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MANIFOLDS MODELLED ON THE DIRECT
LIMIT OF LINES

RICHARD E. HEISEY

The main theorem of this paper is that topological mani-
folds modelled on R^—lim Rn are stable. Combined with

—>
previous work this theorem enables us to embed iΓ°-mani-
folds as open subsets of R°°, classify iΓ'-manifolds by
homotopy type, and triangulate iΓ°-manifolds.

The results established here were announced in the [8].

l Definitions and results* Let Rn be the cartesian product
of n copies of R, where R denotes the reals. Define in: Rn —• Rn+1

by ιn{{xιr , aθ) = (x» ••-,*», 0). Then R°° = Km {Rn; in). We regard
R°° as the set {(xl9 x2f xZ9 - - -,) | a?< e JB, all i, and XtΦO for at most
finitely many ί}. We identify Rn with Rn x {(0, 0, , 0)} c 2?*+*,
k ^ 1, and with Rn x {(0,0, •• )}CjRoβ. With this identification, a
set & c j?°° is open if and only if ^ f] Rn is open in J?n, w 2> 1. In
the terminology of [14], for example, R™ is thus the strict inductive
limit of {Rn}. As such it is a locally convex [14, Prop. 1, p. 127],
nonmetrizable [14, Prop. 5, p. 129] topological vector space having
a natural simplicial structure.

A topological manifold modelled on R°°, or, more simply, an
i2°°-manifold, is a Hausdorff space in which each point has a neighbor-
hood homeomorphic to an open subset of R°°. By way of example
we note that countable direct limits of finite-dimensional manifold
are often i2°°-manifolds. Also by [9, Corollary 2], if X is a locally
finite polyhedron (more generally, a locally compact, locally finite-
dimensional ANR) then X x R°° is an iϋ°°-manifold. Our main result
is Theorem S, below, which asserts that i?°°-manifolds are stable
with respect to multiplication by R°°. We remark that because R°°
is nonmetrizable and not a countable product (one can show that
R°° is not homeomorphic to R°° x R°° x R°° x ) many of the argu-
ments used in establishing stability of Hubert space and Hubert
cube manifolds as, for example, in [1] and [16] do not apply here.
Our proof uses an inductive argument on finite-dimensional sub-
sets.

By " = " we denote "is homeomorphic to". We let 1 = [0,1]. If
^ is an open cover of the space Y, two maps f, g: X Y are c%ί-
close if for each xeX t h e r e is a Ue^f such t h a t {f(x),g(x)}a U.

A map /: X —> Y is a near homeomorphism if for each open cover
^ of Γ there is a homeomorphism h: X —> Y such that / and h are
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For the remainder of this section let M and N denote paracom-
pact, connected iϋ°°-manifolds.

THEOREM S (Stability). The projection map M x R°° -> M is a
near-homeomorphism. In particular M x R°° = M.

The proof of the stability theorem is given in § 3 of this paper.
In [7] it was shown that M x R°° embeds as an open subset of

R°°. Combined with Theorem S this immediately implies the open
embedding theorem for iϋ°°-manifolds.

THEOREM & (Open Embedding). There is an open embedding

Using Theorem #f regard M as an open subset of R°°. Let <g*
be an open cover of M consisting of convex sets. By Theorem S
there is a homeomorphism h: M x R°° —> M which is ^-close to the
projection. Clearly, then, H: M x R°° x I—> M defined by H((m, x,
t)) = (1 — t)h((m, x)) + tm is a homotopy in M, and the following
corollary results.

COROLLARY 1. There is a homeomorphism h: M x R°° —> M which
is homotopic to the projection map.

Let f:M-^N be a homotopy equivalence. By [7, Theorem II-9]
(/ x id): M x R°° —> N x R°° is homotopic to a homeomorphism g. Let
hM: M x R°° -+ M and hN: N x R°° -> iV be homeomorphisms homotopic
to the corresponding projection maps. Then hNghMλ is a homeomor-
phism homotopic to /, and we have proven the following classifica-
tion theorem.

THEOREM C (Classification by Homotopy Type). If f:M—>N is
a homotopy equivalence, then f is homotopic to a homeomorphism

Since jβ°°-manifolds have the homotopy type of ANR's [7, Theorem
Π-10], Theorem C has the following corollary.

COROLLARY 2. // M and N have the same weak homotopy type,
then they are homeomorphic.

In [4] Dobrowolski obtains a special case of Corollary 2; namely,
that J?°° = lim Sn, where Sn is the ^-sphere. He obtains this result
by first showing that compact subsets of limSn are negligible.
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Using Theorems & and C we can now triangulate M. By
Theorem & we may regard M as an open subset of R°°. Since
open subsets of R°° are Lindelof [7, Propositions III. 1 and III. 2]
M has the homotopy type of a countable, locally finite, simplicial
complex K [13, Theorem 1 and Proposition 2]. By [9, Corollary 2]
\K\ x Br is an i2°°-manifold, and clearly, \K\ x R°° has the same
homotopy type as M. By Theorem C, M=\K\x R°°. This estab-
lishes the triangulation theorem.

THEOREM T (Triangulation). M = \K| x J?°°, where K is a coun-
table, locally-finite simplicial complex.

We remark that Theorems S and T answer affirmatively two
questions in the Appendix "Open problems of infinite-dimensional
topology" in [3].

The author gratefully acknowledges several helpful conversations
with Henryk Torunczyk and James West.

§ 2. Lemmas. Recall that we identify Rn with Rn x {0, 0, , 0}c
Rn+k and with Rn x {0, 0, •} c R°°. If A c R°°, let An = An Rn.
Let dn be the metric induced on Rn by the norm | |α| | = (Σ »ϊ)1/2 If
^ is an open cover of Y, a homotopy H: X x / —> Y is limited by
<U if for every xeX, H({x} x I)aU, some C / e ^ . We abbreviate
"finite-dimensional" by f.d. and "piecewise linear" by p.l. If AczX,
by A we denote the closure of A in X.

LEMMA 1. Let A and B be f.d. compact metric spaces with
AaB. Let f:B—>Rn be a continuous map such that f/A is an
embedding. Then if m is sufficiently large, for every e > 0 there
is an embedding gε: B —> Rm such that gJA = f/A and dn(f9 gε) < ε.

Proof. We may assume that 2 (dim B) + I <L n so that there
is an embedding a: B —> i?\ Let /3: i2ra —> i?n be a continuous exten-
sion of α/"1: /(A) -> Λ\ Define h: B-> Rn x Rn by fc(6) = (/(δ), α(δ))
and T: Rn x Rn-> Rn x Rn by T(x, y) = (x, y - β(x)). Then g = Th:
B-> Rn x Rn is an embedding extending f/A. Choose r > 0 such
that g(B)czRn x {zeRn\ \\z\\ ^ r}. If β(α?, y) = (a?, (e/r)y), then #£ =
βfir is the desired embedding.

LEMMA 2. Lei X be a f.d. locally compact metric space and A
and B closed sets in X such that X = Al) B and B is compact. Let
U be an open subset of i2°°, ̂  an open cover of U. Let f: X-+ U
be a continuous map such that f/A is a closed embedding. Then
there is an embedding g: X-^U such that g/A = f/A and such that
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H:X x J-> U defined by H(x, t) = (1 - t)f(x) + tg{x) is limited
by ^.

Proof. If C is a compact subset of U, then f"\C) is contained
in the compact set (f/A)~\C) U i?. Hence / is proper. Thus, we
can choose a relatively compact neighborhood V of the compact set
f'\f{B)) in locally compact X.

Let n be such that f(V)a Up[Rn. By Lemma 1 there is an
m> n and an embedding gε: V-> Rm with 0,(0?) = f{x) for ί c e i ί l V"
and dm(gε, f/V) < e, where ε > 0 is chosen smaller than dm(f(B)f

f(A\ V) Π -Rm) and such that the ε-neighborhood in Rm of any point
of f(V) is contained in a member of {WΠ Rm\We^}. Define
#: X-> ί7 by flr(α?) = f(x) for a; e A and flr(a?) = ε̂(α;) for x e V. Thus,
g is one-to-one. Moreover, # is proper, for the same reason for
which / i s . It follows that g is the desired embedding.

LEMMA 3. Let A and B be f .d. compact metric spaces with
AaB. Let M be a paracompact space such that M — UΊU U2,
where U{, i — 1, 2, is an open subset of M homeomorphic to an open
subset of R°°. Let f:B-^M be a continuous map such that f/A is
an embedding. Then there is an embedding f':B-+M such that
f/A = flA.

A (the base)

Let {Kl9 K2} be a cover of B by compact sets such that Kx c
f'KUi), i = 1,2. By Lemma 2 there is an embedding gx: Kx U [A Π
f'\ U,)] -» Uι such that gx(x) = fix) for x e A Π f~\ l/Ί) and such that
f\Kx U [A Π f~\ ί/Ί)] is homotopic to #! by a homotopy H fixed on
A n / - W i ) and limited by {Ux Π U2f M\f{K, n ίΓ2)}. Note that
ϋ K i ξ n ϋΓ2) x I] c ϋi Π 272. Define H'\ [{K, n Jζ) U(AΠ iQ] -> ?72 by
H\x, t) = jff(a?, ί) for a; e ^ Π K2, t e I, and H'(x, t) = /(α;), a? e A Π iΓ2,

By Dugundji's theorem [5, p. 188], R°°, and, hence, [10, p. 42],
U2 is an absolute neighborhood extensor for the class of metrizable
spaces. It follows, as in the proof of [10, Theorem 2.2, p. 117],
that U2 has the homotopy extension property with respect to metric
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spaces. Since Hό = f/A Π K2 extends by / to all of K2, H' has an
extension H: K2 x I —> U2. Define g: B-+ Z72 (J U2 by g/Kx = gJKt and
g/K2 = i?!. Then # extends //A.

By Lemma 2 there is an embedding g2: g~\ U2) —> i72 such that
for ccG^-1(C72)n(AUiri). Define f'.B-^U.ΌU, by
if χeg~\U2) and /'(a?) = #(#) otherwise. Then f/K, =

^/iξ and /'/iζ, = 2̂/ίL2 so that / ' is continuous. If f'(χ) = /'(#),
then either both x and 2/ or neither x nor i/ is in (f')~XU2) = g~\U2).
In the first case as = 7/ since #2 is one-to-one. In the latter case
x — y since g/Kx is one-to-one. Clearly f/A — f/A. Thus, / ' is the
desired embedding.

The last lemma is probably known. We include a proof for
completeness.

LEMMA 4. Let X be a finite polyhedron and M a compact p.l.
manifold with boundary. If /, g: X—> Int M are homotopic topo-
logical embeddings, then for sufficiently large k there is an ambient
isotopy H on ikfx[-l, If such that Hx(f9 0) = (g, 0): X->Λfx[-l, 1]\

Proof. Let H: X x I -»Int M be a homotopy with Ho = f and
.&! = flr. Define Jϊ: X x J-> Int (Λf x [-1, l]fc) by 5(a?, ί) = (H(x, t),
ί/2, 0, 0, . -, 0). Then Ho = (/, 0) and iξ - (flr, 1/2, 0, . . . , 0). Clearly
it is sufficient to show that (/, 0) and Hx are ambient isotopic.

Since H/X x {0, 1} is an embedding, Theorem 1 of [2] implies
that for sufficiently large k9 H/X x {0, 1} is ε-tame in Int (M x
[ —1, l]fc). Thus, there is an ambient isotopy Kt: Mx[ — 1, l]fc-> Jlfx
[-1, l]fc such that Kt(H(X x I)) c Int (AT x [-1, 1]&), tel, and such
that KJEL/X x {0, 1} is a p.l. embedding. Using general position
[15, 5.4, p. 61] there is, for sufficiently large k, a p.l. embedding
h: X x I-* Int (M x [-1, If) such that h/X x {0, 1} - K.H/Xx {0, 1}.
By [11, Theorem 1.1, p. 426] there is an ambient isotopy Et: M x
[-1, Ϊ\k->M x [-1, If such that EX = Ax. Then KrλEtKt is_ an
ambient isotopy o n _ I x [ - l , 1]* with Kr'E.K^f 0) - Kr'E&H, =
KrιExhQ — Krλht = i?!, as required.

3* Proof of Theorem S* We first prove the following weaker
version of the stability theorem.

THEOREM S\ Let M be a paracompact R"°-manifold such that
M = U U V, where U and V are homeomorphic to open subsets of
R°°. Then there is a homeomorphism Λf—> M x R°°.

Proof. We first show that M can be suitably expressed as the
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direct limit of topological manifolds. Let 7: U^ Uf and δ: V—> V
be homeomorphisms onto open subsets of R°°. Then U' = lim C^

where C'n is a compact metric subspace of Uf Π i2n and where C'n c
Int n + 1 C n + 1 . Express V = \\m.D'n similarly. Let Cn = δ~ι{C'n) and

Fix w ^ 1. Since Cn U i?n is a compact f.d. metric space, there
is an embedding a: Cn U Dn —> iϋ\ some &. Since M is an absolute
neighborhood extensor for metric spaces ([5, p. 188] and [10, p. 45]),
or 1: a(Cn U Dn) —> M has a continuous extension β to a compact p.l.
submanifold N of JB* containing a(Cn\jDn). Let π:Nx I^N be
the projection. Then βπ:NxI^M is an embedding on α(Cn U
A*) x W By Lemma 4 there is an embedding β'\ N x I-> M such
that β\a{Cn U Dn) x {0}) - βπ(a(Cn U JDJ x {0}) - Cn U D n . Let X =
3(iSΓ x I ) , a closed p.l. manifold. Let Xn = /3'(X). Note that Xn =)
Cn U J5W and, since M = lim (Cn U JDn), l ί = lim Xn.

Let Acikf be a compact subspace. Choose an open cover {Ylf

Y2] of M such that Ϋ.czU and F 2 c V. Then A = (A Π F j U (A n
F2). The compactness of A Π F x and A Π F2 implies that for some
n, 7(A n Fx) c Cή and δ(A Π F2) c ^ so that AaCn{jDn. Thus, every
compact subspace of M is contained in some Xn.

Now, let 5 n = [-n, n]n, n ^ l . Then R°° = l imB n . Define il,fc:

Xn x jδfc -> M by jή,fc(cc, ί) = α. By Lemma 4 there is an embedding
j n t k : Xn x Bk-^ M such that jn,k(x, 0) = x for each x e Xn.

Let i x = j u l . Choose n2 > 1 such that i^Xi x Bλ) c Xn2. Consider

Xi x -Bx >" XW2 x Bk2

ji y

where k2 > 1 is yet to be chosen, ix{y) = (T/, 0) and α^cc, t) = (x, (t, 0)).
Since JB is contractible i^Ί ^ ax ("~" denotes "is homotopic to")
with the homotopy taking place in Int (Xn2 x Bk2). Choose k2 so
large that, by Lemma 4, there is an ambient isotopy F2 on Xn2 x
Bk2 such that {F2\a, = i jΊ . Let j2 = iTO2,fc2: X,2 x B,2 -> j2(Xn2 x J5,2).
Let hγ — j λ and h2 = i2(i^2)i Consider

Ax X iίi • Λn2 X ϊSk2

Ui \h2

3ι\Xι x Bj > 0<L\Xn2 X Bk2)

where /5X]/) = i/. Since h2a, = j^F^.a, = jVijΊ = ^ j ^ , the square
commutes. Also, ((?/, t), s) -* j2F2((y, t), s) defines a homotopy from
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j 2 t o h2.

Choose n3 > n2 such that j2(Xn2 x Bkl) c Xn3. Consider

where k3 > k2 is yet to be chosen, a2(%, t) = (x, (t, 0)) and i2{y) — {y, 0).
Since j2 ~ h2, we obtain homotopies i2h2 ~ i2j2 — a2 taking place in
Int(X n 2 x Bk2). By Lemma 4 we may choose k3 so large that there
is an ambient isotopy FB on Xnz x Bki such that {Fz)xa2 — i2h2. Let
is = Jn^kz a n d hs = j&(F*)i>

Continuing, by induction we obtain for every r ^ 1 a commuta-
tive diagram

jr(Xnr x B4r) -A* ir+1(XTCr+1 x B4r+1)

where αr(a;, ί) — (a;, (ί, 0)), βr(y) = 2/ and fer is a homeomorphism. Let
D - lim {Xnr x £, r; αr} and S = lim {ir(Xnr x Bkr); βr}. The λ/s
induce a homeomorphism h: D -^ E. As sets clearly D = M x R°°
and E = M. Since ir(Xrer x 5nr) => Xnr and ikί = lim Xn it follows
immediately that E ~ M. Also, M x i?00 is homeomorphic to an open
subset of R°° [7, Corollary Π-7] and is therefore the direct limit of
its compact subsets. If CdMx R™ is compact, then Caπ^C) x
τr2(C) c Xnr x Bkr some r. (Here πx\ M x R°° -^ M and τr2: M" x J200 ->
J?°° are the projections.) It follows that D = M x iϋ°°. Thus, M ^
Λf x if00, and Theorem S' is proved.

Theorem S now follows quickly. Let M be a paracompact, con-
nected i?°°-manifold. As shown in [7, Proposition III. 1] every
subset of M is paracompact. Say that a paracompact space Z has
property P if for every open subset U of Z there is an open
embedding U-+R°°. Then M has property P locally. Let X = Ul)
VaM where U and V are open in M having property P. By
Theorem S Ί = I x i ϊ M . By [7, Corollary II.7] X has property P.
Let Y = \Ji Yt where Yt is open in M and has property P, and
where {YJ is discrete. Since M is Lindelof [7, Proposition III. 1],
{Yi} is at most countable, indexed, say, by a subset of the integers.
Let fii Yi —> jR°° be an open embedding. Let pt\ R°° —> [(ΐ — 1/3, ΐ +
1/3) x R x R x •] n JR00 be a homeomorphism. Then /: Γ->i2°°
defined by f/Yt = ^ o / . is an open embedding, showing that Y has
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property P. By a theorem of Michael [12, Theorem 3.6] M has
property P. That is, there is an open embedding M-+R°°. By [6,
Theorem 1] the projection π: M x R°° —> Λf is then a near homeomor-
phism. This completes the proof of Theorem S.
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