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GEOMETRY AND NONLINEAR ANALYSIS
IN BANACH SPACES

KONDAGUNTA SϋNDARESAN

It is proved that if a Banach space admits a nontrivial
uniformly continuously differentiate function with bounded
support then it is superreflexive. Several applications to
approximation theory and existence of solutions to differ-
ential equations are discussed.

A Banach space E is said to be ZJ^mooth if there exists a
uniformly continuously differentiable real-valued function on E with
bounded support. It is of considerable importance to know whether
a given Banach space E is [/^-smooth since certain real-valued
functions on E cannot be approximated by smoother functions if E
fails to be ZJ^smooth. Results of this type are of considerable
interest in global analysis on infinite dimensional manifolds, see
Eells [6], and Lang [11]. Motivated by these considerations and
the connections of tΓ-smoothness with Banach spaces with norms
of class Cx-away from 0, with Lipschitzian derivatives, Wells [16],
Moulis [12], Heble [8], and Aron [1], among others, discussed this
problem and related concepts. In [16], it is shown that the Banach
space Co fails to be [/^smooth, while in [1] it is proved that the
Banach spaces C(K), K an infinite compact Housdorff space are not
tΓ-smooth. The primary purpose of this paper is to completely
characterize Banach spaces which are [/^smooth in terms of the
geometry of the space. The main result stated in the Theorem 3
here, implies that the class of Banach spaces which are not [/^-smooth
is very extensive modulo isomorphism, includes a class of reflexive
spaces, and the results in [1] and [16] are deduced as corollaries of
the main theorem.

The plan of the paper is as follows. In §1 few known results
and definitions relevant to the discussion here are recalled. In §2
the main results are established. Applications to approximation
theory, differential equations on a Banach space, and related results
are discussed in §3.

1* In this paper, unless otherwise specified, the same symbol
|| || is used for the norms of various Banach spaces that enter the
discussion as this does not entail any confussion. If E is a Banach
space, the open ball, center 0, and radius r is denoted by Z7r(0).
The region {x\X < \\x|| < μ) in E is denoted by iϋ(λ, μ), for 0 < λ < μ.
If Z7 is any open set, the boundary of U is denoted by dU. The
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support of a vector-valued function / is the set {x\f(x) Φ 0}. Thus
in this paper if / is a continuous function defined on a topological
space X into a Banach spaces E, then its support is an open subset
of X. If E, F are Banach space, then the Banach space of continu-
ous linear operators on E into F with the supremum norm, is
denoted by L(E, F).

If E, F are Banach spaces E is said to be finitely represented
in F, in symbols E < F, if for each finite dimensional subspace X
of E, and positive number ε, there is a subspace Y of F, depending
on X and ε, such that there is an isomorphism T on X onto Y with
| |Γ | | llϊ7"1!! ^ 1 + ε. A Banach space F is said to be super reflexive
if E < F implies E is reflexive. For fundamental work on super-
reflexive spaces see James [10], and for a comprehensive account of
these spaces the interested reader is referred to the recent monograph
of Van Dulst [15] on the subject.

An useful concept in the theory of finite representation is the
concept of an ultrapower of a normed linear space. Let S be an
infinite set and Γ be a nontrivial (free) ultrafilter on S. If / is a
bounded real-valued function on S let limΓ f(s) — sup [λ | {t e S,
f(t) > λ}e Γ]. Now if (JB, || ||) is a normed linear space, and / is a
bounded E-valued function on S, let | / | = limΓ ||/(s)||. It is verified
that I I is a seminorm on the vector space V of bounded unvalued
functions on S, and the quotient space of V modulo the kernel of
I I equipped with the quotient norm is known as the ultrapower of
E associated with the pair (Sf Γ), and is denoted here by E(S, Γ).
It is known that if E is a Banach space, then E(S, Γ) is a Banach
space, and E < F if and only if E is isometric with a subspace of
an ultrapower F(S, Γ) of F. For an account of ultrapowers, see
Stern [14].

A Banach space (E, || ||) is said to be smooth if for all x Φ 0,
xeE

( 1 ) ' l g + * » l l l l g l l

exists for all y e E. If the limit in (1) exists at a x Φ 0, for all
yeE,then it is known that GxeE*, the dual of E, and \\GX\\ = 1.
A smooth Banach space E is said to be uniformly smooth if the
limit in (1) is attained uniformly for all x, y, \\x\\ = 1 = \\y\\. It
follows from the homogenity of the norm that a Banach space E is
uniformly smooth if and only if the norm is uniformly continuously
differentiable on regions R(X, μ), in particular on bounded sets at a
positive distance from the origin. The following theorem of James
and Enflo is useful in the discussion to follow.
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THEOREM 1. [James and Enflo]. A Banach space E is super-
reflexive if and only if E is isomorphic with an uniformly smooth
Banach space.

For a formal proof, see [15]. See also in this connection [10],
and Enflo [7].

Before concluding this section, the interested reader is referred
to Dieudonne [5], Bourbaki [4] and [11], for various results in
differential calculus in Banach spaces of which free use is made
here.

2* In this section, the main results of the investigation are
presented. The main result stated in Theorem 4 here completely
characterizes the class of Banach spaces which are [/^smooth in
terms of the geometry of the space. For convenience the term
"uniformly continuously differentiable" is often abbreviated as U.C.D.
A few elementary lemmas essential in the subsequent discussion are
presented to start with.

LEMMA 1. Let E be a Banach space and f: E—>Rbe an uniform-
ly continuously differentiable function, and let Of be the differential
of f. Then

(a) if U is a bounded subset of E, then the restriction f\U is
Lipschitzian i.e., there is a positive number M such that for x, y e U,
\Λx)-Λv)\£M\\x-y\\,

(b) if the support of f is bounded, then f is globally
Lipschitzian, in particular f is uniformly continuous.

Proof, (a) Let Ur(0) be an open ball such that Ur(0) z> U.
Since / is U.C.D. and Z7r(0) is bounded, snpxeUrL0) \\Df(x)\\ < oo. Thus
if M is the preceeding supremum the mean value theorem implies
t h a t |/G*0 - f(y)\ £M\\x-y\\ for x, ye Ur(0).

(b) is a consequence of (a).

LEMMA 2. If E is an U1-smooth Banach space and X is a posi-
tive real number, then there is an uniformly continuously differenti-
able real-valued function f on E with /(0) = 1, and f(x) = 0 i/

Proof. Since E is CΛ-smooth there is an U.C.D. real-valued
function g such that g Φ 0, and the support of g, say U, is a
bounded subset of E. Let aeU, and a be a positive number such
that a(U - a) a Uλ(G). Define f(x) = (l/g(a))g(x/a + a). It is verified
that the support of faUλ(0), and that / is an U.C.D. real-valued
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function with /(0) = 1.

LEMMA 3. If f and g are tivo uniformly continuously differ enti-
able real-valued functions on a Banach space E, and the support of
f or g is bounded, then the product function fg is an uniformly
continuously differentiable function with bounded support.

Proof. For definiteness let the support of /, say U, be bounded.
Let Δ be any positive number and V = {x \ d{x, Ό) < Δ) where Ό is
the closure of U, and d(x, U) is the distance of x from Ό. Then
7 is a bounded open set and V a V. From Lemma 1 it sollows that
there is a constant M > 0 such that

( * ) Max {sup \f(χ) I, sup | g(x) |, sup || Df(x) ||, sup || Dg(x) \\) ^ M .
•ce V

Now if ε > 0, since Df, Dg, and t h e restr ict ions f\V, g\V a re uni-

formly continuous, t h e r e is a 3 > 0 such t h a t 0 < δ < 1/2J, and if

\\x-y\\<δ t h e n \\Df(x) - Df(y)\\ < ε, \\Dg(x) - Dg(y) | | < ε f o r

x, y e E, a n d \f(x) - f(y) \ < e, | g(x) - g(y) \<ε if x, y e V. N o w

noting that

!| D(fg)(x) - D{fg)(y) \\^\\ Df{x) \\ \ g{x) - g(y) \ + \f(y) \ \\Dg(x) - Dg(y) ||

+ \\Dg(x)\\\f(x)-f(y)\ + \g(y)\\\Df(x)-Df(y)\\ ,

D{fg)(χ) = 0 for a g Ϊ7, ||a5 - # || ^ J > δ if a; 6 C7 and y $ V, and ap-

plying (*) it is verified from t h e choice of S, t h a t if \\x — y\\ < δ

t h e n \\D{fg){x) - D(fg)(y)\\ ^ 4Mβ. Hence it follows t h a t fg is an

U.C.D. function wi th bounded support .

LEMMA 4. If E, F, G are three Banach spaces, f:E->F, and
g: F —> G are two uniformly continuously differentiate functions
such that the derivatives Df, Dg are bounded mappings on E —>
L(E, F), and on F —> L(F, (?) respectively then their composite g°f:
E —> G is uniformly continuously differ entiable.

Proof. The lemma follows by noting that

\\D(gof)(χ) - D(gof)(y)\\3 ^ \\Dg(f(x))\\2\\Df(x) - Df(y)\\

+ \\Df(y)UDg(f(x)) - Dg(f(y))\\2

where || j^ , ΐ = 1, 2, 3 are respectively the norms in the spaces
L(E, F), L{F, G), and L(E, G), and the fact that / is uniformly
continuous since Df is bounded.

LEMMA 5. If E is a uniformly convex and uniformly smooth
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Banach space, then the restrictions of the uniformly continuous
differentiable functions on E to any closed ball Ur(0) is dense in the
space of uniformly continuously differentiable functions on Ur(0)
with the uniform topology.

For a proof of this lemma, see Nemirovskii and Seminov [13].

REMARK 1. Before passing to the next lemma it is noted that
if E is uniformly smooth space, so that the norm of E is uniformly
continuously diflPerentiable on regions iϋ(λ, μ), it follows by composing
the norm of E with suitable Ĉ -f unction on R —> R and using Lemma
4 that E is [/^smooth. Now applying Lemmas 2 and 4, and using
the fact that the norm of E is U.C.D. on R(X, μ), it is verified that
if E is uniformly smooth space, and r, ε are two positive numbers,
then there is an U.C.D. function f:E-+R such that, 0 ^ / ^ l ,

/== 1 on 17,(0), and / vanishes outside Ur+ε(0).
The next lemma is crucial in proving the Theorem 6 in this

paper. The lemma follows from the preceeding remark, and Lemma
5. A proof of the lemma is sketched. Before proceeding to the
lemma it is noted that a super-reflexive Banach space could be
equipped with an equivalent norm which is uniformly convex, and
uniformly smooth, [7].

LEMMA 6. If G is a nonempty open subset of a super-reflexive
space Ey then there is an U.C.D. function f: E —» R, 0 <I / < ; 1, with
support of f — G.

Proof. In view of what is noted in the preceeding paragraph
in proving the lemma, it can be assumed that E is as in the lemma 5.

As a primary case let G be an open bounded set, and C = E ~ G,
and g:E-^R be the function g(x) = d(x,C), where d(x,C) is the
distance of x from C. Let r > 0 be such that GdGcz t7r/2(O).
Consider the restriction of the uniformly continuous function g to
the ball Z7r(0). By Lemma 5, there are U.C.D. functions fn on E-+R,
for integers n ^ 1, such that supx6crr(o) |/«0*0 — g(x)\ < 1/n. Now
using Remark 1, there is an U.C.D. function φ;E—>R, φ = 1 on
Ur/2(0), φ== 0 outside I7r(0). Let hn = φ fn. Let an be C'-functions
on R —> R, with support an = ]l/n, °°[, such that an(t) — 0 if t ^ 1/n,
ajf) = 1 if t is in [2/n, oo[, and 0 ^ an ^ 1, for integers n^l. Let
gn = an{hn). Now if 0 = Σn*i l/2n0n> Q is an U.C.D. function on
E-> R, with support of g = G, and 0 <; # <: 1, completing a proof
of Lemma 6 if G is bounded.

Now if G is an arbitrary open set then G = Un^i Gn» where
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Gn — Un(0) f]G, n*zl. Since each Gn is a bounded open set, from
what has been proved above, there is an U.C.D. function 0 <; fn <; 1,
with support /n = Gn. Let / = Σ»*i l/2n/. Then / has all the
desired properties.

The next two results show that U1 smoothness is finitely in-
herited.

THEOREM 2. If E is Uι-smooth, then every ultrapower E(S, Γ)
of E is Uι-smooth.

Proof. Let the norms of E, and E(S, Γ) be respectively || ||,
and HI |||. Since E is [/^-smooth there is an U.C.D. function /,
/ Φ 0, on Έ -»R with its support in the unit ball of E, see Lemma
2. Let xeE(S, Γ), and {#(s)}s6s be a representative of x. Since
/ is a bounded function \imΓ f(x(s)) exists. Let {y(s)}seS be another
representative of x. Now / is uniformly continuous by Lemma 1.
Hence if ε > 0 there is a δ > 0 such that ||cc — y\\ < 8 implies
1/0*0 — f(y)\ < e Further since {&(s)}ββs> {y(s)}seS represent the
same equivalence class xeE{S, Γ}f there is a JδeΓ such that
\\x(s) - y(8)|| < δ if se Jδ. Hence \f(x(s)) - fty(s))\ < ε for all se Jδ.
Thus \imΓ f(x(s)) = limΓ f(y(s)). Hence if f*(x) = limΓ/(α?(β)), /* is a
real-valued function on E(S, Γ). Since the support of / is in the
unit ball of E, f*(SS) Φ 0 implies that there is a set JeΓ such that
||a?(s)|| ^ 1 for all se J. Thus | | |2 | | | ^ 1. Hence the support of /*
is in the unit ball of E(S, Γ).

Since Df: E —> J57* is an uniformly continuous mapping with bound-
ed range, by proceeding as in the proceeding paragraph it is verified
that if x, yeE(S, Γ), and {x(s)}8eS> {y(s)}ses are representatives of
55, y respectively, then limΓ Dΐ(x(s))(y(s)) is independent of the
representatives {x(s)}> {(y(s))} of x and y. For x, yeE(S, Γ) define
lχ(y) = limΓ Df(x(s))(y(s)). It is verified that lz is a continuous linear
functional on E(S, Γ), since Df is bounded. Now if heE(S, Γ), and
{h(s)}seS£h, then

f*(x + K) = limΓ f(x(s) + h(s))

= limΓ {f(x(s)) + Df(x(s))(f(s)) + 0.(.,(fc(8))} ,

where it is noted that, since / is an U.C.D. function that given
ε > 0, there is a δ > 0 such that \θx(y)\ ^e\\y\\ if \\y\\ <: δ for all
xeE. Let now || |Λ|| | <£ δ. Then there is a set J e Γ such that for
all 86 J, |β. (.,(Λ(β))|^e||Λ(8)||. Hence limΓ \θx{s)(h(s))\ ^ e\\\K\\\ if
IIÎ IH ^ δ and /* is differentiable at x with Df*(SS) = Z .̂

Since Df is an uniformly continuous map on E—>E*f it is
verified that the map Df*: E(S, Γ) -> (^(S, Γ))* is uniformly continu-
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ous once again working with suitable members of Γ as has been
done in the preceeding parts of the proof. Thus E(S, Γ) is Z71-
smooth.

COROLLARY 1. If E is W-smooth, and F < E, then F is U1-
smooth.

Proof. The corollary follows from the preceeding theorem
together with the fact that F < E if and only if F is isometric
with a subspace of some ultrapower E(S, Γ) of E.

REMARK 2. Since a superreflexive Banach space is isomorphic
with an uniformly smooth Banach space, and CΓ-smoothness is
invariant under isomorphisms it follows that if a Banach space E
is superreflexive, then it is CΛ-smooth.

THEOREM 3. If E is an U^smooth Banach space, then it is
reflexive.

Proof. Let 0 < θ < 1. Lemma 2 assures that there is an U.C.D.
real-valued function f on E such that /(0) == 1, and f(x) = 0 if
IIa? II ̂  0/4. Since/is U.C.D. if 0 < ε < 1, there is a positive integer
M such that if heE, \\h\\ £ 1/M, then

(A) \f{x + h) - f{x) - Df(x)(h) I ̂  ε || h \\ .

If possible let E be nonreflexive. Then by a theorem of Jamesr

see Theorem 7 in [9], it follows that there is a set X containing
the set W of positive integers, and a subspace L of the Banach
space B(X) of bounded real-valued functions on X with the supremum
norm, isometric with E, admitting a sequence {zn}n^lf such that for

zn(ϊ) = 0 , i > n , ie W,

and

| s n ( ί ) | ^ l for ί e X - T F .

Let ^n,o = l/2zn, xo,n == -l/4«n for w ̂  1, and xn>k = 3/4 n̂ - l/4zw+Jfe if
w ^ 1, & ̂  1. Clearly ||fljn,fc|| ^ 1 for all the pairs of integers (n, k)
for which xn>k is defined. Consider the polynomial path PaL defined
by

P = 2 U X

i=0
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where M is the positive integer chosen to satisfy the inequality (A)
in the preceeding paragraph. Consider the derivative Df(0) of f at
0. By our choice of χntk, Df(0)(x2Mt0) = 0 if and only if Df{0){x^u) = 0,
and 2?/(O)(a?2if,o) is positive (negative) if and only if Df(0)(x0)2M) is
negative (positive). Since P is connected there is a f e P such that

0. If

ζ 6

then

) = JL<? if 1 ̂  i ^ 2 ¥ - i 0 - 1 ,

ξ(3) = ~ ^ ' i f 2'tf - i0 + 1 ̂  i ^ 2" ,
4

[ T ' T * J if j = 2X-ί" jeW'
and

Thus if f (io)l/20 for some i0 6 FT, 1 ̂  i0 ^ 2¥ (which is the case if
£θΌ)e]-0/4,0/2[ or £(j0) - -ί/4), then ς(j) - -l/4ί for all i e W,
Jo + l^j£ 2i¥. Now if 2¥ - i0 - 1 ̂  2Λf~1, choose ξ, = f/Λf, otherwise
ζι— —ξjM. The fx thus chosen has the properties, H&H <̂  1/Λf,
J5/(0)(ίi) = 0, and ζ^j) ̂  Θ/4M for at least 2Jf~1 values of i e W,

l^jύ 2".
Next consider the derivative Dffa). Then as before there is a

ξ ' e P such that DffaXζ') = 0. From the properties of ξ noted in the
preceeding paragraph, since & = ±ξ/M, the restriction of & to the
set Q = {i |l ^ j ^ 2̂ } c T7, has range either in the set {Θ/2M, -Θ/4M}
or { — Θ/2M, Θ/AM} except possibly for one value of jeQ. These ob-
servations imply either (i) (ζ, + ζ'/M)(j) ^ 2Θ/4M or (ii) (& - ζ'/M)(j) ^
2^/4M for at least 2^~2 integers jeQ. Let f2 = ξ'/M or -f'/ikί ac-
cording as (i) or (ii) is the case. Repeating this procedure inductively
it follows that there is a sequence {ζi}?=1 in L such that | | ^ | | <̂  1/Λf,
i?/(Σf=ί 6)(&) - 0, Σ*=i fi(Λ ^ ί̂ /4Λf for 1 ̂  Λ ̂  Λf. From our choice
of /, M, {fjf=1, ε, together with the inequality ||Σ*=i&ll ^ Jfĉ /4Λf it
follows that

1 + /(Σ ξt) - /(O) ^ Σ /(Σ ξt) - f(Σξi) - Df(Σξ*\ξJ
\i = l I fc=l \i=l / \* = 1 / \i = l /

Σ

a contradiction, completing the proof of the theorem.



GEOMETRY AND NONLINEAR ANALYSIS IN BANACH SPACES 495

The next theorem provides the characterization of t^-smooth
Banach spaces.

THEOREM 4. A Banach space E is U1-smooth if and only if E
is superreflexive.

Proof. From Corollary 1, and Theorem 3 it follows that if E
is tΓ-smooth, and F < E, then F is reflexive. Thus E is super-
reflexive. The converse follows from the Remark 1.

Since the Banach spaces Co, C(K), K an infinite compact Haus-
dorff space are not superreflexive (not even reflexive) it follows
that the theorems of Wells [15] and Aron [1] follow as corollaries
from the preceeding characterization.

COROLLARY 2. If E = Co, or C(K) with K as above, then E is
not Ui-smooth.

3* In this section several applications of the results in the §2
are discussed. Before proceeding to the applications of approxi-
mation theory and differential equations, a characteristic property
of uniformly continuously differentiable functions, valid when the
domain and the range are suitably chosen, is obtained.

THEOREM 5. If E is a nonsuperreflexive Banach space, and F
is a superreflexive Banach space, and f: E—> F is an uniformly
continuously differentiable function then for every bounded open set
UCLE, f(dU) is dense in f(U). Further if f, f2 are two uniformly
continuously differentiable maps on E-+ F, coinciding on dU then
/i = f2 on U.

Proof. Let xe U. If possible let f(x)$f(dU), the closure of
fiβU). Then there is a ball Uε with centre at f{x) and an open set
G z> f(dU), such that Uε Π G = 0 . Since F is [P-smooth, Lemma 2
assures that there is an U.C.D. real-valued function ψ on F with
support in Uε, and ψ(f(x)) = 1. Let g: E—>R be defined by g(z) =

) if z G U, and g = 0 on the set E ~ U. Since ψ vanishes in a
neighborhood of f(dU), it is clear that g is a Gι-tunction. Now con-
sidering the halo V={z\d(z, U)<A) for some Λ>0, and the inequality

\\Dg{y) - Dg(z)\\i £ \\Df(f(y))\\2\\Df(y) - Df(z

+ \\Df(z)UDf(f(y)) -

where || \\i9 i = 1, 2, 3 are respectively the norms in the spaces E*,
F*, and L(E, F), and arguing as in the proof of Lemma 3 it follows
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that g is an U.C.D. real-valued function on E with its support in
the bounded set U. Thus E is [^-smooth. Hence by Theorem 4,
E is superreflexive contradicting the hypothesis on E. Thus / has
the density as stated. The second part of the theorem is a direct
consequence of the first part.

The following two propositions assert that certain smooth ap-
proximations are not possible. Similar results are known in the
literature, see for example [1], however for very special cases, and
the results in [1] follow as corollaries from the propositions here.

PROPOSITION 2. Let E, F be two Banach spaces and E be non-
superreflexive, and F be superreflexive. If p: E —> F is a function
such that p(x)—>0 as | | # | | — • °°, then there is no nontrivial ^-func-
tion f with bounded second derivative on E-+F such that ||/0*0ld ^
II #0*0 Id where \\ ||, and \\ |d are respectively the norms in the
spaces E and F.

Proof. Let f: E-> F be a nontrivial C2-ίunction such that
11/0*0 Id ̂  ||ί>0*0lli Let xoeE with f(x0) Φ 0, and R be a positive
number such that if \\x - xQ\\ ̂  R, then \\p(x) |d ^ 1/2||/O&0) Id. From
Theorem 5 it follows that if U = {x\ \\x - a?0|| < R} then f(dU) is
dense in f(U) but this contradicts the fact that ||/(aθld ^ II #0*0 Id ^
l/2||/(ίco)|d for xedU, completing the proof.

PROPOSITION 3. Let E, F be as in the preceeding proposition,
and p: E —> F be a bounded function with p(x) —> 0 as ||cc|| —>oo. If
f is a C2-function on E-*F, and if f is not a Gz-function there does
not exist a Cz-function g on E into F such that (a) ||/(sc) — flr(α?)|d^
HpίαOld, and (b) \\D*f(x) - D*g(x) ||2 ^ |b(x)|d where, || || and \\ |d
are the norms of E and F, and \\ ||2 is the norm in the space
L{E, L(E, F)).

Proof. If possible let there be a function g: E —> F of class C2

satisfying the inequalities (a) and (b). Since / is not of class C\
fφg. Thus it may be assumed that ||/(0) - #(0)|d = α > 0. From
(a) and (b) it follows that (/ — g) is a nontrivial differentiate func-
tion with a Lipschitzian derivative. Since p{x) —> 0 as ||flj||—>°°,
the inequality \\f(x) — g(x) |d ^ ||2>(a0ld contradicts the preceeding
proposition, completing the proof.

A well known theorem of Anderson and Kadec, see Bessaga and
Pelczynski [2], asserts in part that all separable Banach spaces are
homeomorphic. However the next corollary implies the nonexistence
of U.C.D. homeomorphisms between certain Banach spaces, separable
or not.
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COROLLARY 3. If E, F are Banach spaces with F superreflexive
and if there is an uniformly continuously differentiable homeomor-
phism on E into F, then E is also superreflexive.

Proof. Let f:E—> F be an U.C.D. homeomorphism. If possible
let E be nonsuperreflexive. Hence E is not [/^smooth. Consider
the open balls Ur = {x\ \\x\\ < r} in E. The hypothesis on / implies
f(dUj), and f(dU2) are disjoint. However from Theorem 5 it is
inferred that /(0) e fid L7J Π/(3 U2) since / is an U.C.D. homeomorphism,
a contradiction, completing the proof.

The preceeding results on smooth approximations have interesting
applications in the context of differential equations on Banach spaces.
In the next example the essential part in one such application is
indicated.

EXAMPLE. Consider the problem of finding solutions F for the
equation D2F(x) = a(\\x\\)Q(x) where F is a real-valued function on a
Banach space E, with F(x) -> 0 as 11 $ 11 —> oo, a is a nontrivial
continuous function on R —• R with its support in a compact set, Q
is a bounded continuous function on E into the space of continuous
symmetric bilinear forms on E, such that a(\\x\\)Q(x) Φ 0 for at
least one point xe E. Let E be a nonsuper reflexive Banach space. If
possible let the equation admit a solution F. Since sup^e^ 11 D2F{x) \ | <
00, and |jP(flj)|—>0 as ||«||—>°°, it follows from Proposition 2, that
F must be 0 identically. Since D2F(x) Φ 0 for at least one x, the
equation does not admit a solution vanishing at infinity, if E is not
a superreflexive space.

The paper is concluded with the following theorem concerning
partitions of unity and superreflexive spaces.

THEOREM 6. If E is a superreflexive Banach space, and & is
an open covering of E, there exists a locally finite family of U.C.D.
functions which is a partition of unity subordinated to 5f.

The proof of Theorem 6 is completed by using Lemma 6. Once
Lemma 6 is available, by using standard techniques of point set
topology to establish locally finite partitions of unity, the proof is
completed.

The converse of Theorem 6 follows at once from Theorem 4 here.
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