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NONLINEAR RELATIONSHIPS BETWEEN OSCILLATION
AND ASYMPTOTIC BEHAVIOR

ALLAN EDELSON AND KURT KREITH

This paper establishes various relationships between os-
cillation and asymptotic behavior of nonlinear differentional
equations of the form y®» —f(¢, y)=0. Its results constitute
a generalization of similar relationships known to hold for
linear fourth order equations.

For the fourth order differential equation
(1.1) Yy -2ty =0,

with p(t) positive and continuous in [0, «), it is well known [1] that
(1.1) always possesses nonoscillatory solutions of the following two
types:

(i) 9, v,v",y" are eventually positive;

(ii) vy, =¥, ¥", —y"" are eventually positive.
We say that (1.1) satisfies condition (H) if every eventually positive
solution is of type (i) or (ii) above. Furthermore, we say that (1.1)
is oscillatory (0) if it has a nontrivial solution with arbitrarily large
zeros. Ahmad [1] has shown that (1.1) is oscillatory if and only if
it satisfies condition (H)—i.e., that (0) < (H).

In considering the relationship between oscillation and asymptotic
behavior of nonlinear equations of the the form

(1.2) Yo — ft, =0,

"

it will be assumed that f(¢, y) is continuous, satisfies
(1.3) sgn f(¢, y) = sgny

in [0, ) X (—o0, =), and that f(¢, y) is sufficiently regular so that
solutions of the initial value problem associated with (1.2) exist and
vary continuously with initial data in [f, o) for any initial point
t,=0. Under these assumptions it can be shown [6] that (1.2) always
possesses solutions of the following types:

(i) there exists a t,=0 such that y'"'(¢) is positive for all ¢ > ¢,
and 0<j7<2n —1, in which case we say that y(¢) is positively
strongly increasing (p.s.i.) on (t, o).

(ii) there exists a t,=0 such that (—1)7y""(¢) is positive for all
t >t and 0 < j < 2n — 1, in which case we say that y(¢) is positively
strongly decreasing (p.s.d.) on (¢, «). We shall also have occasion
to refer to megatively strongly decreasing (n.s.d.) and negatively
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strongly increasing (n.s.i.) solutions which are analogously defined
by the condition %Y (¢) is eventually negative and (—1)y?(¢) is
eventually negative for 0 < j < 2n — 1. In the linear case y(t) is
p.s.i. [p.s.d.] on (¢, <) if and only if —y(¢) is n.s.d. [n.s.i.] on (¢, ).

With the above terminology it is natural to say that (1.2)
satisfies condition (H) if every eventually positive solution is either
p.s.i. or p.s.d. and every eventually negative solution is either n.s.d.
or n.s.i. Condition (0) is again said to be satisfied if (1.2) possesses
an oscillatory solution.

In §2 below we show that the implication (H) = (0) holds for
the equation (1.2). This generalizes a related result by Lovelady [8]
for the linear equation

(1.4) Yy — o)y =0.

The more difficult implication (0) = (H) is considered in §3 for the
linear equation (1.4). Here we observe that some recent results of
Elias [2] generalize Ahmad’s results if condition (0) is reformulated
in terms of conjugate or focal points rather than the existence of an
oscillatory solution. Such a reformulation is equivalent to (0) in the
case n = 2. In §4 we consider nonlinear forms of the implication
(0)=(H) for the equation (1.3) in case n=2. Writing (1.3) as a system

d*y dx
— = S — t
Fra i f@, )

(1.5)
we interpret solutions of (1.8) as trajectories in the (z, y)-plane.
Our generalizations of Ahmad’s result consist of showing the incom-
patibility of trajectories corresponding to arbitrarily large focal
points with the existence of asymptotic trajectories which violate

condition (H).
2. Oscillation criteria. For the nonlinear equation
(2.1) Y = fE =0 0=t < o

satisfying (1.3) and the other conditions set forth in §1, it follows
readily that any nontrivial solution satisfying ¥ (¢,) = 0[<0] for
0=j=<2n—1 is p.s.i.[n.s.d.] on (¢, ). We also have the fol-
lowing.

LemmaA 2.1. If y(t) is a solution of (2.1) on (0, ) which is
p.s.d. [n.s.i.] on (t, o) for some t,>0, then y(t) is p.s.d. [n.s.i.] on
(0, o).

Proof. Rewriting (2.1) as a vector system
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(2.2) 2" = f(t, z)
with z=col(x, -+, ®,), ;s =y* for 01 =n—1, and f=
col(x,, -+, x,, f(t, x,)), we use the notation z > 0[=0] in case x, >0

[=0] for all7,1 <% < m. A solution of (2.1) which is p.s.d. on (¢, <)
may then be intepreted as a trajectory I'(¢) lying in the positive
n-tant

If={z|x; >0 for 1=1 = n}

and satisfying 2'(t) < 0 for ¢, <t < . If y(t) is p.s.d. on (&, <)
but not on (0, ) then there exists a maximal interval (Z, «) on
which y(¢) is p.s.d., and we would have xgo(f) = 0 for some 7,. However,
since «;(t) >0 for all ¢ > 7 we would have = (t) >0 on (£, ),
contradicting the assmption that y(¢) is p.s.d. A similar argument
deals with the case of solutions which are n.s.i. on (¢, <0).

Continuing in the geometric setting suggested by the proof of
Lemma 2.1, we represent the initial value problem corresponding to
(2.1) in the system form

= fa)yt, =t < o0

(2.3) B(t) = o @'(t) = '

A solution z(t) of (2.8) is then determined by the initial data (2° ')
in R*. We introduce the additional notation

IF={z|z; <0 for 1150}
I'*=Itx I I'- = It x I"; ete .

so that a solution y(¢t) of (2.1) is p.s.d. on (¢, ) if and only if
(2(¢), '(t)) e I'* for t, < t < oo, while y(¢) is p.s.d. on (£, ) if and
only if (x(¢), 2'(t)) e I~ for t, <t < oo, ete.

THEOREM 2.2. If (2.1) satisfies condition (H), then it has oscil-
latory solutions.

Proof. Fix t,e€[0, ) and let [p.s.i.] denote the set of initial
data (2°, 2') € R** for which the corresponding solution x(t) is even-
tually p.s.i. The continuous dependence of solutions on initial data
implies that [p.s.i.] is an open subset of R* containing I**; analo-
gously [n.s.d.] is an open subset of R* containing I=~. On the
other hand, by Lemma 2.1 [p.s.d.] and [n.s.i.] are subsets of I*~
and I~* respectively. In order to prove the existence of oscillatory
solutions it suffices to show [p.s.i.] U[n.s.d.]U[p.s.d.]U[n.s.i.] is a
proper subset of R* — {0}—i.e., that for n > 1[p.s.d.] U [n.s.i.] cannot
effect a separation of the open subsets [p.s.i.] and [n.s.d.] in R*™ —
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{0}. Since [p.s.d.]c I'~ and [n.s.i.]c I"%, it clearly suffices to show
that I*~ U I* cannot effect a separation of the open sets [p.s.i.]
and [n.s.d.]. Let u=(Q,---,1)eR", and h = (u, —u)c R*™. The
hyperplane orthogonal to h in R*™ can be described by H =
{(X°, X9 < (X% X, (%, —uw) > =0}. Then H,=H — {0, 0)} is
homeomorphic to R*™* — {0}, and for » > 1 is connected. It is clear
that H,N(I"~ Ul *)=¢@. If [p.s.i.]U[n.s.d.]U[p.s.d.]U[n.s.i.]=R*" —
{0}, then H, = (H,N p.s.i.]) U (H,N[n.s.d.]). Since [p.s.i.] and [n.s.d.]
are open, H,N [p.s.i.] and H,N [n.s.d.] are open subsets of H,, in
the relative topology. The above decomposition is then a disconnec-
tion of the connected set H,, which gives the desired contradiction.

3. Linear equations of order 2n. For the linear equation

(3.1) Yy —p)y =0

we define the (k, 2n — k) focal point of ¢ = a@ as the smallest b > a
such that (3.1) has a nontrivial solution satisfying

Y@ = - =yt @ = 0= g = - = g IE)

In case » =2 it is well known [2], [7] that the finiteness of the
2-2 focal point for all @ > 0 is equivalent to condition (0). Thus,
denoting the (k, 2n — k) focal point by g .,_.(a), Ahmad’s theorem
can be restated as follows:

(H) = tt(a) < o forall a < oo .

In this form a generalization of Ahmad’s theorem is implicit in some
recent work of Elias [2], and Lovelady [8]. In particular, one can
combine the results of these authors to obtain the following.

THEOREM 3.1. If (3.1) is “oscillatory” in the sense that t 4,_i(a) <
o for all a < o and for all even integers k,2 <k =< 2n — 2, then
(3.1) satisfies condition (H).

Proof. If y(t) is an eventually positive solution of (3.1) then
there exists ¢ > 0 such that y, ¢/, - - -, y* are eventually one-signed.
As shown in [1; Theorem 1], the largest integer % such that ¥ >0
on [e, ) for all © £ k is necessarily even, while for j >k the y?
have alternating signs. Thus, in order to establish (H), it is sufficient
to preclude trajectories which satisfy

y? >0 on [e, ) for 051k

3.2 -
( ) y(])y(]"'” < O on [c, oo) fOr IG ___<_ j é 2’)’& - 1

when k= 2,4, ---,2n — 2. However, specializing [2; Theorem 2] to
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the case of even order equations, it follows that (3.1) is (k, 2n — k)
disfocal in (a, ) if and only if it has a solution y which satisfies

Y2 >0 on [a, ) for 05i<k
(=1 %y >0 on [a, ) for k<j<2n.

Because of (3.2) we see that the finiteness of ., .(a) for even
values of k,0 < k < 2n, and all a < o sufficies to establish condition
(H) for (3.1).

While we shall not make further use of this linear result,
Theorem 3.1 does suggest that a focal point formulation of condition
(0) is appropriate for generalizations of Ahmad’s theorem. This
point of view is pursued in connection with nonlinear fourth order
equations in the following section.

4. Focal and asymptotic trajectories. In considering nonlinear
equations of the form

(4.1) YW= f,y =0 0=t< o

we shall generalize the implication (0) = (H) by showing that the
existence of “asymptotic trajectories” which constitute violations of
conditions (H) is imcompatible with focal point properties which, in
the linear case, are equivalent to condition (0). Writing (4.1) in the
system form

(4.2) y'=a; 2" = f(t,9)

it is clear that an eventually positive solution of (4.2) which is
neither p.s.i. nor p.s.d. must eventually satisfy ¥, ¥’, x, — «’ positive,
so that y(t) 7 ~ and «(¢t) [ 2, =0 as £ > . In order to ensure that
x, = 0 we assume that

(i) f(@, y) is monotonically increasing in y for y = 0

4.3
(4.3) (ii) for any ¢ > 0 and ¢, > 0, S @, et — t,))dt = oo,

LeMMA 4.1. If (4.3) is satisfied and y(t) is an eventually positive
solution of (4.1) which is neither p.s.i. nor p.s.d. then y(t) satisfies

(4.4) Y(t)— o and y'®) Zat) |0
as t — oo,
Proof. If y(t) is an eventually positive solution of (4.2), then

there exists ¢, < « such that »(t) > 0 and %"(t) > «, for ¢t = ¢t,. If,
x, > 0 it follows that y(t) = e(t — t,)* for some ¢ > 0, and from (4.3)
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(i) and the second equation in (4.2) we have
14
20 2 0'(6) + | f6, s — t))ds
to

Therefore the divergence of the integral above precludes the existence
of eventually positive solutions satisfying «(¢) | «, for some x, > 0.

Analogous conclusions can be drawn for eventually negative
solutions of (4.1), but we shall not consider this case explicitly.
Rather we shall limit our attention to eventually positive solutions
and assume (4.3) throughout, considering condition (H) to be equivalent
to the nonexistence of solutions of (4.1) satisfying (4.4).

Our nonlinear formulation of condition (0) is given in terms of
the focal point 7(a; «,) defined as the smallest b > a such that (4.1)
has a nontrivial solution y(t) satisfying

y(a) = y'(a) = 0 = y"(b) = y"'(b); ¥y'(a) = , .

A solution y(t) of (4.1) realizing 7(a; z,) can be interpreted as a tra-
jectory in the (x, y) plane tangent to the x-axis at x = x,, t = a and
tangent to the y-axis at ¢ = 7(a; x,). In case (4.1) is linear, » does
not depend on z,, We then write 7(a; x,) = 7(a), and existence of
oscillatory solutions of (4.1) is well known to be equivalent to #(a) <
o for all @ > 0. Defining a trajectory satisfying (4.4) as positively
weakly increasing (p.w.i.), we seek to show that the existence of
p.w.i. solution is inconsistent with condition (0) formulated as follows:

(4.5) Na; ) < oo forall ¢=0 and 2,>0.

Our arguments will be given in a dynamical context wherein solutions
of (4.2) satisfying initial conditions

(4.6) x(a) = 2, y(a) = ¥, 2'(a) = x, ¥'(a) = ¥

are interpreted as trajectories in the (x, y)-plane. We also formulate
initial conditions in terms of z,, ¥,

6, = Are tan[—%]; vo=VE +
1
and denote the corresponding trajectories by I'(xy, Yo, 0o, ¥o; @). Then
for each (x,, ¥,) € I" and 6,€ ][0, (7/2)) there exists a “critical velocity”
V(2o Yop 6o) = inf{v| ' (xy, yo, 6,, v) enters the second quadrant}. By
continuous dependence on initial data, the corresponding critical
trajectory I'.(x,, Yo, 0o; @) = (%o, Yo, 0,, ¥.; @) is either focal, in the
sense that it satisfies 2(7) = «'(z) = 0 for some 7 > a, or else I, is
asymptotic to the positive y-axis, corresponding to a p.w.i. solution
of (4.1). We seek to show that if I',(x, 0, 0; ) is focal for all ¢ = 0
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and z, > 0, then there are no critical trajectories which are asymptotic
to the positive y-axis—i.e., that (0)= (H).

By way of preparation we establish an important result for
non-homogeneous second order equations of the form

dx _
(4.7 2 a0 =0

where q(t) > 0 on (a, «). Given 2(a) = 2, > 0 we seek an initial
velocity «'(a) = x, < 0 such that the corresponding solution x(¢; «,, «,)
will satisfy «(z) = 2/(z) = 0 for some 7 e€(a, ]. Such a critical x,
is uniquely determined by the simultaneous solution of

*.3) #® =2+ | a@ds = 0
(4.4) o(t) = @ + @t + ﬁ q(r)drds = 0 .

Our prinecipal concern is the dependence of the critical arrival time
7z on the function q(¢).

LeEMMA 4.2. Suppose qt) >0 for a <t < < and 1 =1,2. Let
2,(t) be solutions of (d*x,/dt’) = q.(t) satisfying z(a) = 2, for i =1,2
and that xi(a) can be chosen so that wx(r;) = xi(t) =0 for some
t;e(a, 0]. 1=1,2. If

St (8 — a)gi(s)ds = Si(s — a)qy(s)ds

for all t > a, then 7, =7, In particular, if ¢.(t) = gt) for all
t > a, then 7, = 7,.

Proof. From (4.3) we see that

wi@) = — | ae)ds .

Substituting into (4.4) yields

T t(s
2 (t) = i (t — a) S ‘0u(s)ds + S S q.(r)drds .
Interchanging the order of integration in the last term and setting
t = 7, yields

0=,z = it — a) | "aute)ds + | "z - 9)au(s)ds

so that 7, is determined by
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T, = S”(s — a)q(s)ds

for ¢ =1, 2.

In the following application of Lemma 4.2 we use (4.3)(ii) and
Lemma 4.1 to assure that the X;(a) can be chosen so that X(z;) =0
for some 7, €(a, «].

LEMMA 4.8. Let y,(t) and y,(t) be critical solutions of (4.1) where
Yo(t) has a focal point 7N(a; w) < co. If y'(a) = yi'(a) and y.(t) =
Y,(t) for a <t < 7(a; ), then y,(t) is not p.w.i.

Proof. Recalling that x,.(t)défyg’(t), we note that the x(t) are
solutions of x;” = ¢q,(f), where q,(t) = f(t, y.(t)) and x,(a) = x.(a) = =,
From the monotonicity of f and the assumption y, = y, it follows
that q.(¢) = ¢,(t) and that a critical xi(a) has been chosen so that
2,(7) = 2i(z) = 0 for some 7 € (a, N(a; ;). This means that the critical
trajectory corresponding to y,(t) has a focal point in (a, 7(a; «,)) and
therefore does not correspond to a p.w.i. solution.

At this point we are able to give a different linear proof of
0)= (H). For if y” — p(t)y = 0 has a p.w.i. solution y,(¢) and if
7.(a) < = for all a, then we can choose ¢ = ¢ sufficiently large so

that ».(t) > 1 for all ¢t = a. Letting y,(¢) be the focal solution which

. ~ def , .
realizes 7,(a), we can also choose x,(a) = 9, (a) sufficiently small so

that %,(t) <1 for a £t = 7,(a). Then by Lemma 4.3 we obtain the
desired contradiction. While this argument, as given, is valid only
for the linear case, it can be modified to apply to certain nonlinear
equations of the form (4.1).

Consider the Green’s function

G(r;t,8) = T(s—a;(t’_a)2———g—(t—a)‘°’ for a<t<s<rt

_ T(t~a;(8~a>2__é'_(s_a)3 for a<s<t<r

which enables us to write

dy _
7t f(t, y(®)
y(a) = y'(a) = 0 = y"(z) = ¥y"(7)

in the form

v = | G(e; ¢, 9)f6, u(s)ds -
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Adopting the notation of [9] we let K denote the cone of positive
functions in the Banach space of bounded continuous functions on
[0, ). Using inequalities to indicate the partial ordering induced
by K, we consider the positive operator A. defined by

[A.9]) = iSaG(T; t,s)f(r, y(s)ds a<t<rt
0 t>7

so that a focal point trajectory realizing 7(a; x,) can be identified
with a solution of A.v = p.v where

v=y(t); T = Na; x,); - =1.

(In order to remove the discontinuity at ¢ =z one should identify
such a trajectory with

vit)=yt) for a=Zt=T7
=y@2r —t) for t=t=Z2t—a
=0 for t>2c—a

but we shall not take further note of this technical detail.) In the
linear case f(t, ¥) = p(t)y we write

[L.yl@t) = {SEG(t: s)p(8)y(s)ds a =t=rt
\0 t>7

so that a focal point trajectory realizing 7.(a) can be identified with
a solution of L.u = M. u where

u=yit);t=7Ta);r=1.

From the positivity and boundedness of the Green’s function it follows
that both A, and L. are completely continuous positive operators
mapping K into K and that the focal point trajectories discussed
above correspond to positive eigenvectors w and » of L, and A,
respectively.

LEMMA 4.4. Suppose L. and A, satisfy L.w =< A.w for all we
K. If there exist nonzero elements u, v € K such that L.u = M u and
Av = pv, then A < ..

Proof. Since L, is linear, » may be multiplied by an arbitrary
positive constant, so that we may assume without loss of generality
that w — ve K — {0}. Assuming \. > p. we write

Lr(u - ?)) + (Lr - Ar)v = 7\-'r(u - ’U) + (7\'1 - #)/U
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and conclude that
L.(uw—v) — N(u —v)e K — {0}

for the positive element v — v. However this contradicts the as-
sumption that A, is the spectral radius of L, (see [9; Theorem 2.5]).

THEOREM 4.5. Suppose there exists a function p(t) which 1is
continuous and positive on [0, =), satisfies

f@&y) =zp)y for (L, y)el0, ) x (0, )

and such that y* — p(t)y has 7, (a) < = for all a>0. If (4.1)
satisfies N(a; x,) < o for all a =0 and x, > 0 then (4.1) does not
have any p.w.i. solutions.

Proof. Suppose to the contrary that (4.1) has a p.w.i. solution
y,(t) satisfying

y(t) >1 for all ¢t = a;limy,(t) = ; limy,’(¢) =0.
t—c0 100

If y,(t; x,) is the solution of (4.1) realizing 7(a; 2,) and ve€ K is
identified with y,(¢; ,), then A.v = g, with z(a; %) = 7.(a; ,) and
t. = 1. Making use of the fact that L. is a compact positive linear
operator, we note that

Lu=Nu

has an essentially unique solution u € K corresponding to A, = g, =
1. By the classical variational theory, A, is a monotonically increasing
funetion of 7, so that there exists ¥ = r such that

L-u=u

has a nontrivial solution in K corresponding to the solution of y* —
p(t)y = 0 realizing 7(a), and 7, = 1. This shows that 7(a; z,) <
7.(a) for all 2, > 0 and, as a consequence, that y,(t; x,) £ (,/2)(T — a)*
for a £t <7,(a;x,). Choosing x, sufficiently small, we obtain y,(¢; x,) <
y,(t) for a <t < n,(a; x,) and apply Lemma 4.3 to obtain the desired
contradiction.
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