h'1 , *ba = σ-conjugate transpose
( 4 Λ ) (b) h = ? W , 7 = ± 1 .

The involution σ is uniquely determined by τ, but in general, h and
Ύ] are not.

(4.2) Morita theory asserts that there is a (1 — ̂ -correspondence
between isometry classes of rank r, λ-quadratic forms over (Mn(D), σ)
and rank nr, (^λ)-quadratic forms over (D, τ). (The involution is
included in the notation for emphasis.) Suppose n is even. Then
because of the even rank conventions in Def. (1.2) and (1.3), there
are induced isomorphisms m(D):fWl(Mn{D)fτ)^fWiλ(D,σ). Let
D — A as in (1.1). Using the notion of covering from [32,
1.17], it is routine to show there are isomorphisms m(B/A):
fWi(Mn(B)/Mn(A), τ) s fWZ\B/A, σ) induced by Morita equivalences;
in fact the whole localization sequence is compatible with Morita
equivalence.

(4.3) THEOREM, (a) With the notation above, there is a com-
mutative diagram of localization sequences,

•

m(B) ^lm(BIA) e*\

> fWSKA) >fWS\B) > fWSKBjA) > fWp\A) -> .

(b) The Arf and Dickson invariants are compatible with Morita
equivalence: there is a commutative diagram

m(A)

fWlKA) — /WIKA/2A).

This theorem will be applied to the simple factors of Qπ (π &
finite 2-group) and to involution-invariant maximal orders in them,
the construction of which will be taken up next.

To set notation, define groups
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( a ) Dn+1 = {x,y\x2n = 1 = y \ yxy~ι = a r 1 } , n ^ 2 ( d i h e d r a l )

( b ) SDn+ι = {x,y\vr = 1 = y>,yxy-* = χ-»"-1} , n ^ 3

(semi-dihedral)

(c) Qn+1 = {x, ylx2"'1 = y\ x2n = 1, yxy'1 = or1} , n ^ 2

(generalized quaternion)

(d) Cn = Z/2* = {α?Ix2% = 1} , n^O (cyclic) .

These two-groups are precisely those having a cyclic subgroup of
index two.

To describe Qπ, where π is in (4.4), define the "twisted group
rings" (including Qζ2* for completeness):

(a) Jn: = QζlvViy* = 1, yζy-1 = ζ-1} , ζ = ζ2» , ^ ^ 2

(b) SAn: - QζM/{7/2 = 1, yζy-1 - -ζ" 1 } , ζ = ζf , n ^ 3

(c) Γ n : - Qζ[y]/{i/2 = - 1 , yζy'1 - ζ"1} , ζ = C2» , % ̂  2

(d) Qζ2* ,w ^ 0 (we set Qζ2n = Q when w = 0) .

It is now not difficult to construct isomorphisms (for example by
tensoring the cartesian squares in [14] with Q):

(a) QDn+1 -flA.xQxQxQxQ
i2

(4.6)
(c) QQn+1 = Γnx QDn

(d)

(4.7) THEOREM {Fontaine). Let π be a 2-group and M a Qπ-
ir'reducible. Then there exist subgroups H <\G of π and an ir-
reducible Q[G/H]-module N such that

(a) G/H is in (4.4) and
(b) if N is viewed as a QG-module, then there is an isomor-

phism N®QG Qπ = M.
Finally, each simple component of Qπ is a matrix algebra over one
of the algebras in (4.5). (I.e., the "induction" in (b) does not change
the center.)

Fontaine's theorem will now be extended to include a descrip-
tion of the involution on the components of Qπ, in the following
sense.

(4.8) DEFINITION. A matrix algebra-with-involution (Mn(D), τ)
satisfying (4.1) will be described by the quadruple (Mn(D), σ, h, rj).
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(4.9) PROPOSITION. Let Id denote the trivial involution, and
" ~ " the involution induced by ζ —> ζ"1 on any subfield ofQζ2n. Then
the following is a description of the algebras (4.5), as algebras-with-
involution (4.8):

(a) Δn ~ (M2(Q(ζ + ζ"1)), Id, h, 1), where ζ = ζ2

(b) SΔn ^ (AΓ2(Q(ζ - ζ"1)), ~, </, 1), wfcerβ ζ - ζ2*
(c) Γ n = ( — 1, — 1/Q(ζ + ζ"1)), ί&e uswαί quaternion algebra over

Q(ζ + ζ"1), {α + bi + ci + d&|i2 = — 1 = f, ij = —ji, ij = k; α, 6, c,
deQ(ζ + ζ"1)}, m£/£ involution i = •—i, i = — j ; here ζ = ζ2rc.

(c)p If p is the unique dyadic prime of Q(ζ2n + ζ^1) and n^Z,
or if p is any such nondyadic prime, then

(ΓΛ = (M2(Q(ζ + ζ-)),, Id, Λf - 1 ) , ζ = ζ2. .

algebra Γ2 — ( — 1, — 1/Q) is woί spίiί αί ίfee prime 2.

Proof. A Q-algebra JS is split (isomorphic to a matrix ring over
its center) if and only if it is so with respect to every completion,
by the Brauer-Hasse-Noether theorem (see [42]). A matrix algebra
over C is always split, because C is algebraically closed. Next
B®R is a matrix algebra over R, C ox H (see [45, p. 123]), where
the induced <τ: (Λ, C, or JET) —> (/?, C, or JBΓ) in (4.2) is, respectively,
trivial, complex conjugation, or the usual involution on H (see [45,
p. 122]).

By a well-known argument [33, 4.8] each jRπ-irreducible supports
a nonsingular, hermitian, iJπ-valued form, for any π. It follows
easily that, since each algebra in (4.5) occurs as a factor in some
Qπ, it cannot happen that any real completion of the algebras (a)-(c)
contains the product of two matrix algebras interchanged by the
involution. Since the center of SΔn is Q(ζ — ζ"1) with nontrivial
involution (induced by ζ —> ζ"1) and it has degree four over its center,
the above discussion shows that the only possibility is SAn (&κ R =
M2(C), K = Q(ζ - ζ-1). In case (a), the center is Q(ζ + ζ"1), totally
real field with trivial involution. One checks that the fixed point
set of the involution on Δn has dimension 3 over its center, so
Δn+1 (x) i? 3* H. Thus Jn+1 (x) R ~ M2(R), for every real completion
of Q(ζ + ζ"1). Finally, since Qζ - Q(ζ + ζ'1) (V 7 ^) , it follows
easily that Γn ~ ( -1 , -1/Q(ζ + ζ"1)), ζ = ζ2«. The involution is
trivial on the center, and Γn(x)R = ( -1, -1/R): = £Γ.

Now it is known that Δn9 SΔn, and Γn are all split at nondyadic
primes (see [42, 41.7]). Thus, since there is only one dyadic prime
in any subfield of Qζ2α ([58, §7]), and since an algebra can be non-
split with respect to at most a finite, even number of valuations
(by reciprocity, see [42, §41]), it follows that Δn and SΔn are every-
where locally split, hence split. Since the irreducibles over Δn and
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SΔn support nonsingular hermitian forms [33, 4.8], the descriptions
(a) and (b) follow from [2, I. 8.8].

Since Q(ζ2n + ζf 1) is totally real, it has [Q(ζ2 + ζ^): Q] real
valuations. This number is even if and only if n ^ 3, so the
reciprocity argument above yields the splittings at dyadic p in (c)p.
Finally, since the fixed point set of the involution on Γn is the
center, Q(ζ + ζ"1), and dimQ{ζ+ζ-^Γ = 4, it follows that h = — h* in

(c)p.

Next is the question of existence of maximal orders (in the
algebras Δnt SAn and Γn), which are preserved by the involution.
To motivate this rather tedious analysis an example is given which
shows it is necessary. That this phenomenon could occur was first
pointed out in [43].

(4.10) Example of an involution-invariant order (in a matrix
algebra-with-involution) which cannot be extended to an involution-
invariant maximal order.

Let ζ = ζm be a primitive mth root of unity, m > 2, and let έ?
be the twisted group ring

(4.11) <? - Zζ o z/2: - [Zζ[y] | y2 = 1, yζy = ζ"1} .

To imbed έ? in M2(ζ + ζ"1), note that {1, 1 - ζ} is a basis for
Zζ as a free, rank 2, Z(ζ + ζ~1)-module. Now view & as a ring
of Z(ζ + ζ'^-endomorphisms of this module by setting

y ζ = ζ ' 1 , y-z= z(zeZ) , r s = rs(r eZζ ^ έ?, seZζ) .

With these conventions, one easily finds that

(4.12) /: ^ > EndZ(C+c-i,(Zζ) = M2(Z(ζ + ζ"1))

is injective and hence that /(x)Q is an isomorphism; it defines an
involution on M2(Q(ζ + ζ""1)), trivial on the center and satisfying
h — h1 in (4.8). Straightforward computation shows that, setting
π = 2 - (ζ + ζ"1),

-π

Now assume that m is an odd prime p. It is not difficult to
deduce that (see [20]), setting B: — im (/),

R πR

U a
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By [20, 2(i)] and [42, 40.13], B is hereditary. Now complete at
the prime πR. From [42, 39.18(v)]

πR πR\ Ί Ύ (R πR

)
 d / U *R.

are the two 2-sided maximal ideals of B, and

MIt: = {xe M2(Q(ζ + ζ-1)) | χlt Q B}

are the two maximal orders containing B. A computation shows that
Ml2 = {x 6 M2(Q(ζ + ζ-1)) 11& S B}. Now suppose that ϊx = £. Then
ikf̂  = {£ e M2(Q(ζ + ζ"1)) I xlx Q_B} = {xe M2(Q(ζ + ζ"1)) I I,x e B = B} =
Λf/2. So it remains to show Iι~I1.

First, by [42, 39.16], J: = I, n I2 is Rad£ and B/J^B/I.x

/ = FP x Fp, with idempotents represented by Q QJ Q I )

Thus, it suffices to show (H A is taken to itself by the involution.

But /(ζ - j/) = (_J 2 ° ^) and /(ζ - ») = /(Γ 1 1^) =

which both become, mod J", (Q O)

Define, for ζ = ζ2*, Z-orders

(a) ^ ( J J : = Zζ[τ/]/{/ = 1, yζy = ζ"1} c J

(4.13) (b) ^ ( S J J : = Zζ[y]/{y> = 1, yζy = -ζ"1}

(c) ^ ( Γ J : = Zζ[y]/{y* = - 1 ,

None of these orders is hereditary (or maximal) by [42, 40.13],
since the unique dyadic prime in Z(ζ + ζ"1) or Z(ζ — ζ"1) is wildly
ramified in Zζ.

(4.14) THEOREM. The order έ?(An) (resp. ^{SAn)t ^{An)) ex-
tends to an involution-invariant maximal order in Δn {resp. SJn9

Assume this theorem for now. It is easy to deduce from the
discussion of Cartesian squares in [14] that, under the isomorphisms
of (4.6), έ?(Δn) is the image of ZDn+1 in

ZDn+ι >QDn+1-^+IίJt xQxQxQ xQ > Δ n

similarly for SjDn+1 and Qn+1. From this and (4.14), it follows easily
that

(4.15) THEOREM. If π is one of the groups in (4.4), then
Zπ £ Qπ extends to an involution-invariant maximal order in Qπ.
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Proof of (4.14). Consider first the inclusion έ?(Δn) -» Δn. Recall
from Example (4.10) imbedding (4.12)

/: <?(Δn) > M2(R) , R = Z(£. + &1) .

Using the same procedure, change only the basis of Zζ2% over R,
taken here to be {1, ζ}. Then for ζ = ζ2*,

/ ( ζ ) = li c + H ' /(ζ~1)=v - i o,
The involution on M2(R) induced by / from that of <?(Δn) is com-
plicated; to simplify it, let i = ζ2%~2, and define

2 - ( ζ + ζ"1)

-(C + Γ 1) 2

Then d e t A = l , A = A*9 and all its entries lie in R. (I.e., 2μ~\
(ζ + ζrι)μ~ι e R.) The same is true of A~\ Let / ' be the composi-
tion

f: = {<?(Jn) -?-* MIR) — Mt(R)} ,

where mA"1 is left multiplication by A~K Then one checks that

)( = /'(ζ) and

But since ζ and y generate d7(Δn), this implies that the involution

inherited by M2(R) is the transpose (i.e., σ = Id, Λ = ( i Vj in (4.8)].

It is now clear that the desired maximal order is M2(R).
The procedure for έ?{SΔn) £ SΔn is similar and left to the reader.
Finally, consider ^ ( Γ J £ Γn. When n = 2, ^fς: = <^(Γ2) +

(1/2)(1 + i + i + k)έ?(Γ2) is maximal in Γ2 by [42; Ex. 2, p. 152];
it is clearly involution-invariant. For n ^ 3, setting ζ = ζ2%, define

^K: = ^ ( Γ J + α ^ ( Γ J , α = (1 + C Γ d + 2/) .

Then the following equalities hold:
(a) α* = α

ία — 1, n — 3
+ |O, ô eί> = the dyadic prime of Z(ζ + ζ"1), ^ > 3.

(b) aζ - ζα = ζ"1^.

(c) α(ζ») - (ζ»)α = ζ(l + C/l - C2)(2/ - 1) - ζ"1 and (1 + ζ2/l - ζ2)
is a unit in Z(ζ + ζ"1).

(d) a + a = 1.
From (d) it follows that ^ ^ is involution-invariant; and from (a)-(c)
it follows that Λ^n is Z-finitely generated, hence a Z-order.
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Given b e ^K denote by 6 its class in ^Vjp, p e Z(ζ + ζ"1) the
dyadic prime. Define a map /: <sΓjp -> M2(A/p), A = Z(ζ + ζ"1) by:

/(«) =

f(a) =

C

e
f(y) =

ί) '
e

0

=

l )

=

1

e

(o

o)
= 3

~ "" \0 1 / '
and

f(β) = ( ) » /(έ) = ( l i
\0 0/ \0 1/

/1 o\
> 3 .

Using the equations (a)-(d) above and making M2(A/p) the algebra-

with-involution (M2(A/p)f Id, ί -, Q \ l j (notation of (4.8)), one easily

checks that / is an isomorphism of algebras with involution.

Now by [42, 41.1], ^ ( F J q is already maximal for q nondyadic;
hence so is C^O,. But since (Γn)p is split when p is dyadic, the
isomorphism / shows (<^K)P is also maximal. Thus, ^ n is every-
where locally maximal, hence maximal.

Here is the main result of this section.

(4.16) THEOREM. Let π be a finite 2-group. Then there is an
involution-invariant maximal order

Zπ Q ^ QQπ

such that ^ = /T^C where each ^*C is maximal in some simple
component of Qπ and has one of the following four forms, as an
algebra-with-involution in the sense of Definition (4.8).

( I ) (MAZζΛ ζ -> ζ"1, /, l),m^0,n^ 1.
( I I ) (MAZ(ζ2n - ζΓ.1), ζ - ζ-\ g, 1)), m ^ 1, n ^ 3.
(III) (ikf2m(Z(ζ2« + ζΓ.1)), Id, h, 1), m ^ 1, n ^ 2.
(IV) (M 2 W (^ς), σ, /2m, 1), m ^ 0, n ^ 2,

where ^K is a maximal order in Γn, and σ: ^Vn —> ^Vn is the
restriction of the involution on Γn.

In addition, type (IV) completed at nondyadic q; or at the
dyadic prime p for n^Z, becomes

(IV), (M2W+1(Z(ζ2. + ζ,-.1)), Id, h, - 1 ) .

Proof. The theorem follows from (4.7), (4.15) the proof of [6,
(5.2)] and [30, §1, Lemma 3]. Details are left to the reader.
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5* Arf and Dickson invariants over Zζ2% and Z(ζ2n — ζΐn).
Throughout this section, A = Zζ2n (n ^ 2), or Z(ζ2* — ζjί) (n ^ 3),
and K is the fraction field of A; the (nontrivial) involution is induced
by ζ —> ζ~\ complex conjugation.

First recall that if p — p is a finite prime of K, then a theorem
of [26] states that the discriminant induces

(5.1) dis,: fW}(Kp)

where Fp denotes the completion of the fixed field of the involution
with respect to the prime under p and N: K* —> Ff is norm. Thus,
from the commutative diagram, where Sf£ is from the localization
sequence,

fWl{K)

I dis

Fx/NKy

_fWl{K,)-

JL dis .

^fWoXKJA,) ^ fW}(K/A)

Ji

it follows that ker(dis) Q ker (&%). The argument of [60, III. 5.2]
shows that the inverse of the isomorphism fWo(K)/ker (dis) ^FX/NKX

is given by §(/) = </, —1>. These remarks furnish the commutative
diagram, whose top line is a version of the Artin reciprocity law
(see [27, X. 3. Thm. 4] and [7, p. 177]),

F*INK* - ί U JL F*INK* -Ϊ-+ Zβ

Mδp,ρ finite; trivial, p infinite

(5.2)

(5.3) THEOREM. ΪTi e Dickson invariant induces

fWKA)-Z-fWKA/2A) = Z/2 .
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Proof. Since (A/2A)/Rad = F2 (A has a unique dyadic prime,
which is totally ramified), the surjectivity follows from (1.6) and
(2.6).

Let λ = — 1. Referring to (2.4), it suffices to show that, given
(S, φ) (representing an element [S, φ] of fWi(K/A)) where S is non-
dyadic-torsion A-module, there exists xefWo(K) such that £f*(x) =
[S, φ]. Since K/F is unramified at nondyadic primes, fWi(A9) Ξ= 0,

p = p nondyadic: fW&Ap)^fWi(A/p) by reduction (1.13) and this
vanishes if * = 0 by [60, p. 117], by [33, (4.1)] if * = 1. Thus, for
such p, (.SfJ1), is an isomorphism, by the localization sequence. From
(5.2) it follows that there is {/,} e Π FζjNK^ such that 3{/J = [S, φ].
If r{/J — 0, a diagram chase completes the proof. If not, then
change {/„} at a ramified infinite prime. Then d{fp} is unchanged.

In case λ — 1, and A = Zζ2n, "scaling" [3] with i = — i, shows
fWl(A)=zfWr\A). In case A - Z ΐ ζ - ζ - 1 ) , then (ζ-ζ" 1) generates the
ramified dyadic prime of Z(ζ — ζ"1) and satisfies (ζ — ζ"1) = — (ζ — ζ"1).
Since the argument for λ = 1 used only fraction fields (or their
completions at nondyadic p) and nondyadic torsion modules, it too
can be scaled to give the result in this case.

(5.4) THEOREM. The Arf invariant induces surjections

>fWi(A/2A) s Z/2 .

Proof. The values of fWi(A/2A) follow from reduction and the
fact that (A/2A)/Rad = F2. Surjectivity for λ = — 1 uses the com-
position Z —> A -* A/2A —> F2 and the usual representative for the
Arf invariant over Z. If A = Zζ and λ = 1, use scaling, as in (5.3).

To prove the assertion if λ = 1 and A = Z(ζ — ζ"1), observe
first that (JSfς1),,: fWi(A9) -> fW}(K9) is injective, where p is the
dyadic prime of A. For by reduction (1.13) and (2.6), fWi(Av)^
fWo(A/p) = Z/2, with nonzero representative ((Ap)

2, r̂, g) where # has

matrix ^ __*) a n d ^(e) = 1 = -?(/) for a basis {β, /} of (A,)2 The
image of this element in fW}(K9) has discriminant 5 and (by (5.1))

dis: fWi(Kp) 5 FζlNKζ = Z/2. Thus to prove that (JΓo1), is injective,
it suffices to show 5&NK*. By [31, 63.10], this is so if and only
if the Hubert symbol

(5 5) /5,(ζ-ζ-)2\ _ +

since i ί = Q(ζ - ζ"1) is obtained from the fixed field F = Q(ζ2 - ζ"2)
by adjoining i/(ζ » ζ"1)2 = ζ - ζ"1. But (ζ - ζ~J = ζ2 + ζ~2 - 2 is
the generator of the unique dyadic prime in Z(ζ2 + ζ~2) and 5 = 1 +
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4(1) has quadratic defect 4A, so (5.5) follows from [31, 63.11a].
Now it remains to prove that there is a ( + l)-quadratic form

over A whose image in fWi(Kp) is nontrivial. This can be done by
the reciprocity arguments of (5.3). Namely, referring to Daigram
(5.2), let {fi}eTί%ssΆFϊ/NKϊ be given by

/ , =

5 , q = p dyadic

— 1 , q = some fixed ramified prime

1 , otherwise .

Thus, in (5.2), r{fq} = 0 = Π, (J^oV(IL W J , so we can find a ( + 1)-
quadratic form (Kn, g) such that ^fQ

ι{Kn, g) = 0 and disp (Kn, g) =
5 6 F*/NK*. Exactness in the localization sequence furnishes a ( + 1)-
quadratic form (P, h) over A such that JΓ0\Pf h) = (Kn, g). This
completes the proof.

6* Arf and Dickson invariants over Z(ζ2n + ζ2~ί)* Throughout
this chapter A = Z(ζ2% + ζϊn), n ^ 2, K is its fraction field, and the
involution on A and K is trivial. A is totally real and has exactly
one dyadic prime, which is totally ramified over (2) £ Z.

To begin, consider the diagram of localization sequences (cf.
(1.15), and [60, IV. 3.4])

<2^1 r^l cφjl

ί^fWi(K/A)—^fWrKA)
(6.0) \h(A) \= \\h(KIA)

Since fWr\K) = 0 by [33, (4.1)], ^ is surjective; since the ideal
class group ^ of A has odd order [17, Satz 38'], ^ί e rm is surjective
by [60, IV. 3 4]. Thus there is an exact sequence

(6.1) fWoKA) Ά fWLUA) — V(K/A) > fW;\A)

where

V(K/A): - ker (h(K/A)) , L: = j^ 1 1 im (/^e r m(A) > fW}(K)) .

To motivate the following procedure, recall that W(K) ( =
Witt group of symmetric bilinear forms over K, without rank
restriction) is studied in [60, II. 5] by a filtration process, due
essentially to Pfister (for any field K): the authors begin with the
rank homomorphism W{K) —> Zj2, and observe that the discriminant
becomes a homomorphism on its kernel I(K); next the sum of the
Hasse-Witt invariants becomes a homomorphism on the kernel I\K)
of the discriminant; and, finally, the signatures (divided by 8) are
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defined on P(K), the kernel of the Hasse-Witt map (but the signa-
tures are already a homomorphism on the larger W(K)). Thus, they
obtain

(6.2) PROPOSITION. There is a decreasing filtration of W(K),
where K is a number field,

W(K) 2 I(K) 2 I\K) 2 I\K) 2 0

with successive quotients and isomorphisms given by the above in-
variants (rank, discriminant, Hasse-Witt, signatures) W(K)jI(K) =
Z/2, I(K)/P(K) ~ K*/K**, I\K)II\K) = IL finite Z/2, P(K) S IL real Z.

infinite

Denote by d9 the composition (see (1.12) (a))

(6.3) dψ: = {W(K) — = > fWLUK/A) > W(A/p)}

which by (1.12) equals the composition

3, = {W(K) > W(KP) i ^ e I ^ fWLUKJA,) j^~+ W(A/p)}

where the maps are the obvious ones. The following result was
proved in [60, pp. 86, 96].

(6.4) PROPOSITION, (a) 3J I\K) = 0; (b) dp(I\K)) £ I(A/p) and

I(A/p) —• (A/p)x/(A/p)x2 = Z/2 if p is nondyadic, and is zero other-

wise; (c) dp\I\K): P(K)-» W(A/p) may be identifield with Hasse-

Witt invariant at p, for p nondyadic; (d) the induced map

dp: I(K)/P(K) -> W(A/p)II(A/p) ^ 2/2 may be identified with the

parity of the p-adic valuation, t;p(dis <j>), of the discriminant of a

form φ.

Since fWi(K) - ker {W(K) — Z/2} and fWLUKJA,) =
fWo(KJAp) for p = p nondyadic, the following is an immediate con-
sequence of (6.4).

(6.5) PROPOSITION. For p nondyadic, the result analogous to
(6.4) holds, where W(—) is replaced by fW}( — ) and ^f^m by JS^1.

It will turn out (see (6.17)(b)) that (^\, unlike (£fh\τm\ detects
the £-adic Hasse-Witt invariant when p is dyadic

Lannes? idea is to filter ^f\V{KjA) so that ^ restricted to
successive quotients is computed by invariants of V(K/A), as was
done in (6.5) for nondyadic p. The reader is reminded that
excludes the rank invariant.
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Begin by observing that one may make the identification

V(K/A) = V(K/AW) , p dyadic .

It is therefore sufficient to filter V(K/AW).

(6.6) [28, p. 543]. Let p be dyadic, and define a surjective
homomorphism τ: V(K/A{p)) —> Z/2 by

τ(S, φ, f) = rkA/p(S/ρS) ,

where (S, φ, ψ) is a (H-l)-quadratic form over K/A. The map τ is
closely related to the Dickson invariant.

(6.7) PROPOSITION. There is a commutative diagram

Γ
fWr\A/2A)

1(1.13)

Proof. It is clearly sufficient to prove commutativity with Aw

in place of A. So let [S, φ, ψ] e V(K/A{p), let (A{p))
2n A (A(p))

2n Λ S be
a resolution, and let τ: (A(p))

2ra x (Aw)
2n -^ K be chosen to satisfy

(1.17) (see [32, 1.17, 1.18]). Then by definition ^[S, φ, ψ] is the
class of the formation θ = ((Aw)

2n, (A(p))
2% (μ, τμ)) (see [32, §4]). By

[33, (3.1), (4.1)], ft) is defined on rβ to be rkA/¥(cόk (μ/p)) mod 2,
where μ/p denotes the reduction of μ mod p. Since Aw is a principle
ideal domain, rkA/p(cόk(μ/p)) = rkA/χS/pS)f so the diagram commutes.

(6.8) Next let

and define a homomorphism Δ on it as follows. By (2.3),

fWz\Ato)^fWz\AlpA) is injective so by (6.1) with Aw in place of
A, &ϊ\\m {fWLUA)->fW0\K)} maps surjectively to V\K/AW).
Thus suppose (P, g) is a nonsingular hermitian (i.e., bilinear) form
over Aip) and ^ro\P9 g) = xe V\K/AW). Setting Δ(x) equal to the
mod 4 reduction of dis (P, g), defines a surjective homomorphism
([28, p. 544])

(6.9) J: VXK/A) > (A/4A)X/(A/4A)X2 - (A
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(6.10) Now let

(6.11) VXK/A): = kerJ.

There is a natural inclusion Aip)/pA{p) —> KJAip) given by a -> α/π,
where π is a generator of £ £ A(p). Using this, each quadratic form
over A{p)/pA{p) — A/pA gives rise to a (+ l)-quadratic form over
K/A(p). The resulting homomorphism fW0XA/pA)->fW0XK/A{p)) is
shown to induce an isomorphism [28, Prop. (2.2)],

(6.12) j: fWi(A/pA) — VXK/AW) .

The following theorem summarizes the above discussion and extends
the filtration (6.4) of WL

(6.13) THEOREM (Lannes). The homomorphisms h(K/A), τ, I,
and j define a filtration of fWi(K/A)

fWi(K/A) Ώ V(K/A) 2 VXK/A) 2 V2(K/A) 2 0

and isomorphisms of the successive quotients with

fWLUKJA), fWr\A/pA)f (A/4Ay/(AJ4AY> , fWi(A/pA) .

Set Fco — the set of real valuations of A, hv{x){ 6 Z/2) = the
Hasse-Witt invariant of xefWLrm(K) at the prime p (see [60]) and
(7β(a0 = the signature at v e V^

(6.14) THEOREM {Lannes). Let the map ^ of (1.15) induce L
in (6.1) and let V{KjA) be filtered as in (6.13). Then there are
commutative diagrams with exact rows and columns,

fWi(A) fWLUA) £„ VXK/A)

(6.15)

and

(6.16)

fWi(A) n i\κ)

fWiU) n P{K) -

JHK/4)

Π Z

Z/2

fWLUA) n P(iί)

= | d i s

Ax/Aχ2 -^r

—» U Z + Z/2

""" \ n

— • Z/2

VXK/A)

»(A/4A)x/(^/4A)

^ F2(if/A)

4-
—> Z/2
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where the maps in the second rows of (6.15) and (6.16) are the
obvious onesf and rx and r2 are sums in Z/2 ("reciprocity maps").

Proof. From [28, (4.8)], ker a2 = Horn (<if/ίf2, Z/2), which van-
ishes since ίT has odd order [17, Satz 38']; by the Dirichlet Unit
Theorem, rkF2(Ax/Aχ2) = 2n~\ which equals rfcF2((A/4A)x/(A/4A)χ2) by
[31, (63.8)]. Thus a2 is an isomorphism. The map this is an iso-
morphism by an argument similar to, but simpler than that of
[28, Prop. 1.12]. The commutativity of (6.15) follows from the
description of I in (6.8).

The exactness of the second column of (6.16) is from [60, IV.
4.5], that of the first from [28, Thm. 5.1]. The commutativity of
the upper right square in (6.16) follows from the discussion in [28,
2.9].

(6.17) REMARKS, (a) The maps rx and r2 are essentially
restrictions of Hubert reciprocity to Foo and Foo U V2. (b) It is
interesting to observe that (6.16) shows that Sf<t contains the
dyadic Hasse-Witt invariants, while from (6.4), J*f&τm does not.
Nondyadic Hasse-Witt invariants do not appear in (6.16) because
they persist under both £f£ and &%*m to fWi(K/A) (see (6.4), (6.5)).
Thus, they cannot appear in fWLvm{A) or fWo(A), by exactness of
the localization sequence.

(6.18) COROLLARY. The DicJcson invariant induces an isomo-
phism

Proof. L(fWlerm(A)) £ VXK/A) by the discussion in (6.8). This
and the diagrams (6.15), (6.16) give the result if λ = 1.

The discussion of fWr\A) is elementary (i.e., nonarithmetic).
Namely, skew-symmetric forms on nondyadic ^.-torsion modules are
always hyperbolic: the proof is essentially the same as for skew-
symmetric forms over fields of characteristic Φ 2. Further, if
(S, φ, ψ) is a (— l)-quadratic form on a dyadic A-torsion module, we
claim it is also hyperbolic. For S may be assumed to be p-torsion,
for some fixed dyadic p, and hence is an AΓmodule. In [54, §4],
Wall classifies skew-hermitian forms (S, φ) over Q/Z by an argument
which easily generalizes to A9: and it is a consequence of the defini
tion that (because of the presence of ψ) φ(x, x) = 0, for all xeS.
Thus, by [54, Lemma 7], (S, φ, ψ) is hyperbolic, so that fWr\K/A) = 0.
(However, fWϊixm(K/A) Φ 0 and is detected by de Rham invariants
[54, §4].) From [33, (4.1)], fWi(A) -> fWl(K) = Z/2 is surjective
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(by lifting back a nonzero representative), hence by the localization
sequence an isomorphism. Using the nonzero reprentative in (1.6),
the proof is complete.

(6.19) THEOREM. The Arf invariant
(a) fWo\A) -+fWϊ\AI2A) =; Z/2 is nontrivial.
(b) fWi(A) -+fWi(A/2A) = Z/2 is trivial.

Proof. The isomorphisms follow from reduction (1.13) and (2.6).
Part (a) is obvious. To prove (b) observe first that if p is

dyadic, the (+ l)-quadratic form ((A9)\ g, q), used in the proof of
(5.4), has nontrivial image in fWi(A/p)9 and discriminant 5 which
is nontrivial in A* I A*2 by [31, 63.2] and the fact that it is nontrivial
in (Ap/4pAp)

x/(AJ4pAp)
x*. Thus, it suffices to show that no element

of fWi(A9) has discriminant, which, in Ax is congruent to 5 mod Aχ2.
But by (6.15) all such discriminants vanish.

Next it is necessary to work out the filtration of (6.13) for
application in Chapter 7. First some lemmas.

(6.20) LEMMA. Let p be the dyadic prime in A. Then the
Hubert symbols

Proof. 5 is the sum of two squares, so the first symbol is 1 by
definition [31, 63.10]. Since Q(ζ + ζ^Xi/^ϊ) = Qζ, N(l - ζ) = 2 -
(ζ + ζ-1), where N: Qζx ->Q(ζ - ζ-1)* is the norm. By [31, 63:10]
the second value follows and the proof is done.

(6.21) LEMMA. The map c: Ax/Aχ2 -> AxjAf in injective (p the
dyadic prime) and its cokernel is Z/2, generated by the class of the
p-adic unit 5.

Proof By the Dirichlet Unit Theorem, rkF2(Ax/Aχ2) = 2n~\ while
by [31, 63:9], rkF2(Ax/Aχ2) - 2n~2 + 1. Since a2 in (6.15) factors
through c, the proof is complete.

(6.22) Let S: Ax/Aχ2 ->ΊJveVoo{±l} be the map which assigns to
aeAx its signs at real completions. Then S is an isomorphism.

Proof. By [17, Satz 38'], S is surjective; it is an isomorphism
because the ranks are equal, using the fact that K is totally
real.
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(6.23) PROPOSITION. Let A = Z(ζ + ζ"1), ζ = ζ2», n ^ 3 and let
p denote the dyadic prime. Then

(a) V\KjA) = Z/2 mίfe generator £?o

ι(l, 1, — TΓ, — 7Γ> where π is
some generator for p.

(b) VKK/A) = VXK/A) ®{V\KIA)IV\KIA)) = Z/2 + (Z/2Γ~2,
where Vι\V1 has basis Sfo\ — ^, %<), {wj α δαsίs /or Ax/Aχ2 over F2.

(c) VX-K/A) = F2(iί/A) © (Z/2)2""2-10 Z/4 w/̂ erβ the third term is
generated by the class of the ( + l)-quadratic form (A/4A, φ, ψ) where
Φifft O) = 1/4 e if/A, α/r(gr) = 1/4 6 UΓ/2A α^d gr is the generator of A/A A.

Proof. Since ( — l)eKx\ nondegeneracy of the Hubert symbol
implies there is a nonsplit quaternion algebra ( — lfufK9) (see [25,
6.2.16]) for some ueKx. Using (6.20) and (6.21), it is posible to
assume u = v(2 - (ζ + ζ"1)), veAx. Set π = v(2 - (ζ + ζ"1)). The
norm form of ( — 1, πjK) is, by definition (see [25, p. 56]), the
quaternary form φ = <1, 1, —π, -π) efWί(K). Clearly dis (φ) e Kχ2;
and the Hasse-Witt invariant

/ 1 _ \

for nondyadic finite q, by [31, 63:11a], Hence φeP(K) (by con-
struction), φeim{fWLUA)->fWLUK)} (by (6.0) and (6.4)), and
hp(φ) — ( — 1, π/iQ = — 1. Thus, by the commutativity of the upper
right square of (6.16), ^fo\Φ) is the generator of V2(K/A) = Z/2.

(b) Immediate from (6.13) and (6.15).
(c) Clearly, by (6.6), τ(A/4A, φ, ψ) - rfc(A/4A (x) A/p) = 1.
(d) Evidently jS^e r m«-l, π » is the generator of fWLrm(KJAp) =

/Wϊβ.xnίA/W (see (6.4)(d)) and 2^ 0

1 <-l , π> - &?<-l, - 1 , TΓ, TΓ> =
generator of

7 Arf and Dickson invariants over the maximal order n

in Γn. In this chapter Γn and ^4^ will denote the quaternion algebra
( —1, — 1)/Q(ζ + ζ"1) and an involution-invariant maximal order in it,
respectively, where ζ = ζ2n, n ^ 2.

Begin (as in §6) by considering the commutative diagram

—--* fWo\rn)

(7.1) J

At the end of this chapter we prove

(7.2) THEOREM. ^ . ^ is surjective in (6.1).
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This fact, together with the facts J%ΐ£m is injective (by [6,
1.1]) and fW}(Γn) = 0 (by [33, (4.1)]) furnish an exact sequence,
derived from (7.1):

(7.3) fWΛ^n) — fWrJU^K) - ^ V(ΓJ^Γn) —

where

(7.4) V(ΓJ^K): = ker {fWΛΓJ^K) > fW^ΐm(ΓJtyK)} .

(7.5) THEOREM.

((Z/2Γ-2 + Z/4 , n ^ 3 .

Proof. Write Γn = Γ, Λ"n = ^Ϋ". Since hermitian and quadratic
forms on nondyadic torsion modules can be identified,

where p is the unique dyadic prime in the center Z(ζ + ζ"1) of ,yK
Let n ^ 3. Replacing (Γ, ^Γ) by (Γ,, .^ς), since (ΓPf Λζ) =

(M2(Q(ζ + ζ-1),), M2(Z(ζ + ζ'V) with involutions described in (4.4)
and (4.16), the diagram becomes by Morita theory (4.3) isomorphic
to (6 0), where (K, A) = (Q(ζ + ζ-1),, Z(ζ + ζ"1),); applying (6.23)
completes the proof in this case.

If n~ 2, then Γp is a division algebra so by [61] the
discriminant induces

fWΛΓ,) = fWϊim(Γ9) ~ Q?/(Q2

X)2 - (ZI2f .

Thus, a set of generators is {<i + 2j, i}, (i + j + k, i + 2j>,
<ί, i + i>} Since the reduced norms of their entries lie in Z2 the
first two generators are in im(fW£Xm(^K)--J>fWϊiτm(Γp)) by [42,
12.5]; <i, i + j} is not and must therefore map to the generator of
fW^τm(Γp/^K) = 3/2 under £f&m. Finally, letting (m) denote the
unique maximal 2-sided ideal of _ ^ it is generated by (1 — ζ), a
direct calculation or [42, 14.3] shows

(7.6) ^ / ( m ) ~ F±,

where F4 has the nontrivial involution. By (1.13), and (2.6),

(7.7) fWttΛϊ) = 0 .

Putting these facts into (7.1) where (Γ, ^V) is replaced by (Γp,
yields V(Γ/^K) = Z/2 + Z/2 as required.

(7.8) DEFINITION. Let p be a (discrete) prime in the center
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Q(ζ + ζ-1) of Γn, ζ - ζ2*, and suppose (Γn\ is split. Set Γn = Γ. If
= fWteτm(Γ), its p-adic Hasse-Witt invariant is the image

in the composition fWΛΠ -*fWϊ\Γ9) ^fWo\M2(Q(ζ + ζ"1),)) — ^

fWi(Q(ζ + ζ"1),) ->Z/2, where Λp is the Hasse-Witt invariant of [60].

(7.9) COROLLARY, (a) One Z/2-term in (7.5) is generated by
Xx), where x has nontrivial dyadic Hasse-Witt invariant, n ^ 3.

(b) Ifn ^Z, VXΓJΛO ^ fWK^K) - fWK^KlZsT.) = Z/2 is

Proof. The corollary is immediate from the analogous facts,
where skew-hermitian forms over (Γn9 <yK) are replaced by sym-
metric forms over (Q(ζ + ζ"1), Z(ζ + ζ"1)), and the fact that the proof
of (7.5) used Morita theory to translate the latter context.

(7.10) THEOREM.

(0 >0 , n = 2

H: fWϊXsK) >fWςU(^K) = p / 2 r ~ 2 - 2 > (Z/2)2W-2~2 + Z/2 ,
[(inclusion into first term) n >̂ 3 .

Z/2 ^oί m im (JBΓ), w ^ 3, cα^ be represented by a form
with trivial discriminant and nondyadic Hasse-Witt invariants, and
nontrivial dyadic Hasse-Witt invariant.

Proof. Let ^r = ^K, Γ = Γn. According to [23, p. 138] the
kernel of the completion-induced map

(7.12) C: fWςlUΠ > Π /TΓίeWίΛ) ,

(where the sum is over all valuations of the center of Γ) is trivial
if and only if at most two Γp are nonsplit; otherwise it is an
elementary 2-group of rank \S\ — 2 where S is the set of places
where Γp is a division algebra. Thus, if n — 2, C is injective, and
since Γ is split at nondyadic qeZ (see (4.9)), by Morita theory (4.3)
(q is odd),

fWLUQq) — ^ fWieUQJZ,)

Thus if ^eimί^^ ^ i/^eW^T)^/^^ 1 ^^)} all Hasse-Witt in-
variants vanish at odd g (by (6.4)(b)). On the other hand, the
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discriminant of x must be a positive integer and a unit, hence equal
to one. Since the right side of (7.12) is detected by the discriminants
and Hasse-Witt invariants if Γp is split (p odd) and by the discrimi-
nant if p — 2 (by [61]), x = 0. Since J%ϊ£m is injective
fW^lτm{^V) = 0. The argument just given, together with (7.7),
(1.13) and (2.1), shows fWϊ\Λr) = 0.

Now let n 2£ 3. The argument just given also shows ker C £
fWϊirm(Λ~). By the "Existence of forms with prescribed local
behavior" (7.17), there is xefWςiτm(Γ) with dis(α?) = 0, hq(x) = 0,
for q Φ p, the unique dyadic prime, and h¥(x) Φ 0. By (6.4)(a) and
Morita theory, jSih^m{x) = 0, so x e im C^ίiίm). But α? ΐ ker C, because
Λp(α0 =£ 0. Thus, we have

(7.13) ker C + Z/2Q fWςi^i^T) ,

where the Z/2 is represented by x with h£x) Φ 0, hq(x) = 0, q non-
dyadic, and dis (») = 0.

Conversely, if xefWςi^^T), then dis (a?) eZ(ζ + ζ-χ)x and is
positive at all real valuations (see (1.7)). Thus by (6.22) it is a
square. Also, the usual Morita arguments together with (6.4)(b)
show hq(x) = 0, for q nondyadic. This shows ker C + Z/2 2

It will be shown in (7.15) that fWόX^Γ) -^ fWϊ\^r/2L4^) is
trivial. This together with (2.1), shows H is injective. The
arguments above show ker C £ fWo\^V); this is equality because
by (6.4)(b), £f<Γ\x) Φ 0, where x represents the Z\2 in (7.9).

The next result is an immediate corollary of (7.5), (7.9), and
(7.10). Observe how it contrasts with (5.3) and (6.18), where the
Dickson invariant detected essentially all of fW}{A).

(7.14) THEOREM, (a) For all n ^ 3, there is a nonsplit exact
sequence

and fW&^rJ2Λl) = Z/2 ifn^S, and is trivial ifn = 2;
Z/2 + Z/2.

(b) fWΛ^Tn) - 0, for all n.

To prove (b), Morita arguments (by now routine), together with
the proof of (6.18) and the splittings (1.10, show that fW&ΓjΛO = 0,
n ^ 3. When n = 2, a theorem of [40] shows fWi((Γn\) = 0, and
by (7.7), /Wr1((c^)2) = 0. Hence, by the localization sequence,
fWKΓjΛΏ^O, n = 2. Since fWrι(Γn) = 0 by [33, (4.1)], the
localization sequence yields b).
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(7.15) THEOREM, (a) fWQ\^K/2^n) ^ Z/2 if n^S, and is
trivial if n = 2. (b) fWoK^K) -> fWKyKβ^K) is nontrivial if
and only if n^Z and λ = 1.

Proof. When n = 2, (α) follows from (1.13) and (7.7). For
n ;> 3 it follows from the fact that Γn is split at the dyadic prime,
Morita theory, and (6.19).

For (b) consider the following diagram, where A — Z(ζ + ζ"1),
K = Q(ζ + ζ"1), i£ϊ = the group of nonzero, totally positive elements
of K, ^4^ = ^/<;, Γ — Γn and ί> is the unique dyadic prime in K

— K'JK**

I
Morita ^ Morita

fWi(Kp) >

Since im (dis ^Γ1) £ Ax/Aχ2 consists of totally positive units, this
image is trivial by (6.22). Now the proof of (6.19)(b) shows fW}(Af)
is detected by its discriminant; but A*jAf —> Kp

x/K*2 is injective (Ap

is integrally closed), so (b) is proved in case λ = — 1.
If λ = + 1 , consider the diagram

± W i ) °

±
£* Morita ^ Morita

fWό\Z(ζ + ζ-1),) fWoKQiζ + ζ-'X) = 0

^ reduction

The map C is surjective by (1.10). From this and the well-known
fact that there is an element in fWό\Z(ζ + ζ""1)^ which is nontrivial
after reduction mod 2, there exists x e fWiiΛΪ) with nontrivial mod 2
reduction and (3£?Mx) = 0. If {^\{x) = x, % efWKΓJ^f^), then
3f^C-\x)efWii^T) is nonvanishing in fWii^VΊZ^).

It remains to prove Theorem (7.2): that Jg&lm is surjective in
Diagram (7.1). To do this, a version of the "local-to-global theorem"
of [31, §72], is needed, where the number field there is replaced
here by the quaternion algebra Γn.
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(7.17) THEOREM (Existence of forms with prescribed local
behavior). Let K = Q(ζ + ζ"1), ζ = ζ2., n ^ 2, Γ - ( - 1 , -1/iΓ), S =
the set of primes at which Γ is not split. Let {δp} e J[p &nite Kf/Kf2

and {7je Πt»e^{±l} be given. Then there is a skew-hermitian form
g: Γn x Γn -> Γ such that hp(g) = 7, and άisp (g) = <5P /or αZZ £ i/ αweZ
only if

(a) ίfcere <msίs a totally positive deKx satisfying cίp = δp, p
finite, and

(b) almost all Ύp = 1.

REMARK. Observe that the {7P} are not required to satisfy the
"product formula" Π % = 1, as in [31, §72].

Proof. First recall some results on the Galois cohomology of
(classical) algebraic groups (for details see [23]). For an algebraic
closure K of K all skew-hermitian forms of fixed rank n say, over
Γ (g)K(=M2(K)) become isometric. Let U= U(K) denote the
isometry group of this form. The reduced norm induces a homomor-
phism U —»Z/2, whose kernel is denoted SU. There is a Z/2-covering
of SU, denoted Spin, and there are exact squences

(7.18) 1 > SU > U > Z/2 • 1

and

(7.19) 1 > Z/2 > Spin > SU > 1 .

(7.20) LEMMA [23, pp. 14-15]. There is a 1-1 correspondence

iisometry classes of rank n

\skew-hermitian forms over Γ

Using this, the map H\K, U) -> H\K; Z/2) ̂  Kx/Kχ2 induced by
the second map in the sequence (6.18) can be identified with the
discriminant and H\K, SU), with forms of discriminant 1. If Γp

is split, the connecting map in the cohomology sequence induced
from (7.19), H\KP, SU) -> H\KP; Z/2) s Br2(Kp) = Z/2 can be identified
with the Hasse-Witt invariant of (7.8).

In general, H\K, U), H\K, SU), etc., are not groups, only
pointed sets because U, SU are not abelian. However, by con-
sidering first the case where n = 1, so that SU becomes a torus,
hence abelian, an argument of [23, p. 137] essentially identifies the
map (induced by completions)

C: H\K; SU) > U H\KP9 SU)
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with the map L in the Artin reciprocity sequence for the extension
Kv/^ϊ/K= Qζ2n/Q(ζ2n + ζ2n) used in (5.2). Combining these remarks
results in the exact commutative diagram [23, p. 136]

dis

Z/2 > Hι(K; SU) > H\K; U) > Hι(K; Z/2) = K*KX*

Π Z/2 -> Π H\K» SU) - Π H\KP; U)-+U H\KP; Z/2) s K*/K?

where S = the (finite) set of primes p at which Γ is not split and
Δ is the diagonal inclusion.

The interpretation given above of the sets and maps in this
diagram yield Theorem (7.17). Details are left to the reader.

REMARK. Chasing in the diagram, one also gets the failure of
the Hasse-prineiple: D has kernel consisting of 2ιsι~2 elements.

Proof of (7.2). Consider the commutative diagram

p finite p finite

Morita

Π fW^τm(Γp)+ UfWieUKj^JlfW^urj^;) + Π J
p e S ' ϊ$S' peS' pίS'

finite finite

where Sf is the set of finite primes at which Γ is not split. (When
K— Q(ζ2n + ζ2n), n^Sf S' = 0.) Consider also the commutative
diagram

κx/κχ2 = κx/κ *2

Π κ?/κ?* -ΪΛ π (Z/2)
P

where vp is the vf-adic valuation mod 2, and & is the class group.
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Since ^ has odd order [17, Satz 38'], j is an isomorphism. This,
together with the interpretation of fWlm(Kp)^fWlm(KJAp) in
(6.4) and Theorem (7.17), shows ^f^lm is surjective. The argument
for n = 2 is left to the reader.
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