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A CHARACTERIZATION OF A NEUBERGER
TYPE ITERATION PROCEDURE
THAT LEADS TO SOLUTIONS OF
CLASSICAL BOUNDARY VALUE PROBLEMS

TraOMAS H. PATE

Recent papers of Neuberger and Pate have been concerned with
iteration procedures for solving non-linear partial differential equations.
Up to this time it has not been clear how to apply these methods to the
solution of boundary value problems. In this paper we characterize the
solutions obtained by applying one of these methods and then use this
characterization to derive solutions to the classical boundary value prob-
lems.

Introduction. This paper is concerned with the Neuberger type itera-
tion procedure for solving Partial Differential Equations that is analysed
by Pate in [5] and [6]. In these papers as well as the papers [3], [7], and [10]
of Neuberger’s, general existence and convergence theorems were consid-
ered while little mention was made of the possible application of the
Neuberger type iteration procedures to the solution of the classical
boundary value problems.

In this paper we give alternate characterizations for some of the
solutions that Neuberger obtains in [3]. These characterizations are then
used along with the iteration procedure described by Pate in [7] and [8] to
obtain analytic solutions to the classical boundary value problems that
arise from the heat equation, the wave equation and Laplace’s equation.

In [9] Neuberger comments that one might begin a study of boundary
value problems by considering those characteristics of the initial estimate
that are held invariant by the iteration procedure. The author has found
this suggestion to be of value at least in the cases examined so far. In the
cases considered here we begin our iteration with an initial estimate that
satisfies the boundary conditions and show that these conditions are held
fixed throughout the iteration, thus forcing our limit function to satisfy
the boundary conditions. It seems that this approach offers a viable
alternative to the usual methods used to solve linear problems.

If m and n are positive integers we let S(m, n) denote the collection
of all symmetric real-valued n-linear functions on E,. If 4 € S(m, n)
then we let

Nall=1{ X
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where {e;}/2, is an orthonormal basis for E,, (see [3], [4], and [5]). This
norm is basis independent and generates an inner product on S(m, n). If
A, B € S(m, n) then we let (4, B) or AdB denote the inner product of 4
and B. If U is a real-valued function from some open set D € E,, then
U‘P)(x) denotes the pth Fréchet derivative of U at x. As long as U is p
times continuously differentiable U?’ is a continuous function from D to
S(m, p). We let H/(0) denote the collection of all infinitely differentiable
functions f such that

(1) fx) =3 PO forlxll <,
p=0 "
) S Ll e©ls <o foro=s<r.
=0 *

Here f(”(0)x”? denotes f»(0)(x, x,...,x) or { fP(0), x?) where x? is

—p —
the member of S(m, p) such that x?(y,, y,,...,y,) = IZ_(x, ;). The
summation (2) is denoted by || f | ,. Clearly H,(0) is a vector space over R.
It is within this space of analytic functions or within H,(a) for some
a € E,_, a 7 0 that the iterations were carried out in [3], [7], [8], and [9].

If A € S(m, n) and B € S(m, p) then A - B denotes the symmetric
product of 4 and B —i.e., 4 - B is the member of S(m, p + n) that is
closest to A @ B, the tensor product of 4 and B (see [3], [4] or [S]). If
A € S(m, n) while B € S(m, p) where p > n then AB denotes the mem-
ber of S(m, p — n) such that

AB(y,, yz,...,yp_n) = <A, B(yl, yz,...,yp_n)>

where B(yy, »,,---,),—,) denotes the member of S(m, n) that is obtained
by filling the first p — n places of B with the y,’s.

For a fixed 4 € S(m, n) we define the operators M,: S(m, p) -
S(m, p) and G,: S(m, p) > S(m, p) as follows: M (B) = A(A - B) and
G,(B) = A - (AB). We define G, only in case p = n. These operators are
crucial to the iteration procedure as presented in [3], [7], [8], and [9] and
are the reason for the papers [4], [S], and [6] which deal primarily with
estimates for || M, '||.

We describe briefly the iteration procedure. We begin with a partial
differential equation of the form AU (x) = G(x) where U, G € H/0).
Suppose we take Q € H,(0) as our initial estimate. We have

n—1

o) =S Lonor+ [ U oy g

for ||x|l <r by the Taylor formula. To find a member of H,(0) that is
nearer to being a solution we replace Q‘"(jx) in the above formula with

p!
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w;(x) where w;(x) is the member of S(m, n) that is closest to Q(jx)
among those members B of S(m, n) with the property (4, B) = G(jx). A
calculation reveals that w,(x) = Q™(jx) — ({4, Q"(jx))— G(jx))A.
We define the operator T; on H,(0) so that

n—1

T,(Q)(x) = 2

Op,Qm(o) e[l e

In [3] Neuberger shows that T is a linear transformation from H,(0) to
H (0). Furthermore, he shows that AU (x) = G(x) for each x with
(x|l <r if and only if T(U) = U. Thus as would be expected the
solutions for our P.D.E. are merely the fixed points of T;;. Also, in [3], the
series representation

n—1 1

W)W = 3 2 UPO + 3 (1= G)(UP0)

p=0+5" p=n

is derived and it is proven furthermore that for each U € H,(u) the
sequence {TX(U))?_, converges || - ||, for s with 0 < s < r to a member F
of H,(0) such that T;(F) = F. We denote this solution F by ®(U, G). The
series representation for ®(U, G) is

n—1 ©
1 1
2 -p—!U(P)(O)xp-i— 2 ELP(U(p)(O))xp
p=n p=n
+ 3> %A - ML (GP(0))x”

p=n

where L, denotes the orthogonal projection of S(m, p) onto the subspace
for S(m, p) that consists of those functions that are orthogonal to 4. A
formula for L,(B)is B — 4 - Mp‘l,,(AB). The first two summations above
define a function which we denote by H,,. This H, is the solution to the
homogeneous equation 4U(x) = 0 that is generated by our procedure.
The last term we denote by 9(G). The function 9(G) is a particular
solution to AU™(x) = G(x), more particularly it is the solution one
obtains by beginning the iteration with the zero function. Henceforth
9(G) will be called the primary solution. Of course H,, and §(G) are linear
in U and G and produce members of H,(0).

We are now in a position to describe the procedure for the general
constant coefficient linear partial differential equation of order n. Such an
equation may be written

AU (x) = 2 BU" )(x) + F(x)
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where A € S(m, n) and B, € S(m,n — i) for 0 <i<n and F € H/(0).
Here we allow some terms of order » on the right-hand side whereas in the
previous papers (see [7], [8], and [9]) only lower order derivatives were
allowed there. We define the differential operator D: H/(0) —» H,(0) such
that if U € H(0) then D(U)(x) = 2/ ,B,U" 9(x). Our equation now
takes the simpler form AU (x) = D(U)(x) + F(x). To begin the itera-
tion we choose an initial estimate Q € H,(0). Now using the procedure
described we solve AU (x) = D(Q)(x) + F(x) using Q as initial esti-
mate. We obtain U(x) = Hy(x) + ($° D)(Q)(x) + $(F)(x). We note
that H;, = 0 (see [7], [8], or [9]) as can be seen by direct substitution into
the series for H;,. Denoting U by U, we now repeat the procedure. We
solve AU™(x) = D(U,)(x) + F(x) obtaining

U(x) = H,(x) + (9o D)(U})(x) + 9(F)(x)
= Hy(x) + 9(F)(x) +(§ o D)(H, + 9(F))(x)

+($ o D)(Q)(x).

We denote this function by U,(x). Continuing in this manner we generate
a sequence {U, }¥_, of members of H,(0) where

Uix) = 3 (32 DY (Ho + (F)(x) + (50 D) (Q)(x).

p

Allowing p — oo we obtain ideally 2%_($ o D)?(H,, + 9(F))(x) which is
easily seen to be a formal solution to our problem. This series will be used
to develop solutions to the above mentioned boundary value problems.

Our first theorem presents a much needed formula for 4 - Mp“(B) for
B € S(m, p) where A is of special form —ie., 4 = y" for somey €E E,,.
Theorem 1 is used to derive Theorem 2 wherein we present a characteriza-
tion of the primary solution one obtains if one applies the Neuberger
procedure to the equation

%Tlnj(xl, XoseorsXpy 8) = G(Xp,eens X, 1)

This characterization is then used along with the series above to develop
solutions to the three basic boundary value problems described previously.

THEOREM 1. If y € E, and we let A = y" then the operator M, is
invertible and
&  (ntP\ (n+j—1
- — J J
=3y (00

) ) -y - B(yY).

n—1
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We note that M, is invertible for arbitrary 4 so long as 4 # 0. To
prove that Mp“ has the form above in the special case 4 = y” we need the
following binomial identity: if 1 < k < n then

S (")) =

-0 J
and if n + 1 < k then
(n+j—1 n
(‘1)1( j )'(k—j)zo'

In case kK =0 the above summations reduce to 1. Proofs for these
identities are not included but are easily constructed.

J —n

Proof of Theorem 1. Let A = y", then

sl (B (3] 5 s

2( 1) ( p)-("+j“1)-y”(y””-3(y’))

iy

i R R Ut

23 e () )
Xy ()

=S e ) )

Xyl+j . B(yH—J).
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We make the change of variables i + j = k and eliminate i thus obtaining

R L
L)oo
ORI R RV [

k=n+1 j=k—n n—1

SO [ TS
=S (Deson S )]

v 3 (i)yk-B(W{ > (‘”j(k'if)(nﬂ—l)}'

k=n+1 j=k—n J

But the terms in the braces are zero unless kK = 0 in which case we get
only B. This proves Theorem 1.

This formula for M ! is important for reasons other than the proof of
the following theorem: it has been useful in various attempts to prove that
the Cauchy-Kowaleska theorem is obtainable if one “correctly” applies
the iteration procedure presented in this paper.

LEMMA. Suppose F € H,(0). The primary solution to the equation

"U
W(x,,...,xi,...,xm) = F(Xyye -3 X;5enrX,,)

1

is the function Q where

1__ n—1
Q(xl,xz,...,xi,...,xm)ZJ(; i(n——i)_l)—' F(X(yoesjXisenesX,, )X d,.

Again we need a binomial identity. This time it is
p+n) 'S ,(p+n)(n+j—1 (p—j)
1 . .
( E( ) n+j j i

An induction proof is easily constructed (induction on n).
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Proof of Lemma. We consider only the case m = 2 and denote an
arbitrary vector by (}) = xe, + ye, where e, = (3) and e, = (7). We let
the x; in the theorem by y and 4 = y", so that the equation is of the form
AU"(x, y) = F(x, y). The cases for m > 2 are identical except for the
amount of writing required. We know from Theorem 1 that

A-M\(B) = go(-l)(n +’?)(" KA l)ei - B(ef)

n+j J

our primary solution to AU = Fis

WMS

((p+m M (FO0) ()

Hence by substitution of the formula for 4 - M;'( F(7)(0)) we have

S Sen ()

J

ny+nF(P)(O)(eé’ (;)p—j)}

_ Igo((p + n)g){jgo jg:(—l)j(n +1?)('1 +j.— 1)(1’ —J)

n+j Jj i

Xyr X FE(0) e, eé’")}

i=0

Lot e )

= 20((1; + n)!)"{z (p j n)x'yﬁ"—"F“’)(O)(e?, eﬁ’_i)}

i_j’. ((p +n)1)” { é x'y?* " F(0) (e, e7)

where we have used our binomial identity.
We now begin reductions on the other side of our identity. We claim
the primary solution to AU™ = F is simply [/((n — D)?"'F(x, jy)y" dj.
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Since F(x, y) + 25_o( p!)'FP(0)(})? we have

F(x, jy) = 2 (p!) ' FP(0)(xe, + jve,)”

- Erero{ (6 0]

p=0
= 33 (02 )y D) €], e57).
p=0 i=0

Now, multiplying by (1 — j)"~'((n — 1)!)"'y" and integrating we obtain

S S () (2)xyrFo0) (el es)

=0 i=0
1 - N1 i n s
X [((n =)= )" v d.
0
Now, recognizing that
l n— cD—i . . -
[a=p iy = (=11 (p=D(p+n =)

If we substitute this in our last summation above and rearrange the
factorial terms we obtain

go ((p+ n)!)“{é (P J; n)x'yp+"—fF(”)(0)(e{, eé’_i)}

i=0

which is identical to the expression we obtained by reducing the Neu-
berger solution. This completes the proof of the lemma.

THEOREM 2. Suppose F € H/(0). If one uses the Neuberger iteration
procedure as presented in [3] to solve the equation
0"U
LR AE—

1

= F(x,,...,x,,)
beginning with initial estimate Q € H (0) then the solution obtained is
2 (h)'xk0,(x x )-i—/1 2 F(x ix x,)x"dj
3540 ERRE) b (n—l)! PoeeeoJXjse e s X )Xy G
where Q, denotes 3*Q /dx¥ with a zero placed in the ith position.

Proof. The second term above is (F) by the lemma, hence we merely
need to show that the first term H,,. Again we restrict our attention to the
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case m=2 is 9"U/0y" = F(x, y). If B € S(2, p) where p =n then
B =3"_(?)e} - ef/B(ej, ef /) hence it is easily seen that L (B)=

7;3( P)B(ej, el /)ej - ef™ . In case m > 2 the formulae are more com-
plicated but the principles are the same (see [6]). Now,

220 = 3 (- 0eofet ()

so that
ni (k1) ykQ (x) = ni § (k! (p — k)1)'Q@(0)(ek, ep~*) ykxr*
k=0 o 2
— n—1 -1 P P p k p—k k p—k x\?
_IEO(F!) {kgo(k)Q( )(0)(e2,e1 )ez'el }()’)

+ 5 003 (2o olet eres et )

h=0

=3 (e o)(3) + 3 ('L em0)(3)

p=0

This is precisely the expression for H, as given in the introduction. This
completes the proof of Theorem 2.

We note at this point that the solution to the equation 0"U/dx] =
F(x,,...,x,,) obtained by applying the Neuberger iteration procedure as
presented in [3] agrees with the initial estimate for x; = 0. Also, each of
the first n — 1 partial derivatives of our solution with respect to x; is the
same as the corresponding partial derivative of the initial estimate when
x; = 0.

We illustrate the usefulness of Theorem 2 by showing that if the
initial estimates are chosen properly then the Neuberger type iteration
procedure generates solutions to three of the classical boundary value
problems.

ExaMmpLE 1. The wave equation. We solve the following boundary
value problem

2 2
a—F:a—, 0<x<mt>0
at? 9x?

(1) F(x,0) = g(x)

(2) F(x,0) = h(x)

(3) F(0,¢) = F(w,1) = 0.
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We assume that g and 4 are entire periodic functions of period 27, and as
is the custom we assume that g and 4 are odd. The differential operator
D = 93%/3x?. The primary solution of 3?U/dt* = G(x,1t) is U(x,t) =
(t — 5)G(x, s) ds. We know from Theorem 2 that the iteration proce-
dure for the equation U,, = G leaves the values of the initial estimate as
well as its first partial with respect to ¢ fixed along the x-axis. Thus we
simply choose Q(x, t) = g(x) + th(x) as our initial estimate. If we solve
9%F /31> = 3°Q /0x? using Q as our initial estimate we obtain F(x, ) =
O(x,t) + [5(t — 5)Q,.(x, s) ds. We let F; = F and repeat the procedure:
We solve 32F /3t* = 3%F, /0x? using F, as our initial estimate. We obtain

B, 1) = 0 1) + i - s)%(x, 5) ds

+ [0 - s)3g47€(x, 5) ds.

Continuing in this manner we obtain a sequence of analytic functions
F,, F,, F,,--- each of which satisfies the boundary conditions. Further-
more, we have F(x,1)=Z22_,[5((2q — D) (8%9Q/dx??)(x, 5) ds and
since Q(x, t) = g(x) + th(x) we have

B = 3 (@0~ 1)~ (g20(0) + 420 () de

= éo((Z‘I)!)"thg(Zq)(x) + é (2 + 1)!)_112q+lh(2‘7)(x).

q=0

Observe that since g and & are odd periodic functions of period 27 we
must have g??(nxz) = h®?(n7) =0 for n an integer. Thus F,(0, 1) =
F(m,t) =0 and each of the functions F, satisfies all of the boundary
conditions. Now, letting p — oo we obtain the series

0

3 {(@g))'%g%0(x) + (g + D)2 1D (x)}

q=0
which we denote by F(x, t). The function is at least a formal solution to
the wave equation as is easily verified by term by term differentiations.
The boundary conditions are also trivially satisfied as long as one assumes
that the series is convergent. Since g and 4 are entire we know that for
each r > 0 there is M, > 0 such that

|87(x) [< M, - r - m| (r = x) [0
and

|h(x)|= M, - r-m!|(r—x) D
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for each x such that |x|<r. These estimates guarantee the uniform
convergence on compact subsets of R? of the series as well as all series
obtained from it by term by term differentiations. Thus F(x,t) is a
solution of our boundary value problem. If one expands g#(¢) and
h@9(t) in power series and interchanges the order of summation one
obtains F(x,t) = 3(f(x +¢t) + f(x — 1)) + [ " 'g(s) ds. This is the
D’Alembert solution of the wave equation.

ExaMPLE 2. The heat equation. We solve boundary value problem

92F _ dF

a—xz—"é—t', t>0,0<x<gq
(1) F(,t)=F(m,t)=0
(2) F(x,0) = g(x).

We assume that g is odd, entire, and has period 2#. The iteration
procedure does not lend itself to this problem directly. We solve first the
Cauchy type problem

g=%—f, t>0,0<x<w
(1)’ F(0,¢) = 8(z)
) E(0,1) = y(z)
the series
0(x,0+ 3 [(@p— 1) (x =5y G20 ds
=1

r

= 3 {(@p)y ' #00) + (@ + 1)) ey 0).

Term by term differentiations show that F is a formal solution of the heat
equation. Clearly, F(0, ¢) = 8(¢) and F(0, ¢t) = y(¢) as long as the ap-
propriate series are assumed to be convergent. For 7, >0 there is a
constant M such that | §”)(¢) |< M” - p! and | y'P(¢) |< M?p! for |t|<
t,. These estimates guarantee the uniform convergence on compact sub-
sets of R? of the series as well as all series obtained from it by term by
term differentiations. Thus F is a legitimate solution of our Cauchy type
problem.

We return to the original problem. Since F(0, t) = §(¢) we must have
8 = 0. Since we require F(x,0) = Z2_,(2p + D) 'x>7'yPY(0) = g(x)
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it is clear that we must take y(?)(0) = g?»*1(0) so that

[o o}
v(1)= 3 (p!)'g®*P(0).
pr=0

To insure the convergence of this series we assume that there is for each
t, >0 a constant M >0 such that |g??*D(0)|< M - p!(z,)>?~". This
assumption is not really very restrictive since any function with a finite
Fourier series is of this type and all functions that are periodic analytic
are uniform limits of their Fourier series.

With & and vy thus defined we have a solution to the heat equation
that also satisfied (2) and is zero when x = 0. Now,

Fim, 1) = 3 (2g+ D)o 90(0).

If t = 0 then F(m, t) = g(«) = 0. Let ¢(¢) = F(, t). Then

0

o0 = 2 (2q+ 1)) 2ty @)

and

#90) = 3 ((2g+ 1)) 727 g+ 2(0) = g20(r) = 0.
q=0

Hence, since ¢ is analytic we must have F(=, t) = 0 for each z. Thus Fisa
legitimate solution to our boundary value problem. The same procedure is
successful in solving the boundary value problem that arises by replacing
(1) by (3F/9x) (0, t) = (0F /3x)(m, t) = 0.

ExaMPLE 3. Laplace’s Equation. We solve the boundary value prob-
lem

0*°F | 9°F _

‘8—;54‘52--0, O<x<#m0<y<p
(1) F(x,0) = g(x)
(2) F(0,y) = F(7, y) =0

3) F(x,p) =0
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where g is an odd entire function of period 27. We proceed as in Example
2. Let 8 and y denote entire functions of the variable y. We solve the
alternative problem

0’°F  0*F _
— + — =0, —o<x<o0,-00<y<w
0x? 0y?

F(0,y) = 8(y)

F (0, y) =v(y)

and then show that § and y may be chosen so that the solution to our
alternative problem is also a solution to our original problem. The
primary solution for 32U /0x? = G is U(x, y) = [&(x — 5)G(s, y) ds and
the operator D = -32/9y%. As before we let Q(x, y) = 8(y) + xv(»).
Applying the procedure as in the previous examples we obtain the series

0t )+ 3 (0" (@g = D) (x =57 L5, s

0(—1)"{((24)!)_'xz"8(2"’(y) +((2g + 1))y CO(y)).

Il
8

We denote this last series by F(x, y). Again our assumptions on § and y
guarantee the uniform convergence of the series on compact subsets of R>
and it is again permissable to differentiate term by The boundary condi-
tions are easily seen to be satisfied. This completes the solution of the
alternative problem.

Now, we want F(0, y) = 6( y) = 0 so § must the zero function. Also,
we want F(x,0) = g(x) = Z2_o(-1)%(2¢g + D) ~'x*?"'y@9(0). This can
be accomplished by choosmg Y@9(0) = (-1)7g29*D(0). We still must
choose the odd order derivatives of y at 0. We hope to be able to do this
so that f(x, p) = 0. This is easily accomplished by choosing y?7*D(0) =
(-D)7p~'g?9*tD(0)(2g + 1) so that

Y(y) = §‘.( 1)7g29* D(0)((24)1)"' 29
+ 3 02 g0

8

=(1—yp )2 -D)((29)) g (0)y .
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With y defined in this way we have y?9( p) = 0 for each q. We are left
with the condition F(w, y) = 0. This can be accomplished by showing
that if ¢(y) = F(m, y) then ¢'*)(0) = 0 for each k. This is accomplished
as in Example 2.
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