A GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES VI: CHROMATIC AND ACHROMATIC NUMBERS

Dedicated to Ruth Bari

JIN AKIYAMA, FRANK HARARY AND PHILLIP OSTRAND

We characterize the graphs G such that both G and its complement \overline{G} are n-colorable, and we specify explicitly all 171 graphs for the case n=3. We then determine the 41 graphs for which both G and \overline{G} have achromatic number 3.

1. Introduction. We follow the terminology and notation of [1] but we include some basic definitions for completeness. A coloring of a graph G is an assignment of colors to its points so that whenever two points are adjacent they are colored differently. An n-coloring of G is a coloring of G which uses n colors. A complete n-coloring of G is an n-coloring of G such that, for every pair of distinct colors there exists a pair of adjacent points in G which receive the given pair of colors. The chromatic number $\chi = \chi(G)$ of a graph G is the least integer n such that G has an n-coloring. We say that G is n-colorable if $\chi(G) \le n$. Alternatively, $\chi(G)$ can be characterized as the least integer n such that V(G) has a partition into n subsets each of which induces a totally disconnected subgraph. Obviously if $n = \chi(G)$ then every n-coloring of G is complete. The achromatic number $\psi = \psi(G)$ of a graph G is the greatest integer m such that G has a complete m-coloring. Clearly every graph G of order p has a p-coloring, but this coloring is only complete if G is K_p .

A homomorphism of a graph G onto a graph G' is a function ϕ from V(G) onto V(G') such that, whenever u and v are adjacent points of G, their images $\phi(u)$ and $\phi(v)$ are adjacent in G'. Since no point of a graph is adjacent with itself, two adjacent points of G cannot have the same image under any homomorphism of G. If G' is the image of G under a homomorphism ϕ , we write $G' = \phi(G)$. The order of ϕ is $|V(\phi(G))|$. A homomorphism ϕ of G is complete of order n if $\phi(G) = K_n$. Thus every graph G has a complete homomorphism of order $\chi(G)$ and also a complete homomorphism of order $\psi(G)$, and $\chi(G)$ and $\psi(G)$ are the smallest and largest orders of the complete homomorphisms of G. It was shown by Harary, Hedetniemi and Prins [2] that G also has a complete homomorphism of order n for all intermediate n.

It is convenient to write G > H when H is an induced subgraph of G. If X is a set of points in a graph G then we use $\langle X \rangle$ to denote the

subgraph G induced by X. If necessary to avoid ambiguity we can write $\langle X \rangle_G$ and $\langle X \rangle_H$ if X is a set of points in two different graphs G and H. We write $\overline{\chi}(G)$ for $\chi(\overline{G})$ and $\overline{\psi}(G)$ for $\psi(\overline{G})$.

2. The chromatic number. We are concerned in this section with those graphs G for which both G and \overline{G} are n-colorable.

THEOREM 1. Let G_1, G_2, \ldots, G_k be the components of a graph G. Then $\bar{\chi}(G) = \Sigma \bar{\chi}(G_i)$.

Proof. We first prove the inequality $\chi(G) \leq \sum \chi(G_i)$ holds if G_1, G_2, \ldots, G_k are induced subgraphs of G such that $V(G) = \bigcup V(G_i)$. For each $1 \leq i \leq k$ there exists a family S_i of subsets $V(G_i)$, whose union is $V(G_i)$, with $|S_i| = \chi(G_i)$, and such that each $S \in S_i$ induces in G_i a totally disconnected subgraph. Let $S = \bigcup S_i$. Then S is a family of subsets of V(G), whose union is V(G), such that each $S \in S$ induces in G a totally disconnected subgraph. Thus $\chi(G) \leq |S| \leq \sum |S_i| = \sum \chi(G_i)$.

Next we show that $\bar{\chi}(G) \geq \Sigma \bar{\chi}(G_i)$ if G_1, G_2, \ldots, G_k are the components of G. There exists a family S of subsets of V(G), whose union is V(G), with $|S| = \bar{\chi}(G)$, such that each $S \in S$ induces in G a totally disconnected subgraph. For each $1 \leq i \leq k$, let $S_i = \{S \in S \mid S \cap V(G_i) \neq \emptyset\}$. Points from different components of G are adjacent in G, so the subfamilies S_i , $1 \leq i \leq k$, constitute a partition of S. Each S_i is such that every $S \in S_i$ induces in G_i a totally disconnected subgraph, so $|S_i| \geq \bar{\chi}(G_i)$. Thus $\bar{\chi}(G) = |S| = \Sigma |S_i| \geq \Sigma \bar{\chi}(G_i)$.

Since each \overline{G}_i is an induced subgraph of \overline{G} , the theorem is an immediate consequence of the discussion above.

The corollaries which follow include a characterization of graphs G such that G and \overline{G} are both n-colorable.

COROLLARY 1a. Let G_1, G_2, \ldots, G_k be the components of G. Then G and \overline{G} are both n-colorable if and only if

- (i) $\chi(G_i) \le n$ for every $1 \le i \le k$, and
- (ii) $\sum \bar{\chi}(G_i) \leq n$.

Proof. This follows directly from Theorem 1 and the fact that $\chi(G) = \max \chi(G_i)$.

COROLLARY 1b. If G has k components, then $\bar{\chi}(G) \ge k$. If $k = \bar{\chi}(G)$, then each component of G is complete.

Proof. As G has k components G_i , \overline{G} must contain K_k . If $k = \overline{\chi}(G)$, then $\sum \overline{\chi}(G_i) = k$, so for each i, $\overline{\chi}(G_i) = 1$, whence \overline{G}_i is totally disconnected and therefore G_i is complete.

For the special case of disconnected graphs G such that G and \overline{G} are both 3-colorable, Theorem 1 leads to a particularly simple characterization.

COROLLARY 1c. If a graph G is disconnected then G and \overline{G} are both 3-colorable if and only if one of the following conditions is satisfied.

- (i) G has exactly 3 components each of which is a complete graph of order no greater than 3.
- (ii) G has exactly 2 components, G_1 and G_2 , and G_1 is a complete graph of order no greater than 3, and G_2 is 3-colorable and \overline{G}_2 is 2-colorable.

Proof. Let G_1, G_2, \ldots, G_k be the components of a disconnected graph G.

Suppose first that G and \overline{G} are both 3-colorable. By Corollary 1b we need consider only two possible values of k.

Case 1. k = 3.

In this case $k = \overline{\chi}(G)$ so Corollary 1b applies and each G_i is complete. Then $\chi(G) \leq 3$ implies that each G_i is of order no greater than 3. In this case G satisfies condition (i).

Case 2. k = 2.

From Theorem 1 we get $\bar{\chi}(G_1) + \bar{\chi}(G_2) = \bar{\chi}(G) \leq 3$. Without loss of generality we may conclude that $\bar{\chi}(G_1) = 1$ and $\bar{\chi}(G_2) \leq 2$. As in Case 1 it follows that G_1 is complete of order no greater than 3. Thus G_2 , being a subgraph of G, is 3-colorable, and \bar{G}_2 is 2-colorable because $\bar{\chi}(G_2) \leq 2$. In this case G satisfies condition (ii).

Suppose conversely that G satisfies either (i) or (ii).

Case 1'. G satisfies (i).

Let G_1 , G_2 and G_3 be the components of G. Then each G_i is complete so $V(G_i)$ induces in \overline{G} a totally disconnected subgraph, thus $\overline{\chi}(G) \leq 3$. Because each G_i is of order no greater than 3 we can partition V(G) into three subsets V_1' , V_2' and V_3' such that $|V_i' \cap V(G_j)| \leq 1$ for $1 \leq j, j \leq 3$. Then each V_i' induces in G a totally disconnected subgraph, so $\chi(G) \leq 3$. In this case G and \overline{G} are both 3-colorable.

Case 2'. G satisfies (ii).

In this case Corollary 1a clearly implies that G and \overline{G} are both 3-colorable.

THEOREM 2. If a graph G is n-colorable, then $\bar{\chi}(G)$ is the least integer t such that V(G) can be partitioned into t subsets V_1, V_2, \ldots, V_t and for each $1 \le i \le t$, $|V_i| \le n$ and V_i induces a complete subgraph.

Proof. By definition $\bar{\chi}(G)$ is the least integer t such that V(G) can be partitioned into t subsets V_1, V_2, \ldots, V_t each of which induces in \bar{G} a totally disconnected subgraph. Also for any subset S of V(G), S induces in \bar{G} a totally disconnected subgraph if and only if S induces in G a complete subgraph, in which case $|S| \le \chi(G) \le n$.

The corollaries which follow include another characterization of graphs G such that G and \overline{G} are both n-colorable which can usefully be applied to connected graphs.

COROLLARY 2a. A graph G and its complement are both n-colorable if and only if there exist positive integers $s, t \le n$ such that

For each $1 \le i \le s$ there is a positive integer $a_i \le t$ such that $\bigcup K_{a_i}$ is a spanning subgraph of \overline{G} .

(ii) For each $1 \le i \le t$ there is a positive integer $b_i \le s$ such that $\bigcup K_{b_i}$ is a spanning subgraph of G.

Moreover the minimum values of s and t which satisfy these conditions are $\chi(G)$ and $\bar{\chi}(G)$ respectively.

Proof. Suppose first that G and \overline{G} are both n-colorable. Let $s = \chi(G)$ and $t = \overline{\chi}(G)$, so $s, t \le n$. As G is s-colorable, by Theorem 2 there is a partition of V(G) into $t = \overline{\chi}(G)$ subsets V_1, \ldots, V_t such that for each $1 \le i \le t$, $|V_i| \le s$ and V_i induces a complete subgraph in G. Writing $b_i = |V_i|$, we have $\bigcup K_b = \bigcup \langle V_i \rangle$ as a spanning subgraph of G.

Similarly, since \overline{G} is t-colorable and $\overline{\chi}(G) = s$, the same argument applied to \overline{G} yields $\bigcup K_{a_i}$ as a spanning subgraph of \overline{G} for some sequence of positive integers $a_i \leq t$.

Now suppose conversely that G is a graph which satisfies conditions (i) and (ii). By condition (i), there is a partition of V(G) into s subsets V_1, \ldots, V_s such that for each $1 \le i \le s$, V_i induces a complete subgraph in \overline{G} . Then each V_i induces in G a totally disconnected subgraph. Thus $\chi(G) \le s \le n$, so G is n-colorable. Also note that the least value of s which can satisfy (i) is $\chi(G)$ since $\chi(G) \le s$. Similarly by (ii) we deduce $\overline{\chi}(G) \le t \le n$, so \overline{G} is n-colorable and $\overline{\chi}(G)$ is the minimum possible value for t.

COROLLARY 2b. If a graph G and its complement are both n-colorable then the order of G is at most n^2 .

Although this corollary is clearly a consequence of the partition described in Theorem 2, we should also point out that it is also a special case of the well known result of Nordhaus and Gaddum [3] that the order p of a graph satisfies the inequality, $p \le \chi \overline{\chi}$. It is convenient to include here another useful consequence of the Nordhaus-Gaddum theorem.

COROLLARY 2c. If a graph G and its complement are both n-colorable and the order of G exceeds n(n-1), then $\chi(G) = \overline{\chi}(G) = n$.

Proof. Since $\chi(G) \le n$ and $\bar{\chi}(G) \le n$, if either were actually less than n then $\chi(G) \cdot \bar{\chi}(G)$ would be no greater than n(n-1).

Our final corollary of this theorem deals again with the special case n = 3.

COROLLARY 2d. If a graph G of order p and its complement \overline{G} are both 3-colorable, then $p \leq 9$ and

- (i) if p = 9, then G and \overline{G} each contain $3K_3$ as a subgraph,
- (ii) if p = 8, then G and \overline{G} each contain $2K_3 \cup K_2$ as a subgraph,
- (iii) if p = 7, then G and \overline{G} each contain either $K_3 \cup 2K_2$ or $2K_3 \cup K_1$ as a subgraph.

Proof. Suppose that G and \overline{G} are both 3-colorable. Then by Corollary 2b the order p of G is at most 9. If $p \ge 7$ then by Lemma 2c, $\chi(G) = \overline{\chi}(G) = 3$. Thus by Corollary 2a, depending on the value of p, G and \overline{G} must contain the subgraphs described above.

We complete this section by cataloguing all graphs G of order 6 or less and all disconnected graphs G of order 7, 8 or 9 for which G and G are both 3-colorable. Because there are 171 graphs in this category we will not illustrate them. Rather we describe each such graph by specifying an ordered triple (p, q, n) where p denotes the order and q the size of the graph and n denotes its numerical designation in the Graph Diagrams in Appendix I of [1]. Every graph of order 6 or less appears in these diagrams and the triple (p, q, n) completely describes such graphs. The disconnected graphs of order 7, 8, and 9 for which $\chi \leq 3$ and $\bar{\chi} \leq 3$ do not appear in the diagrams, but their components do, and we indicate such graphs by specifying their components. There are pairs (p, q) for which only one graph of order p and size q exists. Such graphs do not have a numerical designation in the Graph Diagrams. We hereby confer the designation 1 on all such graphs. Thus in the lists which follow the triple (2, 1, 1) represents the unique graph of order 2 and size 1, namely K_2 . Our list of disconnected graphs of order 7 through 9 with $\chi = \bar{\chi} = 3$ are really complete, by the following argument. By Corollary 1c, all such graphs have 3 components each of order 3 or less or 2 components, G_1 and G_2 , with G_1 complete of order 3 or less and $\chi(G_2) \leq 3$, $\bar{\chi}(G_2) \leq 2$. By the Nordhaus-Gaddum theorem we conclude that the order of G_2 is no greater than 6, so G_2 is in List C, our list of all graphs of order 6 or less with $\chi = 3$, $\bar{\chi} = 2$.

List A. $\chi + \bar{\chi} \leq 4$.

 $\chi = \bar{\chi} = 1$: (1, 0, 1) which is K_1 .

 $\chi = 1$ and $\bar{\chi} = 2$: (2, 0, 1) which is K_2 .

 $\chi = 2$ and $\bar{\chi} = 1$: (2, 1, 1) which is K_2 .

 $\chi = 1$ and $\bar{\chi} = 3$: (3, 0, 1) which is \bar{K}_3 .

 $\chi = 3$ and $\bar{\chi} = 1$: (3, 3, 1) which is K_3 .

 $\chi = \bar{\chi} = 2$, connected: (3, 2, 1), (4, 3, 2), and (4, 4, 2) which are P_3 , P_4 and C_4 .

 $\chi = \overline{\chi} = 2$, disconnected: (3, 1, 1) and (4, 2, 2) which are $K_1 \cup K_2$ and $2K_2$.

List B. $\chi = 2$ and $\bar{\chi} = 3$.

Connected: (4,3,3), (5,4,4), (5,4,6), (5,5,3), (5,6,5) and p=6 with (q,n)=(5,7), (5,10), (5,14), (6,7), (6,9), (6,11), (7,5), (7,14), (8,23), (9,17).

Disconnected: (4, 1, 1), (4, 2, 1), (5, 2, 2), (5, 3, 1), (5, 3, 4), (5, 4, 1), (6, 3, 5), and (6, 4, 8).

List C. $\chi = 3$ and $\bar{\chi} = 2$.

Connected: (4, 4, 1), (4, 5, 1), (5, 5, 4), (5, 6, 1), (5, 6, 4), (5, 6, 6), (5, 7, 1), (5, 8, 2), and p = 6 with (q, n) = (7, 23), (8, 5), (8, 14), (9, 7), (9, 9), (9, 11), (10, 7), (10, 10), (10, 14), (11, 8), (12, 5).

Disconnected: (4, 3, 1), (5, 4, 5) and (6, 6, 17).

List D. $\chi = \bar{\chi} = 3$, order 6 or less.

Connected: p = 5 with (q, n) = (5, 2), (5, 5), (5, 6), (6, 2), (7, 2); (6, 5, 3);

(p,q) = (6,6) with n = 8, 10, 13, 14, 18, 20;

(p,q)=(6,7) with n=6,7,8,9,10,11,12,13,16,19,20,21,24;

(p,q) = (6,8) with n = 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 19, 20, 21, 24; <math>(p,q) = (6,9) with n = 2, 3, 5, 8, 10, 13, 14, 18, 10, 20; (6,10,3)

(p,q) = (6,9) with n = 2, 3, 5, 8, 10, 13, 14, 18, 19, 20; <math>(6,10,3), (6,10,12), (6,10,15).

Disconnected: (5, 3, 2), (5, 4, 2), (5, 5, 1);

p = 6 with (q, n) = (4, 6), (5, 12), (5, 15), (6, 2), (6, 3), (6, 5), (6, 19), (7, 1), (7, 2).

List E. $\chi = \overline{\chi} = 3$, of order 7, 8, or 9, disconnected $3K_3, 2K_3 \cup K_2, K_3 \cup 2K_2, 2K_3 \cup K_1$, and $K_3 \cup G$ where G is any connected graph in List C, and $K_2 \cup G$ where G is any connected graph of order 5 or 6 in List C, and $K_1 \cup G$ where G is any connected graph of order 6 in List C.

Of the 171 graphs which appear in these lists, 116 have $\chi = \bar{\chi} = 3$. In addition to these the complements of the 51 graphs in List E are connected graphs of order 7 through 9 with $\chi = \bar{\chi} = 3$. And Corollary 2d implies that there are many other graphs of order 7 through 9 with

 $\chi = \overline{\chi} = 3$ which are not in our lists, of which one example is $G = C_7 + e$ where the edge e joins two points whose distance in C_7 is 2. In this case clearly both G and \overline{G} contain $K_3 \cup 2K_2$ as a subgraph so $\chi(G) = \overline{\chi}(G) = 3$.

3. The achromatic number. We first characterize graphs G with $\psi(G) = 2$.

THEOREM 3. A graph G has achromatic number 2 if and only if each component of G is complete bipartite.

Proof. Obviously the union of complete bipartite graphs has $\psi = 2$. For the converse, assume that $\psi = 2$, then $\chi \le 2$ since $\chi \le \psi$ for any graph. Thus G must be bipartite. Moreover each component of G cannot contain P_4 as an induced subgraph since $\psi(P_4) = 3$. Thus each component of G must be complete bipartite.

COROLLARY 3a. The only graphs with $\psi = \overline{\psi} = 2$ are C_4 , $2K_2$, $K_{1,2}$ and $K_2 \cup K_1$.

We now develop some results in the form of five lemmas for finding all graphs with $\psi = \overline{\psi} = 3$. We write uAv to indicate adjacency and $u\overline{A}v$ for nonadjacency. The first lemma was proved by exhaustion and we omit the detailed verification.

LEMMA 4a. Among all graphs of order 6, only the six graphs $2K_3$, $2K_2 + \overline{K}_2$, $C_4 + \overline{K}_2$ and their complements $K_{3,3}$, $C_4 \cup K_2$ and $3K_2$ satisfy the property that either G or \overline{G} contains two point-disjoint triangles and $\psi = \overline{\psi} \leq 3$.

FIGURE 1. The six graphs of order 6 with ψ , $\overline{\psi} \leq 3$

FIGURE 2. The six graphs of Lemma 4b

LEMMA 4b. Among all graphs of order 7, only the six graphs $2K_3 \cup K_1$, $2K_2 + \overline{K_3}$, $C_4 + \overline{K_3}$ and their complements satisfy the property that either G or \overline{G} contains two point-disjoint triangles and $\psi, \overline{\psi} \leq 3$.

Proof. Assume that $\psi = \overline{\psi} = 3$ and that G contains two point-disjoint triangles $T_1 = \{v_1, v_2, v_3\}$ and $T_2 = \{v_4, v_5, v_6\}$. Then the subgraph H of G induced by these six points in one of the three graphs, $2K_3$, $K_2 + \overline{K}_2$ or $C_4 + \overline{K}_2$, of Lemma 4a; otherwise either G or \overline{G} contains an induced subgraph of order 6 which has achromatic number at least 4 and so ψ or $\overline{\psi}$ would be at least 4, a contradiction to the hypothesis. By W we denote the seventh point in V(G) - V(H), and divide the proof into three cases according to whether H is $2K_3$, $2K_2 + \overline{K}_2$, or $C_4 + \overline{K}_2$.

Case 1. $H = 2K_3$.

If $G = H \cup K_1$, it is easily verified that $\psi = \overline{\psi} = 3$. Now we may assume that $G \supset H \cup K_1$ properly. Then there is a point v_i in G which is adjacent to w. Without loss of generality we may assume that wAv_i . On the other hand, there is at least one point v_i , i = 4, 5 or 6, which is not adjacent to w, say v_4 as shown in Figure 3, otherwise all three points v_i , i = 4, 5, and 6 are adjacent to w and so $\{v_4, v_5, v_6, w\}$ induces K_4 , a contradiction.

FIGURE 3. A step in the proof of Case 1

Then it is easy to see that $\psi(G) = 4$ regardless of whether or not wAv_i for i = 2, 3, 5, 6, a contradiction.

Case 2.
$$H = 2K_2 + \overline{K}_2$$
.

As $\psi = \bar{\psi} = 3$, we know that $\chi, \bar{\chi} \le 3$ so by Lemma 2c, $\chi = \bar{\chi} = 3$. Thus by Corollary 2d, \bar{G} contains a triangle. As $H = 2K_2 + \bar{K}_2 = G - w$, it follows that G contains $C_4 \cup K_2$ as an induced subgraph. Hence there are two possibilities: either $\bar{G} \supset F_1$ or $\bar{G} \supset F_2$, where F_1 , F_2 are the graphs illustrated in Figure 4, which we now consider as two subcases.

FIGURE 4. A step in the proof of Case 2

Case 2a. $\overline{G} \supset F_1$.

If $\overline{G} \neq F_1$, then w is adjacent to at least one more point of G, i.e., to v_1, v_2, v_4 , or v_5 . We may assume that w is adjacent to v_1 or v_2 from the symmetry of F_1 . In either case, $\overline{\psi} = 4$, a contradiction. On the other hand, if $\overline{G} = F_1$ then $\overline{\psi} = 4$, a contradiction.

Case 2b. $\overline{G} \supset F_2$.

If $\overline{G} = F_2$, then $\psi = \overline{\psi} = 3$. If $\overline{G} \neq F_2$, then w is adjacent to one of the points v_i , i = 1, 3, 4 or 6. From the symmetry of F_2 , we may assume that wAv_1 . Then it is easy to see that $\psi = 4$, a contradiction.

Case 3. $H = C_4 + \overline{K}_2$.

Since $\overline{G} \supset K_3$ from Corollary 2d, and $\overline{H} = 3K_2$, it follows that $\overline{G} \supset 2K_2 \cup K_3$. We may assume without loss of generality that $\{v_2, v_5, w\}$ induces K_3 in \overline{G} ; see Figure 5. If $\overline{G} = 2K_2 \cup K_3$, then $\psi = \overline{\psi} = 3$. If $\overline{G} \neq 2K_2 \cup K_3$, then w must be adjacent to at least one of v_i , i = 1, 3, 4 or 6. Assuming now that wAv_1 , we see that $\overline{\psi} = 4$, a contradiction.

FIGURE 5. A step in the proof of Case 3

LEMMA 4c. If G is a graph of order 7 such that neither G nor \overline{G} contains two point-disjoint triangles, then ψ or $\overline{\psi}$ is at least 4.

Proof. Assume that $\psi = \overline{\psi} = 3$, then $\chi, \overline{\chi} \le 3$ since $\chi \le \psi$. By applying Lemma 2c, $\chi = \overline{\chi} = 3$. Thus $G \supset K_3 \cup 2K_2$ or $G \supset 2K_3 \cup K_1$ by Corollary 2d. But by the hypothesis, G cannot contain two point-disjoint triangles and so, $G, \overline{G} \supset K_3 \cup 2K_2$. Now we label the points of $K_3 \cup 2K_2$ as in Figure 6.

Figure 6. A labelling of $K_3 \cup 2K_2$

By the symmetry of G and \overline{G} , it is sufficient to handle only the case u_2Aw_2 . By the hypothesis that G cannot contain two point-disjoint triangles, v_1Aw_2 and v_2Au_2 . Then regardless of the presence or absence of other lines, we can easily verify that $\overline{\psi} = 4$, a contradiction.

Lemma 4d. There are no graphs of order at least 8 such that $\psi = \overline{\psi} = 3$.

Proof. Assume that G has order 8 and $\psi = \bar{\psi} = 3$. Then $\chi = \bar{\chi} = 3$ by Lemma 2c. Thus both G and \bar{G} contain $2K_3 \cup K_2$ as a spanning subgraph by Corollary 2d. The subgraph of G induced by the set of points of $2K_3$ must be one of the three graphs, $2K_3$, $2K_2 + \bar{K}_2$ or $C_4 + \bar{K}_2$ of Lemma 4a. We now divide the proof into three cases:

Case 1. G contains $2K_3$ as an induced subgraph.

By Corollary 2d, both G and \overline{G} contain $2K_3 \cup K_2$ hence of course $\overline{G} \supset 2K_3$. It is convenient to label \overline{G} as in Figure 7.

FIGURE 7. A subgraph of \overline{G}

By symmetry, we may assume that both point sets $\{u_3, u_6, v_1\}$ and $\{u_2, u_5, v_2\}$ induce K_3 in \overline{G} . Then it is easily verified that $\overline{\psi} = 4$.

Case 2. G contains $2K_2 + \overline{K_2}$ as an induced subgraph. Let F_1 , F_2 be the graphs illustrated in Figure 8.

FIGURE 8. Subgraphs F_1 and F_2 of \overline{G}

Since $\overline{G} \supset 2K_3$ by Corollary 2d, there are two possibilities: either $\overline{G} \supset F_1$ or $\overline{G} \supset F_2$. However in either case, $\overline{\psi} = 4$.

Case 3. G contains $C_4 + \overline{K}_2$ as an induced subgraph. Since $\overline{G} \supset 2K_3$ by Corollary 2d, we may assume that both $\{v_1, u_2, u_5\}$ and $\{v_2, u_3, u_4\}$ induce K_3 in \overline{G} , see Figure 9, and thus $\overline{\psi} = 4$, a contradiction.

FIGURE 9. A subgraph of \overline{G}

Combining the preceding four lemmas, we obtain the following result.

LEMMA 4e. Let G be a graph of order at least 7, then G has $\psi = \overline{\psi} = 3$ if and only if G is one of the six graphs, $2K_3 \cup K_1$, K(3,3,1), $C_4 \cup C_3$, $2K_2 + \overline{K_3}$, $2K_2 \cup K_3$ and K(3,2,2).

We are now ready to specify all the graphs with $\psi = \overline{\psi} = 3$.

Theorem 4. There are exactly 41 graphs G such that both G and \overline{G} have achromatic number 3: six have order 7, twenty are of order 6, fourteen of order 5 and just one of order 4.

Proof. By Lemma 4d, we know that there are no such graphs of order $p \ge 8$. Lemma 4e lists all six graphs with p = 7 and Figure 2 shows them. To complete the list of all the graphs with $\psi = \overline{\psi} = 3$, we had to resort to the method of brute force by an exhaustive inspection of Appendix I of [1] for p = 4, 5, and 6.

As the determination of all graphs with $\psi = \overline{\psi} = n \ge 4$ appears to be hopelessly complicated, we can realistically ask only for the construction of additional families of graphs with $\psi = \overline{\psi}$.

REFERENCES

- 1. F. Harary, Graph Theory, Addison-Wesley, Reading (1969).
- 2. F. Harary, S. T. Hedetniemi, and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math., 26 (1967), 453-462.
- 3. E. A. Nordhaus and J. W. Gaddum, On complimentary graphs, Amer. Math. Monthly, 63 (1956), 175-177.

Received February 18, 1980.

NIPPON IKA UNIVERSITY KAWASAKI, 211, JAPAN

University of Michigan Ann Arbor, MI 48109

AND

University of California Santa Barbara, CA 93106