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NONLINEAR RELATIONSHIPS BETWEEN OSCILLATION
AND ASYMPTOTIC BEHAVIOR

ALLAN EDELSON AND KURT KREITH

This paper establishes various relationships between os-
cillation and asymptotic behavior of nonlinear differentional
equations of the form yi2n)—f(t, y)=0. Its results constitute
a generalization of similar relationships known to hold for
linear fourth order equations.

For the fourth order differential equation

(i.i) yiv - p(t)y = o ,

with p{t) positive and continuous in [0, oo), it is well known [1] that
(1.1) always possesses nonoscillatory solutions of the following two
types:

( ί ) Vt v\ v"t y'" are eventually positive;
(ϋ) y, —y\ y"9 —y'" are eventually positive.

We say that (1.1) satisfies condition (H) if every eventually positive
solution is of type (i) or (ii) above. Furthermore, we say that (1.1)
is oscillatory (0) if it has a nontrivial solution with arbitrarily large
zeros. Ahmad [1] has shown that (1.1) is oscillatory if and only if
it satisfies condition (H)—i.e., that (0) <=> (H).

In considering the relationship between oscillation and asymptotic
behavior of nonlinear equations of the the form

(1.2) y™ - f(t, y) = 0 ,

it will be assumed that f(t, y) is continuous, satisfies

(1.3) sgn f(t, y) = sgn y

in [0, oo) x (— oo, co), and that /(t, y) is sufficiently regular so that
solutions of the initial value problem associated with (1.2) exist and
vary continuously with initial data in [t0, oo) for any initial point
£0̂ >0. Under these assumptions it can be shown [6] that (1.2) always
possesses solutions of the following types:

( i ) there exists a Q O such that yU)(t) is positive for all t > t0

and 0 <Ξ j ^ 2n — 1, in which case we say that y(t) is positively
strongly increasing (p.s.i.) on (ί0, °°).

(ii) there exists a ί o ^ O such that ( —l)Vy>(*) i s positive for all
t > t0 and 0 <̂  j <; 2n — 1, in which case we say that y(t) is positively
strongly decreasing (p.s.d.) on (ί0, ©o). We shall also have occasion
to refer to negatively strongly decreasing (n.s.d.) and negatively
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strongly increasing (n.s.i.) solutions which are analogously defined
by the condition yij)(t) is eventually negative and ( —l)V i ι(ί) is
eventually negative for 0 <L j <L2n — 1. In the linear case y(t) is
p.s.i. [p.s.d.] on (ί0, <*>) if and only if —y(t) is n.s.d. [n.s.i.] on (t0, oo).

With the above terminology it is natural to say that (1.2)
satisfies condition (H) if every eventually positive solution is either
p.s.i. or p.s.d. and every eventually negative solution is either n.s.d.
or n.s.i. Condition (0) is again said to be satisfied if (1.2) possesses
an oscillatory solution.

In §2 below we show that the implication (H)=>(0) holds for
the equation (1.2). This generalizes a related result by Lovelady [8]
for the linear equation

(1.4) y™ - p ( % = 0 .

The more difficult implication (0) ==> (H) is considered in § 3 for the
linear equation (1.4). Here we observe that some recent results of
Elias [2] generalize Ahmad's results if condition (0) is reformulated
in terms of conjugate or focal points rather than the existence of an
oscillatory solution. Such a reformulation is equivalent to (0) in the
case n — 2. In § 4 we consider nonlinear forms of the implication
(0)=>(H) for the equation (1.3) in case n = 2. Writing (1.3) as a system

<L5) ΪF = x : § = f{t y)

we interpret solutions of (1.3) as trajectories in the (x, #)-plane.
Our generalizations of Ahmad's result consist of showing the incom-
patibility of trajectories corresponding to arbitrarily large focal
points with the existence of asymptotic trajectories which violate
condition (H).

2* Oscillation criteria* For the nonlinear equation

(2.1) y™ - f(t, y) = 0 0 ^ t < oo

satisfying (1.3) and the other conditions set forth in §1, it follows
readily that any nontrivial solution satisfying y{j)(t0) ^ 0[<;0] for
0 ^ j ^ 2n — 1 is p.s.i. [n.s.d.] on (ί0, oo). We also have the fol-
lowing.

LEMMA 2.1. If y(t) is a solution of (2.1) on (0, oo) which is
p.s.d. [n.s.i.] on (ί0, °°) for some tQ>0, then y{t) is p.s.d. [n.s.i.] on
(0, oo).

Proof. Rewriting (2.1) as a vector system
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(2.2) x" = /(ί, «)

with x = col (ajlf , α?n), a?<+1 = ym) for 0 ^ i ^ w, - 1, and / =
col(#2, , xn, f(t, Xi))> we use the notation x > 0[^0] in case xt > 0
[^0] for allί, 1 <* i ^ w. A solution of (2.1) which is p.s.d. on (ί0, ©o)
may then be intepreted as a trajectory Γ(£) lying in the positive
w-tant

I + = { x \ X i > 0 f o r l ^ ί ^ n }

and satisfying α?'(ί) < 0 for tQ < t < oo. If ^(ί) is p.s.d. on (ίOf oo)
but not on (0, oo) then there exists a maximal interval (F, °°) on
which y(t) is p.s.d., and we would have x'iQ(t) ^ 0 for some i0. However,
since x't'0(t) > 0 for all t > t we would have x'tQ(t) > 0 on (ί0, co),
contradicting the assmption that y(t) is p.s.d. A similar argument
deals with the case of solutions which are n.s.i. on (t0, oo).

Continuing in the geometric setting suggested by the proof of
Lemma 2.1, we represent the initial value problem corresponding to
(2.1) in the system form

s" = /(ί, x); to ̂  t < oo

x(tQ) - °̂; χ\Q = # .

A solution α (ί) of (2.3) is then determined by the initial data (a?0, #)
in i?2n. We introduce the additional notation

I~ = { x \ X i < 0 f o r l ^ ί ^ n }

/++ = 1+ x j+; /+- = 1+ x /-; etc .

so that a solution y(t) of (2.1) is p.s.i. on (ί0, oo) if and only if
(x(t), x'(t))el++ for ί0 < ί < oo, while #(ί) is p.s.d. on (ί0, oo) if and
only if («(«), »'(«))€/+- for t0 < t < oo, etc.

THEOREM 2.2. If (2.1) satisfies condition (H), ίfoew it has oscil-
latory solutions.

Proof. Fix toe[O, oo) and let [p.s.i.] denote the set of initial
data (x°, x1) e R2n for which the corresponding solution x(t) is even-
tually p.s.i. The continuous dependence of solutions on initial data
implies that [p.s.i.] is an open subset of jR2n containing I++; analo-
gously [n.s.d.] is an open subset of R2n containing I"". On the
other hand, by Lemma 2.1 [p.s.d.] and [n.s.i.] are subsets of I+~
and I~+ respectively. In order to prove the existence of oscillatory
solutions it suffices to show [p.s.i.] U [n.s.d.] U [p.s.d.] U [n.s.i.] is a
proper subset of R2n — {0}—i.e., that for n > l[p.s.d.] U [n.s.i.] cannot
effect a separation of the open subsets [p.s.i.] and [n.s.d.] in R2n —
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{0}. Since [p.s .d.]cf" and [n.s.i.] c/~ + , it clearly suffices to show
that I+~ U I~+ cannot effect a separation of the open sets [p.s.i.]
and [n.s.d.]. Let u = (1, , 1) eRn, and h = (u, -u)eR2n. The
hyperplane orthogonal to h in R2n can be described by H =
{(X°, X1) I < (X°, X1), (u, -u)> =0}. Then HQ = H - {(0, 0)} is
homeomorphic to R171"1 — {0}, and for n > 1 is connected. It is clear
that J H O Π ( I + " U I " + ) = 0 . If [p.s.i.] U [n.s.d.] U[p.s.d.]U [n.s.i.] = R2n -
{0}, then HQ = (HQ Π p.s.i.]) U (H0Π [n.s.d.]). Since [p.s.i.] and [n.s.d.]
are open, Ho Π [p.s.i.] and Ho Π [n.s.d.] are open subsets of HQ, in
the relative topology. The above decomposition is then a disconnec-
tion of the connected set Ho, which gives the desired contradiction.

3* Linear equations of order 2n* For the linear equation

(3.1) yi2n) - p(jb)y = 0

we define the (k, 2n — k) focal point of t — a as the smallest b > a
such that (3.1) has a nontrivial solution satisfying

y(a) = • = y(*-1J(α) - 0 - y^\b) - . = y^^\b) .

In case n = 2 it is well known [2], [7] that the finiteness of the
2-2 focal point for all a > 0 is equivalent to condition (0). Thus,
denoting the {k, 2n — k) focal point by μk,2n-k(a)> Ahmad's theorem
can be restated as follows:

(H) «=> μit2(a) < oo for all α < oo .

In this form a generalization of Ahmad's theorem is implicit in some
recent work of Elias [2], and Lovelady [8]. In particular, one can
combine the results of these authors to obtain the following.

THEOREM 3.1. /f (3.1) is "oscillatory" in the sense that μk>2n-k(a) <
oo for all a < oo and for all even integers k, 2 <i k ^ 2n — 2, then
(3.1) satisfies condition (H).

Proof If 2/(ί) is an eventually positive solution of (3.1) then
there exists c > 0 such that T/, 2/', , y{2n~x) are eventually one-signed.
As shown in [1; Theorem 1], the largest integer k such that yli) > 0
on [cf oo) for all i rg k is necessarily even, while for j > k the ΐ/(i)

have alternating signs. Thus, in order to establish (H), it is sufficient
to preclude trajectories which satisfy

y(ί) > 0 on [c, oo) for 0 ^ i ^ k

y{j)y{j+1) < 0 on [c, oo) for k ^ j ^ 2n - 1

when & = 2, 4, , 2n — 2. However, specializing [2; Theorem 2] to
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the case of even order equations, it follows that (3.1) is (k, 2n — k)
disfocal in (α, oo) if and only if it has a solution y which satisfies

y{i) > 0 on [α, oo) for 0 ̂  i <, k

(-iy-ky{ί) > 0 on [α, oo) for k^j^2n.

Because of (3.2) we see that the finiteness of ftktin-k(a) for even
values of k, 0 < k < 2nf and all a < oo sufficies to establish condition
(H) for (3.1).

While we shall not make further use of this linear result,
Theorem 3.1 does suggest that a focal point formulation of condition
(0) is appropriate for generalizations of Ahmad's theorem. This
point of view is pursued in connection with nonlinear fourth order
equations in the following section.

4* Focal and asymptotic trajectories* In considering nonlinear
equations of the form

(4.1) yiυ - f(t, y) = 0 0 ̂  t < oo

we shall generalize the implication (0) ==> (H) by showing that the
existence of "asymptotic trajectories" which constitute violations of
conditions (H) is imcompatible with focal point properties which, in
the linear case, are equivalent to condition (0). Writing (4.1) in the
system form

(4.2) y" = χ;χ" = f(t,y)

it is clear that an eventually positive solution of (4.2) which is
neither p.s.i. nor p.s.d. must eventually satisfy y9 y\ x9 — x' positive,
so that y(t) | oo and x{t) I x0 ̂  0 as t -> oo. In order to ensure that
x0 = o we assume that

( i ) f(ft V) is monotonically increasing in y for y ^ 0

(ii) for any ε > 0 and ί0 > 0, Γ/(ί, ε(ί - to)
2)dt = oo.

LEMMA 4.1. If (4.3) is satisfied and y(t) is an eventually positive
solution of (4.1) which is neither p.s.i. nor p.s.d. then y(t) satisfies

def

(4.4) y(t) >oo and y'\t) = x(t) | 0

as t —* oo.

Proof. If y(t) is an eventually positive solution of (4.2), then
there exists ί0 < oo such that y(t) > 0 and y"(t) > x0 for t ^ ίo H,
x0 > 0 it follows that y{t) ̂  e(t - tof for some ε > 0, and from (4.3)
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(i) and the second equation in (4.2) we have

x\t) ^ a?'(to) + Γ /(*, e(β - Uf)ds .

Therefore the divergence of the integral above precludes the existence
of eventually positive solutions satisfying x(t) I x0 for some xQ > 0.

Analogous conclusions can be drawn for eventually negative
solutions of (4.1), but we shall not consider this case explicitly.
Rather we shall limit our attention to eventually positive solutions
and assume (4.3) throughout, considering condition (H) to be equivalent
to the nonexistence of solutions of (4.1) satisfying (4.4).

Our nonlinear formulation of condition (0) is given in terms of
the focal point 7}(a; x0) defined as the smallest b > a such that (4.1)
has a nontrivial solution y(t) satisfying

Via) = y\a) = 0 = y"(b) = y'"(b); y"(α) = x0 .

A solution y(t) of (4.1) realizing η(a; x0) can be interpreted as a tra-
jectory in the (x, y) plane tangent to the sc-axis at x = x0, t = a and
tangent to the ?/-axis at t = η(a; x0). In case (4.1) is linear, rj does
not depend on x0. We then write η(a; x0) = ^(α), and existence of
oscillatory solutions of (4.1) is well known to be equivalent to τ}(ά) <
oo for all a > 0. Defining a trajectory satisfying (4.4) as positively
weakly increasing (p.w.i.), we seek to show that the existence of
p.w.i. solution is inconsistent with condition (0) formulated as follows:

(4.5) Ύ]{a\ x0) < oo for all a ^ 0 and xQ > 0 .

Our arguments will be given in a dynamical context wherein solutions
of (4.2) satisfying initial conditions

(4.6) x{a) = Xo, y(a) = y0, x\a) = xl9 y\a) = yγ

are interpreted as trajectories in the (x, 2/)-plane. We also formulate
initial conditions in terms of xOf yQ,

θ0 = Arc tan Γ-^-1]; v0 = Vx\ + y\
L xj

and denote the corresponding trajectories by Γ(xQ, yQ, ΘQ, vQ; a). Then
for each (x0, y0) e I+ and θ0 e [0, (τr/2)) there exists a "critical velocity'*
^c(^o, a/of 0<>) = inf{v\Γ(x0, y0, θ0, v) enters the second quadrant}. By
continuous dependence on initial data, the corresponding critical
trajectory Γc(x0, y0, θo; a) = Γ(x0, y0, θ0, vc; a) is either focal, in the
sense that it satisfies x(τ) = x\τ) = 0 for some r > α, or else Γc is
asymptotic to the positive #-axis, corresponding to a p.w.i. solution
of (4.1). We seek to show that if Γe(x0, 0, 0; a) is focal for all a ^ 0
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and xQ > 0, then there are no critical trajectories which are asymptotic
to the positive ?/-axis—i.e., that (0)=>(H).

By way of preparation we establish an important result for
non-homogeneous second order equations of the form

(4.7) §

where q(t) > 0 on (a, °o). Given x(a) = x0 > 0 we seek an initial
velocity x\a) = xx < 0 such that the corresponding solution x(t; xQ, xj
will satisfy x(τ) = x\τ) = 0 for some τ e (a, °°]. Such a critical xx

is uniquely determined by the simultaneous solution of

(4.3) a?'(ί) = α?1 + Γ<K*)ώ = 0
Ja

(4.4) x{t) = x0 + α?xί + ί T q{r)drds = 0 .
JαJα

Our principal concern is the dependence of the critical arrival time
τ on the function q(t).

LEMMA 4.2. Suppose qt(t) > 0 /or a < t < oo αwώ i = 1, 2. Lei
δe solutions of (d2Xi/dt2) = ^(^) satisfying Xi(a) = x0 for i = 1, 2

a ί(α) cα^ δβ chosen so that xt(Ti) = ^(τ j = 0 /or some

I (8 — α)?i(8)d8 ^ i (β — a)q2(8)d8
Ja Ja

for all t > α, £tett fj. ^ τ2. 1^ particular, if q^t) ^ g2(ί) for all
t > a, then τx ^ τ2.

Proof. From (4.3) we see that

qi(s)ds .

a

Substituting into (4.4) yields

S ti rtrs

qi(s)ds + \ 1 qi(r)drds .
a ja Ja

Interchanging the order of integration in the last term and setting
t = ti yields

qi(s)ds + \ (τ< —
a Jα

so that Tt is determined by
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(s — a)qi
a

for i = 1, 2.
In the following application of Lemma 4.2 we use (4.3) (ii) and

Lemma 4.1 to assure that the X*(a) can be chosen so that Xfaύ = 0
for some r<e(a, <*>].

LEMMA 4.3. Lβί ^(ί) αwώ 2/2(ί) δβ critical solutions of (A.I) where
y2(t) has a focal point η(a; x0) < °°. If y['(a) = y'2(a) and yt(t) ;>
Vi(t) for a ^ t <| ^(α; α?0), then y^t) is not p.w.i.

def
Proof. Recalling that a<(ί) = y't'(t), we note that the xt(t) are

solutions of x\' — qt(t), where qt(t) = f(t, yt(t)) and ^(α) = x2(a) = a?0.
From the monotonicity of / and the assumption y1 7> y2 it follows
that q^t) ^ q2(t) and that a critical x[(a) has been chosen so that
α?i(r) = a?ί(τ) = 0 for some r e (α, >?(α; α?0). This means that the critical
trajectory corresponding to y2(t) has a focal point in (α, τj(a\ x0)) and
therefore does not correspond to a p.w.i. solution.

At this point we are able to give a different linear proof of
(0) => (H). For if yίv — p(t)y = 0 has a p.w.i. solution yλ(t) and if
^(α) < oo for all α, then we can choose t — a sufficiently large so
that yt(t) > 1 for all t ^ α. Letting y2(t) be the focal solution which

def
realizes ^(α), we can also choose x2(α) Ξ y'2(a) sufficiently small so
that y2(t) < 1 for a ^ t ^ ^i(α). Then by Lemma 4.3 we obtain the
desired contradiction. While this argument, as given, is valid only
for the linear case, it can be modified to apply to certain nonlinear
equations of the form (4.1).

Consider the Green's function

G(τ; t, s) = Γ ( s ~ α ) ( * ~ α ) - ϋ ( t - aY for α
2 6

= τ{t ~ a ) } S ~ af - ^ ( s - aY f o r α < 8 < ί < r
2 6

which enables us to write

Via) = y'{ά) = 0 = y"{τ) = »'"(τ)

in the form

y(t) = \G(τ; t,
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Adopting the notation of [9] we let K denote the cone of positive
functions in the Banach space of bounded continuous functions on
[0, oo). Using inequalities to indicate the partial ordering induced
by K, we consider the positive operator A- defined by

r(τ; t, s)f(r, y(s))ds a ^ t ^ τ

0 t > τ

so that a focal point trajectory realizing η{a\ x0) can be identified
with a solution of Aτv — μτv where

v == y(t); τ = η(a; x0); μτ = 1 .

(In order to remove the discontinuity at ί = r one should identify
such a trajectory with

v(ί) = y(t) for α ̂  t <> τ

= 2/(2r - ί) for r ^ ί ^ 2r - α

= 0 for t > 2r — a

but we shall not take further note of this technical detail.) In the
linear case f(t, y) = p(t)y we write

IT i m \[ G(t9 s)p(s)y(s)ds a ^ t ^ τ

10 t > τ

so that a focal point trajectory realizing y)x{a) can be identified with
a solution of I/rw = λτw where

u = ί/(ί); r = ^i(α); λΓ = 1 .

From the positivity and boundedness of the Green's function it follows
that both Aτ and Lτ are completely continuous positive operators
mapping K into K and that the focal point trajectories discussed
above correspond to positive eigenvectors u and v of Lτ and Aτ,
respectively.

LEMMA 4.4. Suppose Lτ and Aτ satisfy Lτw <; AΓ^ /or all w e
K. If there exist nonzero elements u, v e K such that Lτu = Xτu and
Aτv = μrv, then λΓ ^ μr.

Proof. Since LΓ is linear, u may be multiplied by an arbitrary
positive constant, so that we may assume without loss of generality
that u — v e K — {0}. Assuming λr > μτ we write

Lτ(u -v) + (Lτ - Aτ)v = Xτ(u -v) + (λ r - μ)v
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and conclude that

Lτ(u - v) - Xt(u - v) 6 K - {0}

for the positive element u — v. However this contradicts the as-
sumption that λΓ is the spectral radius of Lτ (see [9; Theorem 2.5]).

THEOREM 4.5. Suppose there exists a function p{t) which is
continuous and positive on [0, oo), satisfies

fit, y) ^ p(t)y for (ί, y) e [0, oo) x (0, <*>)

and such that yiv — p(t)y has ^(α) < <χ> for all a > 0. If (4.1)
satisfies ^(α; x0) < °o for all a ^ 0 and x0 > 0 £/̂ w (4.1) does not
have any p.w.i. solutions.

Proof. Suppose to the contrary that (4.1) has a p.w.i. solution
j/i(ί) satisfying

^(ί) > 1 for all t ^ α; l im^(ί) = oo; Hmyί'(ί) = 0 .

If y2(t;xQ) is the solution of (4.1) realizing 3?(α; α?0) and v e ί is
identified with 2/2(ί; a?0), then Arv = μτv, with r(α; 05o) = ^i(α; «o) a ^ d
^ Γ = 1. Making use of the fact that LT is a compact positive linear
operator, we note that

Lτu = λrw

has an essentially unique solution u e K corresponding to λΓ ^ μτ =
1. By the classical variational theory, λΓ is a monotonically increasing
function of τ, so that there exists τ ^ τ such that

1/7% = u

has a nontrivial solution in K corresponding to the solution of yίv —
p(t)y = 0 realizing ?\(α), and yj1 = 1. This shows that ^ ( α ; α?0) ^
9i(α) for all x0 > 0 and, as a consequence, that y2(t; x0) ^ (α?0/2)(r — α)2

for α ^ ί <; ̂ (α; a?0) Choosing ίc0 sufficiently small, we obtain y2(t; x0) ^
yx(t) for α ^ ί ^ ^(α; a?0) and apply Lemma 4.3 to obtain the desired
contradiction.
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