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SUPER-PRIMITIVE ELEMENTS

IrA J. PAPICK

Given an extension, R C T, of commutative integral domains with
identity, we say an element u € T is super-primitive over R, if u is the
root of a polynomial f € R[x] with cx(f)~! = R, i.e., a super-primitive
polynomial. The main purpose of this paper is to provide ‘‘super-primi-
tive” analogues to some work of Gilmer-Hoffmann and Dobbs concern-
ing primitive elements. (An element u € T is called primitive over R, if u
is the root of a polynomial f € R[x] with cx(f) = R.)

1. Introduction. Given an extension, R C T, of commutative in-
tegral domains with identity, we say an element u € T is super-primitive
over R, if u is the root of a polynomial f € R[x] with cx(f)™' = R, i.e., a
super-primitive polynomial. By cg( f), we mean the ideal of R generated
by the coefficients of f, and when no confusion may result, we will write
¢( f). Our primary motivation for investigating super-primitive elements is
some work of Gilmer and Hoffmann [6], and some extensions of that
work by Dobbs [4]. In particular, their studies dealt with, in the terminol-
ogy of [4], primitive elements. An element ¥ € T is said to be primitive
over R, if u is a root of a polynomial f € R[x] with ¢( f) = R. It is shown
[4, Theorem] (in the more general context of commutative rings with
identity) that u is primitive over R if and only if R C R[u] satisfies INC
(incomparability). The main purpose of this paper is to consider a natural
super-primitive analogue for this result, and to indicate some interesting
related ideas.

Throughout this paper, all rings considered will be domains, i.e.,
commutative integral domains with identity, and any unexplained
terminology is standard as in [S] or [11]. It should be noted that several of
the results in these pages could be stated in the generality of commutative
rings with identity, however we feel the main thrust of our work lies
within the category of domains.

2. Super-primitive elements and associated primes of principal ideals.
Let P(R) = {P € Spec(R): P is minimal over (a : b) for some a, b € R}.
The elements of P(R) are referred to as the associated primes of principal
ideals [2]. A useful result concerning ?P(R), which we shall employ
frequently, is due to Tang [15, Theorem E}], and is stated as follows: (a)
For a finitely generated ideal I of R, I C P for some P € P(R) if and
only if ™' # R; and, (b) R = ﬂpe@(R)RP. It is immediate from this
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result that U = R[x]\ Upe@(R)P[x], where U= {fE R[x]: ¢(f)" ' =
R}. We shall exploit this relationship between the set P(R) and the
super-primitive polynomials in our study of super-primitive elements.

Given an extension of domains R C T and P € Spec(R), we say that
the extension satisfies INC at P if distinct comparable primes of 7' do not
contract to P. If W C Spec(R), we say that the extension satisfies INC on
W if it satisfies INC at each P € W, and as usual, if W = Spec(R), it is
said that R C T satisfies INC.

The following useful lemma, which is undoubtedly well-known, could
not be found in the literature in its present form. Hence, we shall sketch
the part of the proof that we have no direct reference for.

PROPOSITION 2.0. Let R C R[x]/I = T be a simple extension and let
P € Spec(R). The following statements are equivalent:

1. R C T satisfies INC at P.

2. ¢(I) ¢ P(c(I) = ideal of R generated by all the coefficients of all
the polynomials in I).

3. Spec(T ®y k(P)) is a finite set.

Proof. (2) < (3) is exactly [16, Theorem 3.1]. (1) = (3): By passing to
R, C Tx.p, we may assume R C T satisfies INC at P, where P is the
unique maximal ideal in R. Consider the natural map f: R - T/PT =
T ®g k(P). Observe that T/PT is of finite type over R via f, and that
f: R - T/PT satisfies INC. Hence, (T/PT ®x R/P) = T/PT is
module-finite over R/P. [14, Proposition 3, p. 50] Whence, T/PT is an
Artinian ring, and so Spec(7/PT) is a finite set. (3) = (1): Again we may
assume R is local with maximal ideal P. We claim that 7/PT is of finite
type over R via f: R — T/PT, and that f: R — T/PT satisfies INC. As
T/PT is of finite type over R /P, by Noether Normalization [1, Theorem
1, p. 344], we conclude that 7/PT is module-finite over a polynomial ring
A in a finite number of indeterminates with coefficients in R /P. However,
Spec(T/PT) is a finite set, so A = R /P, and hence T /PT is module-finite
over R/P. Thus, R — T/PT satisfies INC [14, Proposition 3, p. 40], and
therefore R C T satisfies INC at P.

COROLLARY 2.1. [4, Theorem]: Let R C T be an extension of domains
and u € T. Then, u is primitive over R if and only if R C Rlu] satisfies
INC.

Proof. Apply Proposition 2.0, (1) < (2).

COROLLARY 2.2. Let R C T be an extension of domains andu € T. If u
is super-primitive over R, then R C R[u] satisfies INC on P(R).
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Proof. Let I = ker(R[x] — R[u]), where the homomorphism is the
evaluation map. Since u is super-primitive over R, there exists an f € |
such that ¢(f)~' = R. Hence ¢(I) ¢ P for each P € P(R), [15, Theorem
E], and so R C R[u] satisfies INC on P(R).

It is natural, in view of Corollary 2.1, to ask whether the converse of
Corollary 2.2 is true in general. We will show (Example 2.7) that it is not
generally true, but we shall indicate some interesting settings where it is
true. Before we can accomplish this however, we need to introduce some
terminology.

If I is a fractional ideal of R, let (I~ ')~! = I,. We say I is a v-ideal if
I =1, and a v-ideal is said to be of finite type if there is a finitely
generated fractional ideal J of R such that / = J,. A domain R is called a
Priifer v-multiplication domain (PVMD), if the set of v-ideals of R of
finite type form a group under the v-multiplication /o J = (1J), [18],
[12]. Examples of PVMD’s are Priifer domains, Krull domains, GCD
domains, integrally closed coherent domains, etc.

For our immediate purpose, we shall need a somewhat different
characterization of PVMD. A domain R is called a P-domain [12], if R is
a valuation domain for each P € ¥(R). Since R = ﬂpe@(m R, [15,
Theorem E], any P-domain is integrally closed. Huckaba and this author
proved [10, Theorem 3.6], among other things, that R is a PVMD if and
only if R is a P-domain and each prime ideal of R[x],, is extended from a
prime ideal of R. (See [12] for other interesting characterizations of
PVMD’s in terms of P-domains.)

It is appropriate now to mention that there exists a P-domain R that
is not a PVMD [12, Example 2.1]. In fact it is precisely with this ring that
we will show that the converse of Corollary 2.2 fails to be true in general.
We are now prepared to proceed with this goal in mind.

COROLLARY 2.3. The following statements are equivalent for a domain
R with quotient field K:

1. R is a P-domain.

2. R is integrally closed and R C R[u] satisfies INC on P(R) for each
u € K, where K = algebraic closure of K.

3. R is integrally closed and R C R[u] satisfies INC on P(R) for each
u e K.

Proof. 1t suffices to prove (1) = (2) and (3) = (1). Assume (1). Then,
as mentioned before, R is integrally closed. Let # € K. It is enough to
show that R, C Rp[u] satisfies INC at PR, for each P € P(R). Let
P € P(R), and set I = ker(Rp[x] = R[u]). Observe that c, (I) = R,,
since R, is a valuation domain [5, Remark 17.2], and hence an application
of Lemma 2.0 completes this direction.
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Assume (3) and let u € K. Set J = ker(R[x] = R[u]), and note by
Proposition 2.0 that J ¢ P[x] for each P € P(R). Hence, u or u~ ' is in
R, for each P € P(R) [5, Lemma 19.14], and so R is a P-domain.

REMARK 2.4. It is straightforward to see that in Corollary 2.3 one can
draw analogous conclusions for all the overrings of R, and for all the
domains between R and K.

PROPOSITION 2.5. Let K denote the algebraic closure of the quotient field
K of R. Then, R is a PVMD if and only if R is integrally closed and each
u € K is super-primitive over R.

Proof. (=) Suppose there exists a u € K such that u is not
super-primitive over R. Let I = ker(R[x] — R[u]). Noticethat I/ N U = &
and hence IR[x], is extended from a prime ideal of R [10, Theorem 3.6].
However, I N R = (0), and this contradicts the fact that I # (0). (<) By
Corollaries 2.2 and 2.3, it suffices to show that each prime ideal of R[x],,
is extended from a prime ideal of R. Let (0) # Q € Spec(R[x]) such that
QNU= @.Set P=Q N R, and we claim that P # (0). For if P = (0),
then R C R[x]/Q = R[u], where u € K. Thus, by assumption, there
exists an f € Q N U, which is a contradiction. We now wish to show that
P[x] = Q. Suppose not, and let f & Q\P[x]. Observe that Q =
Uy cooesriy @ [9, Comment following Proposition 2.5] and by the
argument above, Q' N R = P’ #* (0) provided Q’ # (0). Hence, Q =
Up cp.pesr P1x1[2, Corollary 8], and so f € P’[x] for some P’ € P(R).
Therefore f € P[x], which is a contradiction.

REMARK 2.6. It is worthwhile to point out that Proposition 2.5 can be
viewed as a restatement of [12, Theorem 3.4], and while their proofs are
substantially different in content and spirit, they do share some crucial
components (e.g. [2, Corollary 8]).

We are now prepared to show that the converse of Corollary 2.2 is not
generally true.

ExaMPLE 2.7. Let R be a P-domain that is not a PVMD [12, Example
2.1]. By Corollary 2.3 we have that R C R[u] satisfies INC on ?P(R) for
each u € K. However, Proposition 2.5 guarantees the existence of an
element w € K such that w is not super-primitive over R. Therefore, the
converse of Corollary 2.2 is not true in general.

3. Compactness of P(R). In this section we shall indicate a large
class of domains for which the converse of Corollary 2.2 is true.
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PROPOSITION 3.0. Let R be a domain, and assume P(R) is a compact
subspace of Spec(R) in the Zariski topology. Let u € K. If R C R[u]
satisfies INC on P(R), then u is super-primitive over R.

Proof. Let I = ker(R[x] —» R[u]). By Proposition 2.0, ¢(I) € P for
each P € P(R). Choose a, € ¢(I)\ P for each P € P(R), and note that

PR)= U (Xa,, N P(R)), where X, = {Q € Spec(R): a, & Q}.

PEP(R)

Since this is an open cover of P(R), there exists by compactness a finite
subcover. Namely,

9(r) = U (x, N 9(R).

Let J = (ay,...,a,). Observe that J C ¢(I), and that J ¢ P for each
P € ®(R). Hence, J~! = R [15, Theorem E]. We now claim that there
exists an f € I such that ¢(f)~' = R, i.e., that u is super-primitive over R.
Since a, € ¢(I), a, = 2, r;a; where r, € R, and a; is a coefficient of
some f; € I. Write

=B+ Bix+ - Fax+---+B, x™, andlets=max{s,}.

Then,

xi(rf)=g €I and a, €c(g).
1

IR E

1

Thus, each a; is the coefficient of some g; € 1. Write
8= Cjo + Cj]x + .. +ajx”f + - +ijjx'”/.
Let m > max{mj}, and set
f=x"g + x¥gy + - +x"mg,
Then J C ¢(f), and so ¢(f)"! = R.

It should be noted that the compactness of P(R) is sufficient to
guarantee the implication in Proposition 3.0, but it is not necessary (see
comments following Corollary 3.5). However, it is interesting to investi-
gate when P(R) is compact (in the Zariski topology).

Clearly if Spec(R) is a Noetherian space, then P(R) is compact. The
next Lemma helps us determine other contexts for which %(R) is com-
pact.
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LeMMA 3.1. For a domain R, P(R) is compact if and only if given any
ideal I of R with I £ P for each P € P(R), then there exists a finitely
generated ideal J C I such that J £ P for each P € P(R).

Proof. (=) Suppose I is an ideal of R such that I € P for each
P € P(R). We may choose a, € I\ P for each P € P(R) and argue as in
Proposition 3.0 to obtain the desired conclusion. (<) It clearly suffices to
show that any open cover of P(R) consisting of basic open sets has a
finite subcover. Suppose P(R) = U, ., (X, N P(R)), and let I be the
ideal of R generated by all the a,. Thus I ¢ P for each P € P(R), and so
there exists a finitely generated ideal J with J C I such that J ¢ P for
each P € P(R). Write J = (b,,...,b,) and note that for 1 <i<m,
b, =27, r,a, ,wherer,;,a, € R,anda, € A. Hence,

J=170 ey 2 ij? “a

9(r)= U (X,,%m@(R))

i,J

and the proof is complete.

PROPOSITION 3.2. Let R be a domain and x an indeterminate over R.
Then, P(R) is compact if and only if P(R[x)) is compact.

Proof. (<) Let F: Spec(R[x]) = Spec(R) denote the contraction map.
Observe that F(P(R[x])) = P(R) [2, Corollary 8]. Hence P(R) is com-
pact. (=) Let N be an ideal of R[x] such that N ¢ Q for each Q €
P(R[x]). Thus ¢(N) ¢ P for each P € P(R) [2, Corollary 8]. Hence
there exists a finitely generated ideal J of R with J C ¢(N) such that
J & P for P € P(R). Write J = (ay,...,a,), and let J' = (f,,....f,),
where f; € N and a, and ¢( f;). Choose 0 # b € N N R and set I = (J’, b).
Thus, I is a finitely generated ideal of R[x], I C N, and I ¢ Q for each
Q € P(R[x]), since QN R=(0) or Q =(Q N R)[x], where Q N R €
P(R) [2, Corollary 8].

Recall that a domain R is said to be treed in case Spec(R), considered
as a poset under inclusion, is a tree. Also, we shall denote the maximal
ideal space of R by Max(R).

PROPOSITION 3.3. Let R be a treed domain. Then, P(R) is compact if
and only if Max(R) C P(R).

Proof. (=) Let M € Max(R), and assume M & P(R). Thus, M ¢ P
for each P € P(R), and so by Lemma 3.1 there exists a finitely generated
ideal J, with JC M and J ¢ P for each P € P(R). Hence M =

U pcam,peacr) P 9, Comment following Proposition 2.5]. However, since
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R is treed, we see that J C P for some P € P(R), which is a contradic-
tion. Therefore M € P(R), and this direction is complete. (<) Assume
Max(R) C P(R), and suppose I is an ideal of R such that I ¢ P for each
P € P(R). Then, I = R, and P(R) is compact by Lemma 3.1.

COROLLARY 3.4. Let R be treed. Then P(R) is compact if and only if
®P(R,,) is compact for each M € Max(R).

Proof. (=) Since P(R,,) is compact if and only if MR,, € P(R,,),
this part of the proof is complete by observing that M € P(R) implies
MR,, € P(R,,). The other direction follows in a similar manner.

COROLLARY 3.5. Let R be treed. Assume P(R) is compact and u € K.
If R C R[u] satisfies INC on P(R), then R C R[u] satisfies INC on
Spec( R).

Proof. Let I = ker(R[x] = R[u]), and recall from Proposition 2.0 that
c¢(I) ¢ P for each P € P(R). Thus, by Proposition 3.3, c(I) = R.
Another appeal to Proposition 2.0 produces the desired conclusion.

It should be noted that the “if” direction of Proposition 3.3 follows
without the treed assumption, whereas the “only if” part requires the
treed property. To see this, let R be a regular local ring of dimension 2
with maximal ideal M. Then M ¢ %P(R) [11, Exercise 1, p. 102}, yet P(R)
is compact since Spec(R) is a Noetherian space.

Also note that not all treed domains R have P(R) compact. For
instance, if 7 is a valuation ring with maximal ideal N such that N =
U, €Spec(R), PCN P, then N & P(V). However, given any valuation ring W,
it is possible to find a domain R with Spec(R) = Spec(W'), and with
%(R) compact, independent of whether P(W) is compact or not. To
produce such an example let k C K be fields and let W be a valuation ring
of the form K + M. Set R = k + M, and we claim ¥(R) is compact. To
show M € P(R) it suffices to prove that M~'+# R, for if a/b €
M~'\R, then M = (b: a). The proof will be complete when we verify
that M~! = W. (Throughout this example M~ ! means: M~! = {x €
quotient field of R: xM C R}.) Clearly W C M~ ', andsoletu € M~ '\ W.
Thus u~! € M, and so either uM = M or uM = R. In the first case
1 € M. As for the second case M = Ru~', and by the argument used in
[3, Lemma 1], we get that kK = K. These contradictions establish the proof.

ExaMPLE 3.6. The following is an example of a local treed domain R
that is not a valuation domain, and ®(R) is not compact. Let V be a
nontrivial valuation ring with maximal ideal N and quotient field k, such
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that P(V) is not compact, and let K be a proper field extension of k.
Assume W is a nontrivial valuation ring of the form K + M, and set
R =V + M. We claim that R is the desired example, i.e., R is a local
treed domain that is not a valuation ring [5, Exercise 13, p. 203], and
®P(R) is not compact. It suffices to show that N + M & P(R). Suppose
N + M € P(R). Then there exist elements x, y € R such that N + M is
minimal over (x 1:z y). Observe that (x 1:z y) # (0), and so x ¥ 0. Hence,

given any nonzero element n € N there is a z € N + M (which depends
on n) so that N + M is minimal over (n:z) [2, Theorem 3]. Write

z = v + m,where v € Vand m € M. To complete the proof we will show
that N is minimal over (n:v), and hence N € P(V), a contradiction.

v

First we establish that (n:v) C N. Let u € (n I:/v), and note that u €
| 4

(n:2z).Indeed, uz = uv + um € nV + M. But M = nM, and so nR = nV

+ ?\4. Hence, uz € nR. Thusu € N + M, and whenceu € N sinceu € V.
Now we shall verify that N is minimal over (# : v). Suppose (n:v) C P C

4 v
N, where P € Spec(V'). Observe that (nlzez) CP+MCN+ M. To see
this let w € (n:z), and write w =a + b, a € V, b € M. It is enough to

R
show that a € P. Consider, wz = (a + b)(v + m) € nR = nV + M, and
soa € (n:v)CP.

v

REMARK 3.7. For an interesting related study on a class of domains R
having P(R) compact, see [8].

4. Finitely generated uppers of 0. Let R be a domain with quotient
field K, and denote the algebraic closure of K by K. Let u € K, and set
I = ker(R[x] » R[u]). Note that if R is a Priifer domain or more gener-
ally an integrally closed coherent domain [13, 11.13] or [7, Corollary 2.4],
or a GCD domain [15, Theorem IJ, then 7 is finitely generated. Since each
of these domains are PVMD’s, it is natural to ask whether I is finitely
generated for an arbitrary PVMD R. The answer is no, and we shall give a
Krull domain counterexample (Example 4.1). Even though I need not
always be finitely generated for an arbitrary PVMD or more generally
when u is a super-primitive element, it would be interesting to determine
what additional conditions force I to be finitely generated. For example, if
R is coherent and u € K is super-primitive, then 7 is finitely generated [7,
Theorem 2.5].

Conversely, it is appropriate to mention that if 7 is finitely generated,
and R C R[u] satisfies INC on ®(R), then u is super-primitive. Indeed,
c(I) is a finitely generated ideal of R, and ¢(I) € P for each P € P(R)
(Proposition 2.0). Thus, ¢(I)~' = R, and by arguing as in Proposition 3.0
we obtain a super-primitive polynomial in /.
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The following result will be used to produce the promised counterex-
ample.

PROPOSITION 4.0. The following are equivalent for an integrally closed
domain R with elements a and b where b # 0:

1. R C R[a/b] s a finitely presented R-algebra extension.

2. (a) N (b) is a finitely generated ideal of R.

3. (b: a) is a finitely generated ideal of R.

Proof. We assume a # 0, and thus (2)  (3), since (b:a) =
((a) N (b))a~'. (1) = (2): Let K denote the quotient field of R, and
set I = ker(R[x] — R[a/b]). Notice that IK[x] = (bx — a)K[x], and
hence by [5, Corollary 34.9],

I = (bx — a)K[x] N R[x] = (bx — a)(a, b) 'R[ X].

We claim that (a, b)”! is a finitely generated R-module, since I is a
finitely generated ideal of R[x]. For if I = (f,....f,), f; € R[x], then
fi=2,8u;;h,, where g =bx —a, h,; € R[x] and u,; € (a, b)™". It is
straightforward to prove that (a, b)™' = X, Ry, ;- Therefore, (a) N (b) is
a finitely generated ideal of R, since (a, b) ™" = ((a) N (b)) /ab. (2) = (1):
As in the previous part, I = (bx — a)(a, b)”'R[x]. Hence, since (a, b) ™!
= ((a) N (b))/ab is a finitely generated R-module, we see that [ is a
finitely generated ideal of R[x].

ExaMPLE 4.1. There exists a PVMD (in particular a Krull domain)
R, and an element a/b in the quotient field K of R such that I =
ker(R[x] —» R[u]) is not a finitely generated ideal of R[x]. Let R be a
Krull domain with at least one height one prime ideal not finitely
generated [S, Exercise 4, p. 537]. We claim R is the desired example.
Indeed, if for each a/b € K, R C R[a/b] is a finitely presented R-algebra
extension, then by applying Proposition 4.0 and the proof of [17, Corollary
6.11], it follows that each height one prime ideal of R is finitely generated.
This contradiction establishes our claim.
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