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AN AFFIRMATIVE ANSWER TO GLAUBERMAN'S
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MASAHIKO MIYAMOTO

Let G be a finite group and P be a Sylow p-subgroup of
G for a prime p. The following question is raised by G.
Glauberman.

Question 16.8. Does there exist a function / from the
positive integers i to the positive integers such that

H*(G9 Fp) s mNeίKUP)), Fp) whenever p^f(i)7

Here K* denotes the section conjugacy functor constructed
by G. Glauberman and Fp denotes the finite field consisting
of p elements and by forgetting its multiplicative structure,
we consider it as a trivial G-module.

In relation to the above conjecture, he proved the case
i = 1 and D. F. Holt has recently proved /(2) ^ 11. The
purpose of this paper is to provide an affirmative answer to
the question.

THEOREM C. If p ^ 12 X 6m"2 + 3, the Hm(G, Fp) ~

Hm(Na(KM(P)), Fp) for all integers m ^ 2.

This theorem is a a consequence of the following more detailed
theorem since iL> has degree 4.

THEOREM B. Let W be a section conjugacy functor of G of
degree t. 1/ p ^ 4 x 6m~2 x (t — 1) + 3, then the restriction map
induces Hm(Gy V) ~ Hm(NG(W(P)), V) for a trivial p-primary G-
module V and all integers m ^ 2.

COROLLARY 1. Let V be a faithful p-primary G-module, n an
integer greater than 0, and r be the first integer such that p ^
4x β -^x (r 4-1) + 2. Set A = (a e P: [ V, a; r + 1] = 1, ap = 1>. Then
we have Hm(G, V) ~ Hm(NG(A), V) for all integers m with l<^m<^n.

2* Notations and preparations* All groups considered in this
paper will be finite and we treat only finite modules by the same
argument in [6]. In particular, we always assume that G is a finite
group and P is a Sylow ^-subgroup of G. Most of our notations
are standard and taken from [1] and [2], and we adopt notations
from [7] about cohomology functor and G-functors. In addition, we
will use the following:

* A module V is said to be an jFp[G]-module if V is a G-module
and an elementary Abelian p-group as group.
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* For a subset j ^ and a subgroup H of G, set

* If T is a finite group acting on a solvable finite group S,
then we denote by irτ(S) the direct product of all the composition
factors of S under T.

We sometimes use the following lemma.

LEMMA 2.1. Let H be a finite p-group acting on an FP[G]-
module A. If an element a acts on the semiproduct HA and satisfies
the following: [H, a; 2] = 1 and [A, α; t] = 1, then we have
[H\H, A), a; (n + l)t] = 1 for all integers n ^ 0.

Proof Since [H, a] is a normal subgroup of H(a), the assertion
follows from the Lyndon-Hochschild-Serre spectral sequence.

3* Cohomological G-functors* In many parts of this paper,
we will use cohomological G-functors, which are generalizations of
cohomology group. The concept of G-functors were introduced by
Green [3] during the study of modular representation theory and
slightly changed by Yoshida [7]. We will adopt the definition from
[7].

DEFINITION 3.1. A G-functor (into an Abelian category ^ ) is
a quadruple A = (a, τ, p, σ), where α, τ, p, σ are families of the
following kind;

a = (a(H)) assigns an object a{H) of <& for each subgroup H of
G\

z = (rf) assigns a morphism rf = τκ: a{H) —• a(K) for each pair
(H, K) such that H ^ K ^ G, we simply write (α)τκ = α^;

p = (p|) assigns a morphism <of = p^: α(JBΓ) —> α(ίί) for each pair
(H, JSΓ) such that H ^ K ^ G, we simply write (α)/0H = α^;

(7 : = ((ĵ ) assigns a morphism σq

H = σ9: a(H) -+ a(H9) for each sub-
group H oΐ G and each element # of G, we write (α)^ = a9. These
families of objects and morphisms must satisfy the following:

Axioms for G-functors. (In these axioms, D, H, K, L are any
subgroups of G; g, gr are elements of G.)

(G.I) τf = la[π)9 τf Γέ = rέ if H ^ K ^ L;
(G.2) pg = l β ( m, pS /oS = ί>5 if • E: ^ H ^ D;
(G.3) σ&. σ'' = σff, σi - 1O(H) if heH;
(G.4) ,rI σ' = σίr τ^,/θf σ' = σS /θir,;
(G.5) (ackey axiom) If if and K are subgroup of L, then TH'PK =-

^'- ff eH\L/K a double coset represention}.

DEFINITION 3.2. A G-functor A = (α, r, p, σ ) is called cohomo-
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logical if it satisfies the following Axiom C:
(C) Whenever H ^ K ^ G, pi τ§ = \K: H\ lβ( j r).

For example, let V be a G-module and n be an integer (2^0). For
subgroups H, K of G with H ^ K, set a(H) = JET'CH", F), then the
restrictiom map pi: Hn(K, V) —> Hn{H, V), the transfer map
τ§: Hn(H, V)Hn{K, V), and the conjugation map σg:Hn(H, V) ->
Hn(H9, V) makes a cohomological G-functor, we call this a cohomology
functor.

Although we explained the definition of G-functors, we will
really use only G-functors which are induced from cohomology
functors. Therefore, readers may regard all G-functor in this paper
as cohomology functors. Next, we will show a construction of
G-functor induced from the given G-functor. All G-functors con-
sidered in this paper will be cohomological.

3.3. A quotient G-functor. Let A = (α, τ, p, σ) be a G-functor
over a field k. A G-functor B = (α', τ\ p\ σf) is called a sub-G-funtor
of A if B satisfies the following properties:

( i ) a\H) Q a(H) for all H £ G; and
( ϋ ) τ' = τW{H), p' = ρW{H), and σ' = σW{H).

We write A ^ B. Then we can make a new G-functor called the
quotient (or section) G-functor A/B = (α0, τ0, p, σ0) as follows: Set
αo(jH") = a{H)jaf{H) for H <ί G. Since the above inclusion are com-
mutative with r, /5, and σ, we can define morphisms τOf p0, σ0,
naturally.

In connection with the above notions, we define the follow-
ing:

DEFINITION 3.4. A G-functor A is said to be irreducible if A
has no nontrivial proper sub-G-functors.

DEFINITION 3.5. A chain of sub-G-functors A = Ao ^ Aλ ^• ^.
An = 0 is called a composition series if each Aί/Ai+1 is irreducible.
Then the factors At/At+1 are called its composition factors.

Then we have a proposition of Jordan-Holder type.

PROPOSITION 3.6. Any two composition series of a G-functor
have the same length and, with respect to a suitable reodering of the
composition factors, the corresponding factors are isomorphic.

The proof is similar to that of Jordan-Holder theorem. Thus
the composition factors of a G-functor A are completely determined
up to isomorphism (and ordering) by any one composition series.
Especially, we have the following:
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LEMMA 3.7. The nth. cohomology functor Hn(, V) of G with
coefficient in a finite G-module V has a composition series.

Next lemma about cohomological G-functors will be useful.

LEMMA 3.8. (Factorization lemma). Assume that G has two
subgroups Nx and N2 containing P such that G = NXN2. Let A =
(α, τ, p, σ) be a cohomological G-functor. If an element a in a(P)
is stable in both Nt and N29 then a is stable in G itself.

Proof. Suppose false, that is, there is an element g in G such
that (aF)

g Φ aFd and F = P9~ι Π P by the definition. Since g is an
element of G = -Ni-Ni* there are elements gu g2 in Nu N2f respectively,
such that g = gxg2. We here assert that we can choose gλ and g2

such that F9ί £ P. To see this, take an arbitrary representation
g = 0102- Then we get that F9* £ Nx and F^ = F99*1 £ N2 since
F, F9 S P £ Nx Π N2. Combining these, F91 is contained in a Sylow
p-subgroup Po of Nt Π N2, which is conjugate to P in JVi Π N2. There-
fore, there is an element k in N^Nz such that F9lk £ P. Then we
have a desired representation g = (gJcXk^g^. Since α is stable in
both Nx and JV2, we observe t h a t (aF)

91 = (αPί7inp — l)&i = (αpnp^i)j î =

aF9l and (α^) g = ((«ί )α i)α 2 = (oίFgi)
92 = (α?inp)?ir = Λ ^ This contradicts

the choice of g.

In association with composition factors, we will use the follow-
ing:

DEFINITION 3.9. Let A = (α, τ, p, σ) be a G-functor and {!?*: i e 1}
be a set of G-functors. We shall say that the G-functor A is
covered by the set {J5<: i e 1} or the set {I?*: i 61} is a covering of
A if each composition factor of A is isomorphic to a composition
factor of one of i?*.

For making research on a stability, we define the following
map.

DEFINITION 3.10. Let A = (α, τ, p, σ) be a cohomological G-functor
over Fp. We will define a map gA:Image(/>pβ(p):α(^(P))->
α(P) by qA(a) = α - £? where βea(NG(P)) with (/S)P = α.

LEMMA 3.11. (Properties of qA.) We have the following:
(a) 1/ a is stable in G, then qA(aϊ) = 0.
(b) // aG = 0, ίfom qA(a) = α.
(c) qA(a) € Ker(rp) n Image(^«(P))
(d) qA'QΛ = QA
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(e) J / α e I m a g e d ) for L ^ NG(P)f then qA{a) eImage(^).

Proof. All results are immediate consequences of the definition
of the map qA and Lemma 4.4 in [7].

Using the above map qA, we get a few lemmas about covering.

LEMMA 3.12. Let {Biiiel} be a covering of a cohomological G-
functor A — (α, τ, p, σ). Suppose that a subgroup NofG containing
NG(P) controls every composition factor of Bt for each i β /. Then
N controls A itself

Here, the statement that N controls A means that if an element
a of a(P) is stable in N then a is stable in G.

Proof Let A — Ao }jt Ax ^ Jέ An — 0 be a composition series
of A. Suppose that N does not control A, then there is an element
OLΦQ in α(P) n Image(^) Ker(τ?) by Lemma 4.4 in [7]. By the
choice of a and (b) of Lemma 3.11, we have qA(a) — a. Let At =
(ai9 τif p^ σt) be the quadruples of the G-functors A<. Since
qA((ai(NG(P)))ppG{P)) is contained in at{P), qA defines the map qj. for
each section G-functor At — AJAi+ί which has the same properties
as qA. Since every composition factor AJAi+ί of A is isomorphic
to a composition factor of one of Bj and so is controlled by Nf we
have gjo(α + a1(P)/a1(P)) = 0. We thus get a e ax(P). By iteration,
we finally obtain a — 0, a contradiction.

4* Main result* In this section, we will get the result which
will be useful in the next section, where we will prove theorems.
Namely, we will investigate properties of the minimal counterex-
ample on the assumption that Theorem B is false. We will divide
this section into three parts. In Part 1 and 3, we will assume
Hypothesis I and treat Proposition A. In Part 2, we will assume
Hypothesis II and prepare results which will be used in the last part.

Part 1. At first, we will consider the following: Hypothesis I.
Assume that:

(a) G a group, P a Sylow ^-subgroup of G, n an integer ^ 1;
(b) W a section conjugacy functor of G;
(c) W controls all composition factors of the G*-functor Hm{, V*)

in a trivial i^fG^J-module F* in every section G* of G for all in-
tegers m with 0 ^ m 5g n;

(d) V an ^[Gj-module;
(e) rn the first integer such that p <. 4 x θ71"1 x (r + 1) + 2;

and
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(f) j ^ = {aeP:ap = 1, [ίrG(V), a; rn + 1] = 1, and a satisfies
Con(rn) in G} and set B = <J^>.
Here we explain the notation.

DEFINITION 4.1. We shall say that an element a of G satisfies
Gon(s) in G for some integer s(<£0) if a satisfies the following
property; whenever a normalizes a p-subgroup T of G, [irNβ(T)(T), a;
2s + 1] = 1.

Our final purpose in this section is to get the following:

PROPOSIIΊON A. Under Hypothesis I, we have that NG(B) controls
all composition factors of the nth cohomology functor Hn{ , V)

Let us begin by listing up some properties of the hypothesis.

LEMMA 4.2. B is weakly closed in P with respect to G.

LEMMA 4.3. Let N be a subgroup of G and K be a normal
subgroup of N. If an element a of N satisfies Con(s) in G, then a
satisfies Con(s) in N and the image aK/K of a in N/K satisfies
Con(s) in N/K.

Now we start the proof of Proposition A. Suppose that Pro-
position A is false and let ^~ = {(n, G, V)} be the set of counterex-
amples. We introduce an order in ^~ by setting (n, G, V) >
(n\ G', V) if one of the following conditions holds:

( i ) n^nf) (ii) n = tt',|G|£|G'|; (iii) n - n\ \G\ = |G'|, W\ £
\V'\. Let (n, G, V) be a minimal element in ^~ with respect to the
above order. Then we have the following lemmas.

LEMMA 4.4. OP(G) = 1.

Proof. Suppose false and set H — 09(G). By Lemma 4.2, there
is an element a in S/-Ή. such that [irG(H), a; 2rn + 1] = 1 by the
property Con(rJ. By Proposition 1 in [6], we then obtain

[irG(H%H, V)\ α; (2i + l)rn + 1] - 1

for every integer i ^ 0. Especially, since [irG(Hn(H, V)), a; p — 1] =
by the choice of rn, it follows that XG = X^^(χ^ = {χeX:gx = x
for all g e G}) for every composition factor X of Hn(H, V) under G
by Theorem A1.4 in [1], which implies that NG{B) controls all com-
position factors of the G-functor H°(, Hn(H, V)). Since the G-functor
Hn{, V) is covered by the set of G-functors H% /H, Hn-\H, V)):i =
0, —-,n by Hochschild-Serre spectral sequence, there is an integer
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i ^ 1 such that NG(B) does not control a composition factor of the
G-functor H\ jH, V*) where Yι is a composition factor of Hn-%H, V)
under G. Summarizing the above argument, we have got the follow-
ing situation:

(a) GjH acts on an Fp[G/ff]-module V*;
(b) r< is the first integer such that p ^ 4 x 6*"1 x (r< + 1) + 2;

and
(c) j ^ * = {αe P/H: άp = 1, [irβ/1Γ( F*), ά; n + 1] = 1, and a satisfies

Con(ri) in G/H} contains the image of s^ in G/H. By the minimality
of (?, n, NG/H((j^ίS)) controls all composition factors of the G/H-
functor H*( /H, V1), which contradicts Lemma 4.2.

LEMMA 4.5. V is an irreducible G-module.

Proof. Suppose false and let {Vt:ίe 1} be the set of composition
factors of V under G. For each i, set

* = { α e P : α p = l , [ V i f a; rn + 1] = 1 ,

and a satisfies Con(rn) in (?}. We then get that NG{{j^1}) controls
all composition factors of the (τ-functor Hn(, V1) for each i and

/1 2 J^ί which is a contradiction.

LEMMA 4.6. Cff( V) Q OP,(G).

Proof. Suppose false and set H = CG( V) and S is a nontrivial
Sylow p-subgorup of H. The Frattini argument yields that G —
NG(S)H. It thus follows from Lemma 4.4 that NG(S) g G and so
NNG{S)(B) controls all composition factors of the iVί?(S)-functor Hn( , V).
Therefore, NPH(B) does not control all composition factors of the
PH-functor Hn{ , V) by Lemma 3.8 (Factorization lemma) and Lemma
3.12. It thus follows from the choice of G that G = PH. Since H
centralizes V and a p-group PH/H acts on the irreducible FP[G]-
module V, G = H. By the condition (c) in Hypothesis I, Nσ(W(P))
controls all composition factors of the G-functor Hn{, V). However,
since G Φ NG(W(P)), NNG{W{P))(B) controls all composition factors of
the iVG(TF(P))-functor Hn{, V), a contradiction.

LEMMA 4.7. Let H be a finite group and X be a faithful H-
module (or CH(X) £ OP>(H)). If an element a of H satisfies
[X, α; s + 1] = 1 for an integer s ^ 1, then a satisfies Con(s) in H.

Proof. We get the conclusion by the same way as Theorem
A2.4 and Lemma A2.3 in [1].



96 MASAHIKO MIYAMOTO

LEMMA 4.8. s/ is equal to the set {a eP: ap = 1, [V, a; rn + 1] = 1}.

Because we have supposed that Proposition A is false, NG(B)
does not control a composition factor A = (α, τ, p, σ) of the nth
cohomology functor Hn{, V). According to the definition of control,
we have Image(p%GίB)) J£ Imaged). By Lemma 4.4 in [7], there
exists a nontrivial element a in Image(ppGiB)) Π Ker(τ?). The next
lemma follows from the choice of a and Lemma 3.11.

LEMMA 4.9. qA(a) = a.

4.10. Since qA(a) — a Φ 0, we get ((aPf]P9 — l)9)τp Φ 0 for some
element g ί NG(P) by the definition of qA and Mackey axiom. Especially,
there is a subgroup ίί 0 in P such that iί? £ P and ((α^0)

σ)^"p ^ 0.
From now on, let (α, g, HQ) be such a triple set.

LEMMA 4.11. B g iϊ,?.

Proof. Suppose false. By Lemma 4.2, geNG(B). In this case,
it can be seen that (aHo)

9 = aHa and ( α ^ ) ^ = 0, a contradiction.

LEMMA 4.12. B is a non-Abelian subgroup.

Proof. Suppose false. By Lemma 4.11, we can choose an element
a in J%f-Ho9. Take a subgroup K of P for which !£" contains Hg, a
normalizes K, and K does not contain a. Since J5 is Abelian, a
stabilizes K^ KπB^l. Furthermore, it follows from the choice
of a that [V, a; rn + 1] = 1. Combining these, we obtain [H\K, V)9

a; (n + l)(rn + 1)] = 1 by Lemma 2.1. Since (n + l)(rn + 1) ̂  p - 1,
we get ((a(K))τκ<a>)κ = 0 by the same way as Lemma A1.8 in [1].
Furthermore, since ap = 1, we obtain a(K)τκ(a> = 0, which contradicts

Since B is not Abelian, B has a nontrivial subgroup Bx =
[B,

LEMMA 4.13. [V, a~ιak\ 2rn + 1] = 1 for all a e sf and k e Zjβ).

Proof. It follows from the definition of s*f that a~\ ak are
elements of S%f. Since they are commutative together, we get
(α"V - l)2rn+1- F £ Σi+i^.+iία"1 - 1 ) V - l)y ^. Since one of i, i
exceeds rTO + 1 in i + j = 2rn + 1, we have the desired conclusion.

We now interest in the new set.

DEFINITION 4.14. Set j ^ = {aeP: ap = 1, [V, a; 2rn + 1] = 1}.
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Then the above lemma means <J^(J?i)> — Bλ. Clearly, Szf1 contains
j^Γ Thus NG{{J^)) does not control all composition factors of the
G-functor Hn(, V).

LEMMA 4.15. B, c Ho

9.

Proof. Suppose false and choose a in Ĵ K-BJ — Ho

9. Taking a
subgroup K of P as well as Lemma 4.12, we also get a contradiction
since (n + l)(2rn + 1) ̂  p — 1 and αp = 1.

In order to continue the proof, we need a few results. The
remaining proofs will be completed in the last part.

Part 2. In this part, we will assume Hypothesis II but not
Hypothesis I.

Hypothesis II. Assume that:
(a) L a group, S a Sylow ^-subgroup of L, n as defined in Part 1;
(b) the condition (b) and (c) of Hypothesis I hold in L;
(c) X a faithful L-module (or CL(X) Q OP,(L)); and
(d) J ^ * - {a 6 S: a*> = 1, [X, a; 2rn + 1] - 1} and JB* = <j^*>.

Furthermore, we assume the following: GQ — LJL2 is a section of
L (that is, L ^ Liζ^ L2) and PQ is a Sylow p-subgroup of Go, and
each i, Si = S ft Li is a Sylow p-subgroup of 1^ so that Po =
Moreover, we denote J^*(P0) = {aLJL2: a e sf*^)} and Bΰ -
Then it is clear that Bo is weakly closed in Po with respect to Go.

Under the above hypotheses, the following lemmas hold.

LEMMA 4.16. Let Vo be an Fp[G0]-module and [Vo, a; rn + 1] = 1
for all ae J^*(PO). Then NGQ(B0) controls all composition factors of
the GQ-functor Hm{ , VQ) for all m with 0 <> m S n.

Proof Since CL(X) £ Oφ,{L), it follows from Lemma 4.7 that
all elements of s/* satisfy Con(2rJ in L and so all elements of
J^*(PQ) satisfy Con(2rn) in GQ. Since n^m, we can see rm ^ 2rn

and we thus have that all elements of J^*(PO) satisfy Con(rw) in
Go. Then the minimality choice of n yields the desired assertion.

LEMMA 4.17. Let Vo be a trivial Fp[G0]-module. Then NGo(Bΰ)
controls all composition factors of the Go-functor Hn{ , Vo).

Proof. Suppose false and let Go be a minimal counterexample
section of L. By the condition (b) of Hypothesis II, NGQ( W(PQ))

controls all composition factors of the G0-functor Hn( , Fo). It thus
follows from the choice of Go that Go = NGQ(W(P0)). Set H= Op(G0)
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and then the G0-functor Hn{ , Fo) is covered by the set

by Hochschild-Serre spectral sequence. Choose an element a in
j^*(P 0 ) — H. An application of Proposition 1 in [6] yields that
[irGo(Hn-%H, Fo)), a; 4rn(n-i) + 1] = 1. Furthermore, since 4rn(n - i) ^
Ti for iSn> it follows from Lemma 4.16 that NGo(Bo) controls all
composition factors of the G0-functor H\ /H, Hn~%Hf Fo)) for each
i^Ln. While, for i = n, the minimality of Go yields that NGQ/H(B0H/H)

controls all composition factors of the G0/H-fxmctoτ Hn( jH, Vo).
Summarizing, we get a contradiction.

REMARK. It should be note that we can get the same conclusion
on the assumption that Go stabilized Vo.

Next, we assume that Go is a subgroup of L. Then Go acts on X.
From now on, let A = (a, T, p, σ) be a section of the L-functor Hn(, X)
and A = AJA2 for sub-L-functors At — {aiy τi9 pi9 σt) of Hn{ 9 X) ί =
1, 2. For each element a e a(P0), we set α* to be an element of
α^Po) such that a = (α* + α2(P)/α2(P)). Moreover, let lτd-Hn(PQIPύ
denote the image of the inflation map Inf: Hn(P0/Pl9 Xpή -* £rn(Po, X)
for ^-subgroups P Q ^ P X . And Inf-aiPo/Pj) denotes the image of
Iπ£ H*(PJPι) Π αx(P0) in α(P0).

LEMMA 4.18. Assume that Ho = Op(G0) Φ 1 and an element a of
a(P0) is stable in NGo(Bo). Then we have an representation a = ax +
a2 such that ^ e l n t αζPo/Cp^X04*^0")) and ai is stable in GQ.

Proof. We first note that the set of G0-functors {H% /Ho,
Hn-χH0, X)): i = 0, , n) is a covering of the G0-functor Hn{ , X).
Suppose that Lemma 4.18 is false, especially, a is not stable in Go,
which implies that NGo(Bo) does not control the section A(G0) (the
restriction of A on Go). Since all elements a of j^*(P0) satisfy
[irGoH

n-j(HQ, X)), a; Arn(n - j) + 2rn + 1] = 1 and 4rn(n - j) + 2rn ^ r5

for each j S n> it follows from Lemma 4.16 that NGQ(B0) controls
all composition factors of the G0-functor HJ( /Ho, H

n'j(HOf X)) for
all j S n We thus have that every composition factor of the
Go-functor Hn( , X) which is not controlled by NGo(Bo) is that of
Hn{ /Ho, X

H0). Therefore, by Lemmas 3.11 and 3.12, we get
qA{a*) e Inf-Hn(PQ/HQ) + a2(P0) for α*eα1(P0) with α = α* + α2(P0)/α2(P0).
Since α* — qΛl(a*) is stable in Go, it is sufficient to treat qA(a) =
QA^a*) + 2̂(-f>o)/»2(-i>o) and so we can reset a = qA(a) and α* =
qAl(a*) for the convenience of notations. If CPo(XH°) S HQί then we
have already obtained the desired assertion. Set C = CGQ(XH°) and
px = Po n CC£H0). Then the Frattini argument yields Go = N
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Since P0C stabilizes XH°9 NPoC(BQ) controls all composition factors of
the P0C-functor H\ /Ho, X

H°) by Lemma 4.17. Especially, a is stable
in PQC. It thus follows from Lemma 3.8 that a is not stable in
NoJίPJ = N. Then the ΛΓ-functor Hn( /Ho, X

Hή is covered by the
set of iV-functors {H\ /Pl9 H

n-%PJHOf X
Hή)} by Lemma 4.16. There-

fore, we get qAίim(a*) e InΐΉn(P0/Pl9 Xpή + a2(PQ). Since Cf] PQ = Pιt

it follows from the structure of Go that every element of Inf £Γn(P0/ί>i)
is stable in P0C. Summarizing the above statements, we have that
a — qΛiN)(o) is stable in both P0C and N9 and so in Go. We finally
have a desired representation a = qA{N)(oc) + a — qA{N)(a) such that
QAW)(a) e Inf α(P0/Pi) and a — qA{N)(a) is stable in Go, where A(N) is
the restriction of A on N, a contradiction.

Next, we consider the set J ^ * ={αeS:α p = 1, [X, α; 2rn + 1] = 1}.
In relation to this set, we define the following group.

DEFINITION 4.19. A subgroup H of L is called to be a C-group
of depth 1 if H is generated by elements of

LEMMA 4.20. Let H be a C-group in S of depth 1. Assume
that a e a(S) is stable in NL(B*). Then we have a representation
aNsiH) = ax + a2 such that a1elΏ.ί*a{Ns{H)INs{H) Π C{XH)) and a2 is
stable in NL(H).

Proof. Suppose false and let H be a maximal counterexample.
Furthermore, choose H such that | NS(H) | is maximal subject to the
maximality of H. We first assert that NS(H) is a Sylow p-subgroup
of NL(H). To see this, we follow the proof of [5]. Suppose false
and let F be a conjugate subgroup of H contained in S such that
NS(F) is a Sylow p-subgroup of NL(F). Then we have that for
some element / of L, Ns(H)fQ NS(F) and Hf = F. By Alperin's
theorem, there is a set of pair {(Kif gt): gt e NL(Kt), K^S; i = l, , m}
such that it satisfies the following:

NS(H) S Kl9 , NS(H)Ί~'<-I £ # „ • • • , N8(H)°>.'~«*->. S ί , ,

a n d g!-- gm = f.

Since all conjugate subgroups of ff in S are C-groups of depth 1, in
order to get a contradiction, it suffices to treat only one step. We
therefore assume that H91 satisfies the assertion of Lemma 4.20. It
will be convenient to reset K = Ku g = g^ Set K* = <j^*(iί)>,
then K* 2 <H, H9). By the maximality of H and the choice of H9,
we have two representations:

( i ) aNSw) = βι + βι such that βx e Inf α(iSΓs(ί:*)/CΛr5{JΓ )(-X'JSΓ )) and
/32 is stable in NL(K*);
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( i i) aNsiHg) - Ίx + 72 such that 7,6 Inf a(Ns(H9)ICNs{H9)(XH9))
and 72 is stable in NL(H9). Since ΛΓL(UL) £ NL(K*), combining the
two representions and resetting R = NS(H), we get ((β2)R)9 —
{{β,)κ)ΰR9 = ((/38)^(^))Λ' = (̂ 2 + % - (β1)Ns{Hg))R9 = (72 + (7X

We t h u s have (β2)R=(Ύ2)
9

R

 ί + (rr1-(β1)NsίH9))
9R * such t h a t ( ^ -

is contained in Ini a(RIGB(XH)) and (72)̂ ~1 is stable in NL(H), since
(72)Λ* is stable in NL(H9) and 7X — (β1)Ns(Hg) is an element of
lnf'a(Ns(H9)/CNsίHa)(XHg)) by the choice of JET*. Finally we obtain
*B = (A + A)Λ = (A)*_+ (0Ί ~ (ft)^**))'"1)* + ( ( Ύ Λ such that
(/S^ + α ^ - ^ J ^ ^ ^ - ^ e l n t . α C ^ / C ^ X ^ ) ) and (7,)*"1 is stable in
NL(H), as desired, which is a contradiction. So we have proved
that NS(H) is a Sylow p-subgroup of NL(H). Since H^B*, we
easily check that <j^*(2V5(fl

r))> ^ iϊ. Set J^ = (j^*(Ns(H))}9 then
ί?i is a C-group of depth 1 containing H properly. It follows from
the maximality of H that we have a representation aNs{Hl) = <5X + <52

such that δ 1eInt α(iV/S(iyi)/C^(^l)(XHl)) and δ2 is stable in NL(HX). For
δt we get ( δ ^ e l n t α^/C^X^)) where R - iV5(H), while for δ2 we
have (52)Λ = & + f2 such that & 6 Inf a(R/CR(XH)) and f2 is stable in
NL{H) by Lemma 4.18. We therefore obtain a desired representation
α* = (iβi)R + ίi) + ί2> a contradiction.

We next define more generalized C-groups.

DEFINITION 4.21. A subgroup H of S is called to be a C-group
(or depth t) if H has a series H — Ht^ H^ g ^ if2 ^ Hx such
that iϊ, = <j^*(iϊ)> and iϊ ΐ + 1 = ( α e f ί : a" eif,, [X^, α; 2r + 1] = 1>
for i = 1, , ί — 1. Then we call iϊ, to be the C-subgroup of H
of depth i.

LEMMA 4.22. Let H and K be C-groups in S of depth at most
t. Then (H, K) is also a C-group of depth at most t.

Proof. This follows from the definition.

In association with C-group of depth t, we have a similar result.

LEMMA 4.23. Let H be a C-group in S of depth t. Assume that
a e a(S) is stable in NL(B*). Then we have a representation cxNsiH) =
aλ + a2 such that ax eInt'a(Ns(H)/CNsiH)(XH)) and a2 is stable in NL{H).

Proof. Suppose false and let ί be a minimal counterexample.
We already got t Φ 1 by Lemma 4.20. Furthermore let H be a
maximal counterexample subject to the minimality of t. Let F be the
C-subgroup of H of depth t — 1. It follows from the same argument
in Lemma 4.20 that we may assume that NS(F) is a Sylow ^-subgroup



AN AFFIRMATIVE ANSWER TO GLAUBERMAN'S CONJECTURE 101

of NL(F). We then have a representation (a)Ns{F) = β1 + β2 such
that β1eInf a(Ns(F)/CNsiP)(XF)) and β2 is stable in NL(F) by the
minimality of t. Since NL(H) is contained in NL(F), (β2)NslH) is stable
in NL(H). Thus it is sufficient to treat &. Set JSΓ = <α e NS(F): ap e F,
[XF, a; 2rn + 1] = 1>. Then K is a C-group of depth at most t.
Suppose first K ^> H, then we have a representation aNς;iκ) — 71 + 72

such that 7, e Int a(Ns(K)/CNsiK)(XK)) and 72 is stable in NL{K) by
the maximality of if. By combining the two representations, we
can see aNs{F) = βι + β2 = ( 7 ^ ^ ) + (72)^ (^. Thus f = (72),V5(2,> - & =
A — (Ύi)xSiF) is stable in NL(K) n iVχ,(JP) and contained in

Summarizing, we have the following situation:

( i ) NJF) = NL{F)jC(XF) n NL(F) acts on XF faithfully;

(ii) K is generated by the set of elements a of NS(F) with

[XF, a; 2rn + 1] - 1 and ά* = I;
(iii) NS(F) is a Sylow ^-subgroup of NL(F); and
(iv) ξ is an inverse element of ξ in a'(Ns(F)) which is stable

in N(K) Π N(F), that is, lnt(Hn(NjF), XF) -> Hn(NL(F), X)): ξ -> ξ.
Here (~) denotes the image of the natural homomorphism: NL(F) ~>

ΊsΓjF) and A! = (a\ τ\ p\ σ') is the section of ΪVΰ^-functor H\ , XF)
which is isomorphic to the image of the section i\Γ(.F)-funetor
Inf (JΪΛ( /CN{F)(XF), XF)). By taking ~NJJF),ΊUF), K in place of
L, S, B* of Hypothesis II, respectively, we can see that they satisfy
the all conditions of Hypothesis II. In this case, since H is a C-group
of NS(F) of depth 1 and f is stable in Nπaη(K), by Lemma 4.22
applied to ξ and NL(F) instead of a and L, respectively, we have a
representation ζNsiII) = & + ξ2 such that ξλ e Inf a(Ns(H)/CNs{H)(XH))
and f2 is stable in NL(H) ξZ NL(F). Consequently, we have a
representation aR = (y±)R + (72)Λ - (/32)B + (/32)B = ( 7 ^ + fΛ + (£2)B =
((^i)^ + fi) + (f2 + (/S2)Λ) such that (7J* + £x e Inf - a{RjCR{XH)) and
ή + (β2)jt is stable in NL(H), as desired, where J? — NS(H), a con-
tradiction, we therefore have that H' = K. In this case we assert
that F is the unique maximal C-group of NS(F) of depth t — 1. To
see this, let Γ be the unique maximal C-group of NS(F) of depth
t - 1 and Γ = Tt_, ;> jΓt_2 ^ ^ 2\ be the chain of C-subgroups
of T. Then since T1 is a C-group of depth 1, K 2 2\ by the definition
of K. Since K — H and .F is the unique maximal C-subgroup of H
of depth ί - l ^ a ϊ 1 , By iteration, we obtain T £ IT and T g F ,
as desired. The result that F is the unique maximal C-group of
NS(F) of depth t - 1 implies that S = JVXF), which means F 2 £ * and

£ NL(F) C NL(B*), a contradiction.
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Part 3. Now we can return to the proof of Proposition A. In
this part, we take the proof of Proposition A up again. This is a
continuation of Part 1. We adopt same notations of Part 1, such
as G, V, J^lf B and the like.

LEMMA 4.24. G, V, J^[ satisfy the conditions of Hypothesis II.

Proof By taking G, V, JVί in place of L, X, j ^ * , respectively,
the assertion follows from Lemmas 4.6 and 4.8.

In the comments following Lemma 4.12, we defined the subgroup
JBi == [B, Z2(B)]. We here define the following subgroups Bt.

DEFINITION 4.27. Bt is the inverse image of [B/Bi_lf

in B f or i = 1, .
Then clearly, the chain Bλ £ B2 Q is ascendent and there

is an integer k such that Bk_x Φ Bk — Bk+1. It follows from the
definition of B that B/Bkf BJB^ are all elementary Abelian. Set
Bk+1 = B. Moreover the following is clear.

LEMMA 4.26. B{ is a C-group of depth at most i for i ^ k.

Now we recall the triple (£Γ0 <± P, g eG, ae a(P)) defined in the
statement (4.10). Since HQ, Ho

9 £ P, there is a set of pair {(Kit gt):
Ki ^ P9 gt^ N(Kt); i = 1, , m} such that Ho is conjugate to Hi via
g by this set, namely, this set satisfies the following:

HoQKl9-.-9Hoei-''g*-iQKif-'-tHF'-'<*-iQKm and Λ flr« = flr .

Since we choose {g> Ho} on the only assumption that ((aHo)
9)p Φ 0,

we can rechoose g and Ho such that ((ccHog1)
gϊlg)p = 0. Then we get

((((α*/1 - a^ja^Ύ * 0. Set β = (((«*,)** - aKl)Hogiy^. As we
showed, βp Φ 0, especially, a(HQ

g)τp Φ 0. In Part 1, we already got
the following:

(4.27) B£HQ° and B.QHi.

We next show that B2 £ Ho

g. To see this, we need some argu-
ments. Since BtQHo

g and <J*ί(2?i)> = B19 we have <J^(iQ> 2
(J^iBjy1 Φ {1}. Let L = ( j ^ i Q ) , then L i s a normal C-group of
JKΊ of depth 1. We thus have a representation aNp{L) — a^Λ a2 such
that α x elnf a(NP(L)ICNp{L)(VL)) and α2 is stable in NG(L) by Lemma
4.22. It should be noted that we can choose the set {(Kif g%): iel}
such that Np^tS&KKi))) is a Sylow p-subgroup of NG{{j^[{Ki)}) for
each iel, by the same argument in Lemma 4.20. To simplify the
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notation, we set / = fcj and F = K^. We then have (aF)
f — aF =

(((αi)*/ + (to)*)') ~ (to), + (α2),) = ((«>),)' - (a,)F and so we get
β = ((«/ - aF)HJY *' = (((a,)' - (α, ),)*,// lff is contained in
Inf α(fl?/<J^(HoO». By these arguments, the following holds.

LEMMA 4.28. B

Proof. Suppose false and then there is an element a in B2 — Hi
such that [VB\ a; 2rn + 1] = 1 and ap eBx by the construction of B2.
Taking K as Lemma 4.12, we have that a stabilizes K ^ K n B2 ^
BJβ We thus get [Hn(K/Blf VB1), a; (n + l)(2rn + 1)] = 1 by Lemma
2.1. Since αp e ^ and (^ + l)(2rn + 1) ̂  P — 1, we have

which contradicts β elnf α(£Γ0V-Bi)

Now we can get a final contradiction. Namely, we will show
that Bi C fl? implies ΰ i + 1 £ J3?, and .Bfc g Hξ which contradict
together. The proof is similar to that of Lemma 4.28. We assume
that Bi £ 12?. Let L be the unique maxiaml C-group in F = Kx.
Since F contains Bf\LΏ,Bf\ Since NG(L)QNG((j^(F)))f we can
rechoose the set {(Kt, gt): iel, (Kx = F9 g1 = /)} such that NP(L) is
also a Sylow p-subgroup of NG{L) by the same argument in Lemma
4.20. Then by Lemma 4.23, we have a representation aNp{L) = α3 + α2

such that α16lnf α(JVP(L)/C^jp(L)(FL)) and α2 is stable in NG(L). We
thus have (αi,)

/ - aF = ((αj,./ - (αj* 6 Inf α(Ĵ /Ĉ C FL)). We therefore
obtain β - (((αa)ί - {fiL^F)HJY"lg elnf α(fl?/jB0. B y t h i s argument,
we have the following lemma which contradicts (4.27).

LEMMA 4.29. β, c Ho

9 implies Bi+1 £ 12?, α^ώ 5fc g Hξ.

Proof. Suppose that Bi Q HQ

g and Bw <£Hξ for i = i, , A?.
Choose an element α in l?i+] — Hξ such that [F^, a; 2rn + 1] = 1 and
ap eJB^ Taking K as Lemma 4.12, we get that a stabilizes K^ K f]
Bi+1 2 Si. We also obtain a contradiction by the same way of Lemma
4.28 since β e Int a{HξlBt) and (n + l)(2rn + 1) ̂  p - 1.

This completes the proof of Proposition A.

5* Proofs of theorems* In this section, we will prove Theorem
B and Glauberman's conjecture using Proposition A.

THEOREM B. Let G be a finite group, P a Sylow p-subgroup of
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G, and W a section conjugacy functor of degree t. Furthermore,
let V be a trivial Fp[G]-module. Ifp^Ax 6n~2 x (t - 1) + 3 for
some integer n ^ 2, then the restriction map induces an isomorphism:

H\G, V) ~ H\NG{W{P)\ V).

Proof. Suppose false and in particular NG( W{P)) does not control
all composition factors of G-functor Hn(G, V). Let {n, G) be a
minimal counterexample so that NG(W(P)) does not controls all
composition factors of the (?-functor Hn(G, V) in a trivial FP[G]~
module V. Then by the minimality of G, we have the following:
(a) OP{G) Φ 1; (b) W(P) ^ G; and (c) for all normal subgroups K of
P containing OP(G) properly, W controls all sections of the NG(K)-
functor Hn(, V) in Nβ(K). Let H = OP(G). We then get that the
set of the G-functors {H*( /H, Hn-%H, V)):i = 0, , n) is a covering
of the G-functor Hn( , V). Thus W does not control a composition
factor of the G-functor H\ /H, X) for some i and an irreducible
G/iϊ-composition factor X of Hn~\H, V). On the other hand, since
W(P) gd G, there is an element a in P — H such that [irG(H), a; t] =
1 by the definition of degree. We thus obtain [X, a; (n — i)(t — l) + 1] =
1 by Proposition 1 in [6]. By the choice of p, we especially have
[irG(Hn{H, TO), α; p - 1] = 1. By Theorem A1.4 in [1], there is a
normal subgroup β of P containing <iϊ, α> such that iVG(β) controls
all sections of the G-functor J5Γ°( , Hn(H, V)). On the other hand,
by the minimality of G, NG/H( W(P/H)) controls all sections of the
G/H-functor H\ /H, H%H, V)). Thus we have 0 Si Sn, that is, we
obtain the following situation:

(a) there is an integer i(^0) and G/H acts on an i<yG]-module X;
(b) NG*(W(P*)) controls all composition factors of the GMunctor

Hj(, V*) with coefficient in a trivial Fp[G*]-modale F* for 0 ^ j ^
i, where G* is a section of G/iϊ and P* is a Sylow p-subgroup of G*;

(c) Ca/H(X) £ OP,(G/H) by the minimality of G and the Frattini
argument; and

(d) there is a nontrivial element a in P/ίf such that [X, a; r j =
1 and so a satisfies Con^) in G/H since (n — i)(t — 1) x 4 x 6 ί - 1 <;
p — 3 by the hypothesis of p, where r< is the first integer such that
p ^ 4 x β*"1 x (r< + 1) + 2. Since G/H, i, X satisfy the conditions
of Hypothesis I in §4 in place of G, n, V, respectively, there is a
normal subgroup B of P containing (H, a) such that NG(B) controls
all composition factors of the G/if-functor H\j if, X), a contradiction.
This completes the proof of Theorem B.

Especially, since the section conjugacy functor K^ in Glauberman
[1] has degree 4, we have an affirmative answer to his question.
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THEOREM C. Let m be an integer with m ̂  2. / / p ̂  12 x
6W-2 + 3, then we have Hm(G, Fp) ~ H^N^K^P)), Fp).

Taking a new look at Hypothesis I, we notice that the conditions
(b) and (c) always hold by Theorem C if p ̂  12 x 6n~2 + 3. We
therefore have a new form of Proposition A.

THEOREM A. Let V be an Fp[G]-module, n an integer ^ 1, and
r be the first integer such that p ^ 4 x 671"1 x (r + 1) + 2. Set s/ =
{aeP: ap = 1, [irG(V)/a; r + 1] = 1, and a satisfies Con(r) in (?}. If
r ^ 1, the restriction map induces an isomorphism:

Hm(G, V) ~ Hm(NG((j^)), V) for all integers m with 1 ̂  m ̂  n .

As corollary, we have:

COROLLARY 1. Let V be a faithful p-primary G-module (or
CG(V) Q OP'(G)) and n, r be as above. Set B=(aeP:ap = l and
[V, a; r + 1] = 1>. Then Hm(G, V) = Hm{NG{B), V) for all integers
m with 1 ̂  m ̂  n.

REMARK. It should be noted that all module in theorems are
finite, but it is not necessary to be finite. For all p-primary G-
modules, the same assertions hold by the same argument in [6].
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