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CONVERGENCE AND APPROXIMATION

THEOREMS FOR VECTOR-VALUED

DISTRIBUTIONS

H. O. FATTORINI

We prove here that under adequate restrictions, convergence of a
sequence of vector-valued distributions {Pn} and boundedness of the
sequence of their convolution inverses {Sn} implies convergence of {£„};
boundedness and convergence are formulated with respect to "fractional
derivative norms" which include ordinary boundedness and convergence
as a particular case. The results include diverse results for convergence
of solutions of differential, difference and functional equations proved by
Trotter, Kato, Goldstein, Ujishima, Ponomarev and others.
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1. Introduction. Let {S'/2( )} be a sequence of strongly continuous
semigroups in a Banach space E. Trotter proved in [32] that if the Sn are
uniformly bounded in t > 0, then Sn( ) converges in the strong topology
to a strongly continuous semigroup S( ) if and only if R(λ; An) =
(XI — An)~x converges strongly to i?(λ; A), where An (resp. A) denotes
the infinitesimal generator of Sn (resp. S)\ an addition of Kato [12] deals
with the case where S is not assumed to exist at the outset but is obtained
from A, in turn defined from the strong limit of the R(λ; An). Trotter also
proves in [32] convergence results for the {Sn} based directly on the
convergence of the {An} in certain sets, as well as results on approxima-
tion of S by discrete semigroups, corresponding to finite difference
approximations of abstract differential equations. A parallel (and some-
what earlier) treatment of the discrete case was originated by Lax (see [18],

77



78 H. O. FATTORINI

[26]). Its main theoretical result is the Lax equivalence theorem, where, as
in the Trotter-Kato theorem, convergence (of a sequence of discrete
semigroups to a strongly continuous semigroup) is deduced from uniform
boundedness {stability of the difference scheme in [18]) plus convergence
of the infinitesimal generators {consistency in [18]).

Since the Trotter-Kato and Lax theorems, numerous variants and
generalizations have appeared both for semigroups and for other
operator-valued solutions of abstract differential equations, dealing with
continuous and discrete approximations (see [1], [10], [13], [14], [15], [16],
[17], [22], [23], [24], [25], [26], [31], [33]). In all of these results (named
A-B-C theorems by Ujishima [33]), convergence (C) is deduced from
uniform boundedness (B) and convergence of infinitesimal generators or
of their resolvents (A). Theorems of the same type have been obtained for
nonlinear semigroups but we restrict ourselves to the linear case here.

We present in this paper a general scheme including most of the
known results for the linear case and based on the following observation.
Let Sn{ ), An be as above; call Xn the domain D{An) of An endowed with
its graph norm. Then each Sn can be thought of as a distribution with
values in the space {E\ Xn) of linear bounded operators from E into Xn

(through the assignation Sn{φ) = /Sn{t)φ{t)dt for any Schwartz test
function in <$). Consider the (Xn\ £)-valued distribution Pn = δ' ® / -
δ ® An, I the identity operator, δ the Dirac delta. We easily check that
Pn * Sn = δ ® /, Sn * Pn = δ ® In (/M the restriction of / to Xn), thus Sn is
the convolution inverse of Pn (in symbols, Sn = P*~ι). Accordingly, the
Trotter-Kato and similar theorems can be formulated as particular cases
of the following result: if {Pn} is a sequence of operator-valued distribu-
tions such that the inverses {Sn} are bounded in a function space <#,
convergence of the Pn (or convergence of the inverse of its Laplace
transform) will be equivalent to convergence of the Sn in %'. Obviously, a
general theorem of this type will only hold under definite restrictions on
the form of the Pn (see §4) but even under those restrictions the result
(Theorem 4.7) includes most, if not all, instances of A-B-C theorems
hitherto known, both in the continuous and discrete cases in substantially
generalized versions; apart from the fact that Pn is a distribution of a
fairly general form, boundedness is postulated (and convergence is ob-
tained) in a whole gamut of norms, roughly corresponding to the supre-
mum of fractional derivatives of order < η for arbitrary η, -oo < η < oo;
η — 0 is the uniform convergence case considered in most of the existing
results. The theorem applies equally well not only to abstract differential
equations but to hereditary equations describing systems where the whole
past (rather than only the present) must be brought into play to predict
the future. The idea of the proof of Theorem 4.7 is to base the argument
on the "inverse Laplace transform" formula (2.6) for inverses of vector-
valued distributions (as done by Piskarev in [23]) rather than on special
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properties of S, Sn only valid for very particular distributions (such as the
semigroup equation associated with Pn = δ' ® I — δ ® A).

One final bonus of this approach is that it lends itself fairly well to a
unified treatment of the continuous and the discrete case; although
Theorem 4.7 only refers to the first, it can be easily twisted to accomodate
the second (§§9 and 10) and provides ample generalizations, in the sense
pointed out above, of the Lax equivalence theorem.

A parallel thread runs through several sections of the present paper,
and is that of obtaining results on convergence of the Sn not in specific
fractional derivative norms but in the (weaker) sense of distributions, in
terms of convergence of the inverse Laplace transform (also called re-
solvent) of the Pn. As might be expected from the very general nature of
distributional convergence the results become simpler and all restrictions
on the form of the Pn are blown away. (Theorem 4.1.) The applications of
this line of thought are not without interest; in particular we obtain
extensions (or possibilities of extension) of the diverse exponential for-
mulas in [11] to the ambit of regular distribution semigroups (Theorem
6.3). These applications, together with the more interesting and important
applications of Theorems 4.7. and 9.1 are found in §§6, 7, 8, 11, 12, and
13. We discuss in Section 14, by way of conclusion, some extensions and
generalizations.

2. Distribution inverses. We denote by E, F, X,... complex Banach
spaces: (E; F) is the space of all linear bounded operators from E into F
equipped with its usual uniform operator norm (we usually write (E) as a
shorthand for (E; E)). The symbol ty'iF) indicates the space of all
distributions U with values in F defined in -oo < t < oo and ^ ( i 7 ) is the
subspace thereof consisting of distributions with support in t > 0. When F
coincides with C (i.e., when dimF= 1) we write simply <Φ', ^Q as
customary. The space of all tempered, ^-valued distributions and its
subspace consisting of distributions with support in / >: 0 will be denoted
by S'(F), c>ό(F) respectively, abbreviated to S', §Q when F— C. Both
ty'iF) and c>'(F) will be equipped with their usual topology. The symbol
SQ ω(F) indicates the space of all U G %(F) such that e~ωtU G $ό(F),
convergence of Un in §ό,ω(^) meaning convergence of e~ωίUn in cί>ό(F).
We shall use the convolution U * V of vector-valued distributions only in
the case where U G %((X; F)) and V G %(X) or V G %((E; X)\ the
convolution being defined with respect to the natural bilinear maps from
(X F)X X into F and from (X F)X(E; X) into (E; F). (All facts on
vector-valued distributions here and below can be found in enormously
general versions in [27] and [28]; see also [20] for a more elementary
exposition.) A distribution P G ̂ ^((X; E)) is said to belong to the class
%{{X\ E))~λ (or %~x for short) if it has a convolution inverse S = P * " 1
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with support in t > 0, that is, if there exists S G %{{E\ X)) such that

(2.1) P*S = δ®I, S*P=δ®J

where / (resp. /) denotes the identity operator in E (resp. X)\ see [8] for a
proof of the fact that P G Φ Q " 1 is equivalent to the well posedness of the
problem of solving the equation P *U— V with V G ̂ (E) in a sense
made explicit there. Distributions in Θ^" ι have been characterized in [4]
under a compact support assumption (but in spaces of distributions in
several time variables). The identification in the general case was given in
[8]. This result is reproduced below, restricted to the case (amply sufficient
for applications) where P G C>Q((X; E)).

We indicate by φ(t) a function t -» φ(t) oτ the distribution it defines,
as opposed to φ(t), which is the value of the function at t. The same
"functional" notation will be used for distributions; for instance 8(t — 1)
indicates the Dirac measure at t — 1. Given a distribution U G §ό(£) we
denote by tU the Laplace transform of U defined by tU(λ) —
[/(exρ(-λί)); ££/is analytic in Re λ > 0 and

| |βt/(λ)| | < C ( 1 + | λ | ) m ( R e λ > 0 )

for suitable constants C, m.
Let P be a distribution in §£((*; £)), and let φ(λ) = tP(λ). The

(X; i?)-valued function P is defined and analytic in a (maximal) domain
τr(P) containing the half-plane Re λ > 0. We denote by p(P) the resolvent
set of P consisting of all λ G τr(P) such that $β(λ) has a bounded inverse
9ΐ(λ) G (E; X) called the resolvent of P. Obviously, 5ft is analytic in ρ(P).
The complement σ(P) of p(P) is the spectrum of P.

2.1. THEOREM. ,4 distribution P G §ό((^ £ ) ) belongs to %((E; X))~ι

if and only if ρ(P) contains a region Λ = Λ(α, β, ω) defined by an
inequality of the form

(2.2) R e λ > m a x { α l o g | I m λ | +/J, ω)

(a >0)and

(2.3) H5ft(λ) l l ( £ ; X ) <C(l + | λ | ) w ( λ G Λ )

/<9r adequate constants C,m. The distribution S = P * " 1 belongs to
C>Q((E; X)) if and only if the conditions above are satisfied for a half-plane
Ξ = Ξ(ω) = (λ; R e λ > ω } .

For a proof see [8], Theorem 2.5. Regions defined by inequalities of
the type of (2.2) are called logarithmic regions. We may and will assume
without loss of generality that ω > 0. A reverse logarithmic region



CONVERGENCE OF DISTRIBUTIONS 81

Ω(α, β, cυ) is defined by the inequality

(2.4) Re λ > min{β - a log | Im λ | , cυ}

for a > 0, ω > 0. Reverse logarithmic regions are basic in the identifica-
tion of abstract parabolic distributions P E &Q((X; E)). A distribution P
is abstract parabolic if it belongs to %((E; X))~ι and if S = P * ' 1

coincides with an (£; JQ-valued infinitely differentiable function in t > 0
(note that singular behavior is allowed at t = 0). Abstract parabolic
distributions were characterized in [8] under a compact support assump-
tion. To simplify the statement of the result we introduce the space &Q(F),

consisting of all distributions in ^)Q(F) which have compact support.
Clearly &^(F) C^iF) C%(F).

2.2 THEOREM. Let P E &Q((X; E)). Then P is abstract parabolic if and
only if for every a > 0 there exists β = β(a), cυ — cυ(α) such that the
reverse logarithmic region Ω = Ω(α, β, cυ) contains p(P) and

(2.5) im(λ)||<C(l + | λ | Γ (λEΩ)

where C (but not m) may depend on a.

For a proof see [8], Theorem 6.1.
It will be essential later to have direct integral representations of S in

terms of ^ for the classes identified by Theorems 2.1 and 2.2. To this end
we introduce the "fractional differentiation" distributions Yζ defined as
follows. For Re£ > 0, Yζ(t) = h(t)?~λ/T{ζ\ where h is the Heaviside
function (h(t) = 1 for t > 0, h(t) = 0 for t < 0). The function ξ -> Yζ can
be analytically extended to all complex ζ. (See [29]). The family of
distributions {Yζ; ξ E C} so defined satisfies the following conditions: (a)
Yζ E §5, (b) 7Z * y? = Yz+ζ9 (c) 7/ = 7,.,, (d) βy,(λ) = λ~^ (Re λ > 0),
these four equalities holding for all complex f; (e) 7_m = δ ( m ) for
m = 1,2, Note that convolution by 1^ is the operator of integration
(from 0 to t) iterated m times.

Let P E ξ>'0((X; E)) Π %((X; E))~\ T > 0, and let γ > aT + m + 1
(a the constant in (2.2). Then Yy * S coincides with an (E; X)-valued
continuous function in / < T and admits the representation

(2.6) (yγ * S)(0 - 2 ^ / λ ~ γ ^ λ ^ ( λ ) dλ

where Γ is the boundary of the logarithmic region Λ in Theorem 2.1
oriented upwards. This representation can be made global when P E
SQ((E\ X))~\ that is, when S E SQ((E\ X))\ in this case Λ reduces to a
half-plane Re λ > cυ and (2.6) holds for all t provided that γ > m + 1 and
that the contour of integration is taken to be the line Re λ = cυ. Further
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improvements are possible when P is abstract parabolic: here Γ is de-
formed to the boundary of the reverse logarithmic region Ω in Theorem
2.2 and formula (2.6) holds again when γ > m + 1 but is now valid in
t > 0 for all γ, in particular for γ = - 1 , -2, . . . thus providing representa-
tions for all derivatives of S. These representations imply that for each
ε > 0 and each γ there exists C = C(ε, γ) such that

(2.7) (Yy*S)(t)<Ce»' (*>e)

We shall indicate by P<Ξe™((E; X))~x or simply P^{Qχ)-χ

the fact that P is abstract parabolic. An important subclass of
£?((£; X))~x is &(φ; (E; X))~ι (0 < φ < π/2) consisting of all abstract
parabolic P such that (a) S — P * " 1 can be extended to an (E; JQ-valued
function S(ζ) analytic in the sector Σ + (φ) = {£ | arg ξ | < φ, ζ Φ 0} and
satisfies

(2.8) | W ) | | ( * ; J 0 ^ Ce"M (f E Σ + (φ), I f |2> 1).

(b) For every ψ, | ψ | < φ the function that equals S(teixp) for t > 0 and
vanishes in / < 0 defines a distribution S^ E ̂ ( ( i ? ; ^) ) . (c) There exists a
real γ such that Yy * S^ coincides with a jointly continuous (E; X)-valued
function of t, ψ for -oo < t < oo, | ψ | < φ. These distributions have been
characterized in [9], Theorem 3.8, which we reproduce here.

2.3 THEOREM. Let P E §£((*; £)), and assume P E β(φ; (E\ X))~ι.
Then ρ(P) contains a sector Σ = Σ(φ + ττ/2, γ) = (λ; | arg(λ - γ) | <
φ + τr/2} and

(2.9) | | 3 ί ( λ ) | | < C ( l + | λ | ) m (λ E Σ).

Conversely, assume 9ϊ(λ) ex/5i5 m λ E Σ απJ satisfies (2.9). ΓAeπ P E
] φ'9 0 < φ' < φ.

3. The approximation scheme. Boundedness assumptions. Let E, En

(n>\) be complex Banach spaces, and let %n: E -* En be a bounded
operator for each «. Following Trotter [32] we say that the sequence
{(En,$ίn);n>\} approximates E if and only if

(3.1) lim mnu\\E = \\u\\E

for all u E E. It follows easily from the closed graph theorem that (3.1)
implies

(3-2) I I * Λ * * ) * C ( « > 1 ) .
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The sequence {un; un E En) converges to u E E (in symbols un => u) if and
only if

(3.3) l k ~ 2 M k - > 0 (Λ->OO).

Often (but not always) E is a function space in some domain Ω of
Euclidean space and En is finite dimensional: for instance, if E — β(Ω)
(continuous bounded functions in C1(Ω) with supremum norm) %n might
be the set of values of u at a set of grid points depending on n, or if
E — LP(Ώ) we may define 21 nw as the totality of means of u in the sets of
a finite subdivision of Ω, also depending on n. We refer the reader to [13],
[16], [32] for examples and additional details. To unburden the notation
we indicate from now on by || || the norms of E or of (E; E)\ the symbol
II || Λ stands for the norms of En, (E; En) or (En; En) (precise identifica-
tion will follow from the context). The basic ingredient of the results
below will be a sequence {Pn} of vector-valued distributions, each Pn in
SQ((XΛ; En)) Π %((En; Xn))~ι or subspaces thereof and a distribution P
in mix; E)) Π %((E; X))~~ι which will be the limit (in a sense to be
made precise later) of the Pn. The assumptions on the complex Banach
spaces X, Xn are that X C £ , Xn C En9 the injection being bounded in
each case, that is,

(3.4) \\u\\<C\\u\\x (uGX)9

The norms of X, Xn will be of little further use since all "measurements"
shall be made in the norms of E and En.

We shall consider incessantly in what follows sequences {Gn} of
operator-valued distributions; Gn will belong to ^ ( ( ϋ ^ ) ) or to subspaces
thereof. Given two real numbers η, T (T> 0) we shall say that {Gn} is
η-uniformly bounded in 0 < t :< T if

(a) For each un E En the distribution Y_η * Gnun coincides in t < T with
an En-valued function u( ) continuous in t < T.

(b) There exists a constant C independent ofn such that

(3.5) | | ( r _ , * Gnun){t)\\n < C | | « χ («„ €E £„, / < T).

Note that (b) implies that ( F _ η * Gn){t) is a bounded operator in En for
each t < T (this also results from (a) and the closed graph theorem). It
does not follow, however, that t -» Y_η * Gn is a continuous (£n)-valued
function, although Y-η+} * Gn — Yx * (Y_η* Gn) will of course be con-
tinuous in the norm of (En). The sequence {Gn} is η-strongly uniformly
convergent to G E %(E) if (a) holds for {(?„}, G and (Y_η * Gn%nu)(t) =>
(Y-η * Gu)(t) uniformly in t < Γfor every u E E; recall this means that

(3.6) | ( r _ , * GM3ίn M)(r) - a , , ( r_ , * Gu)(t)\\n - 0
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as n -> oo, uniformly for 0 < / < T. Similar definitions will be used in
t > 0; if ω is an additional real parameter, the sequence {Gn} is declared
to be (ij, ω)-uniformly bounded in t > 0 if (a) holds in t > 0 with w( )
continuous there and

(3.7) |(y_, * GΠ«J(O|L ^ Ce-'HαJI («„ G £„, t > 0).

The sequence {Gn} is (η, ω)-strongly uniformly convergent in t > 0 if (a)
holds for {Gn}, G in -oo < ί < oo and if e ~ ω ' ( ϊ % * Gn%nu){t) =»
^ " ω / ( F _ η * Crtt)(O uniformly in ί > 0.

We note that the diverse notions of boundedness may be formulated
in spaces other than (En), for instance in (En; Xn)\ it suffices to replace
the norm of (En) by that of (En9 Xn) in (3.5) or (3.7) (see a use of this
notion in Lemma 3.2 below). The extension of the convergence definitions
is not so immediate since we have not introduced "convergence in the
norm of Xn" (but see Lemma 4.5).

We introduce one last convergence notion. The sequence Gn is ψ
uniformly convergent in 0 < t < T if the Y_η * Gn (resp. Y_η * G) are
(£'λ2)-continuous functions (resp. an (^-continuous function) in 0 < t < T
and if (3.6) holds uniformly for 0 < / < T and w G £ , \\u\\ < 1. The
notion of (η, co)-uniform convergence is correspondingly formulated.

We go back to the distributions {/>„}, P at the beginning of this
section. The sequence {Pn} is called equi-invertible in a region Δ (closure
of an open connected set) of the complex plane if Δ is contained in p(Pn)
for all n and there exist C, m independent of n such that Sftw(λ) =

1 = tPn(λyι satisfies

(3.8) I K ( λ ) I U ) < C(l + I λ | Γ ( λ E A , « > 1).

In subsequent uses of the definition the region Δ will be a logarithmic
region Λ, a half-plane Ξ, a reverse logarithmic region Ω or a sector Σ.

In the case E — En, X = ZΛ, 2ίn = / the definitions above are related
to familiar concepts. A sequence {Gn} in ty^E)) is η-uniformly bounded
in 0 < / < Γ for all Γ > 0 (with η depending in general on T) if and only
if it is bounded in %((E)). On the other hand, τ/(Γ)-uniform convergence
of {Gn} in 0 < t < T for all Γ is equivalent to convergence of {Gn} in
^ D ) , the strong version corresponding to convergence of each Gnu in

(this equivalence breaks down in one direction for filters or
generalized sequences, see [29]). Finally, equi-invertibility of {Pn} in a half
plane is equivalent to boundedness of 5^ in a space SQ ω((E)) for suitable
ω. In a somewhat contrived way, some of these equivalences can be
extended to the general case. Consider the Banach space (& of all se-
quences u = {un} such that un G En and

||u||© - sup \\un\\n < oo
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equipped with the norm || | | g . The sequence {Gn}9 Gn E 6DQ((£/7)) is
τ](jΓ)-uniformly bounded in 0 < t < T for all T if and only if the map
φ -» @(φ) defined by

(3-9) ®(φ){«π} = { < ? » " „ }

defines a distribution in ^ό((@)); (η, ω)-uniform boundedness of {Gn}
corresponds to the case where e~ωt% E SQ((®)) ^ o r s o m e ω ' : this condi-
tion for the (@)-valued distribution © defined by (3.9) with Gn — Sn is
also equivalent to equi-invertibility of the sequence {Pn} in a half plane. It
is perhaps worth noting that this equivalence between equi-invertibility
and boundedness (with half planes naturally replaced by logarithmic
regions) does not extend without further restrictions to spaces ̂ D'.

3.1 EXAMPLE. Let E = X = En = Xn = C, %n = I, Pn = en\δr - nδ).
Then Sn(i) = e~n2Yx(t)ent. Although {Sn} is bounded (in fact, converges
to zero) in <$', Φ r t(λ) = en\λ - n) so that σ(Pn) = {n} and there is no
logarithmic region Λ contained in all the p(Pn).

Note, however, that in the general case the assumption of equi-invert-
ibility of the {Pn} implies 77-uniform boundedness for all T> 0, for some
η = η(T). This follows from the "inversion formula" (2.6). It is remarka-
ble that equi-invertibility of the Pn follows simply from η-uniform
boundedness of {Sn} in (En, Xn) for a single interval 0 < / < Γ if
boundedness conditions are meted out to the Pn. In fact, we have

3.2 LEMMA. Let Pπ G §£((*„; En)) Π %((En; Xn))~x. Assume the
sequence {Pn} is (η, ω)-uniformly bounded in t>0 in the spaces (Xn; En)
for some η, ω. Assume further there exist η\ T such that the sequence of
inverses {Sn} is η'-uniformly bounded in (En; Xn) in 0 < t < T. Then {Pn}
is equi-invertible in (En) in a logarithmic region Λ.

The proof can be easily read off that of Theorem 2.5 in [8]. Details are
omitted.

In what follows, convergence conditions will be forced upon the
Laplace transforms ^ ( λ ) or on their inverses 9ϊπ(λ). The following
simple result will be useful in this connection.

3.3 LEMMA. Let %n E (Xn\ En\ 3 C G ( I ; E), Assume that % has an
inverse in {E\ X) and that each %n has an inverse in (En\ Xn) such that

(3.10) \K%^C (,,2:1)
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where C < oo does not depend on n. Finally, suppose there is a subspace
D Q X dense in X such that for every u E D there exists a sequence {un},
un E Xn with

(3.11) un=>u, %nun=>%u asn->co.

Then

(3.12) %-ι%nu=^%'ιu

for all u EL E.

Proof. We take u E D and write v = %u, vn — %nun, where {un} is
the sequence provided by the assumptions, so that vn => v. We obtain

- %nυ)\\n

Since D is dense in X and % is invertible, the set %D is dense in E and an
obvious approximation argument based on (3.13) shows that (3.12) holds.

4. Convergence results. We denote throughout by Pn a distribution
in m(Xn; En))Π%((En; Xn))~x or subspaces thereof and by P a
distribution in %Q((X; E)) Π %((E; X))~U, the inverses are Sn = P*~\

4.1 THEOREM. Let the sequence {Pn, P] be equi-invertible in a logarith-
mic region Λ. Assume that

(4.1) $tn(λ)%nu =* 9t(λ)κ (u E E)

for λ E Λ. Then for every T> 0 /Λere exists η = η(T) such that {Sn} is
η-uniformly bounded and ψstrongly uniformly convergent to S in 0 < t < T.
If (4A) holds uniformly with respect to u in \\u\\ < 1 then for every T> 0
there exists η = η(Γ) 5wcA /Λ«/ {5n} w ψuniformly convergent to S in
0 < / < Γ.

/V00/. Let T > 0. Consider formula (2.6) with γ > αΓ + m + 1 (a the
constant in the definition (2.2) of the logarithmic region Λ, m the constant
in (3.8)). Writing (2.6) for S and Sn we obtain

(4.2) 1 ( 7 ^ * Sn9Λu)(t) ~ «Λ(y_, * Su)(t)\\n

,Π=: 1,2,...).
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We use now the dominated convergence theorem noting that the integrand
is bounded by a constant times | λ \v with v = ocT + m + η < -\. The
statement regarding uniform convergence follows in the same way.

4.2 REMARK. The convergence conclusions of Theorem 4.1 can be
reinforced if Λ is replaced by larger regions Δ and (4.1) is postulated in Δ.
For a half plane Ξ there is (η, ω)-uniform convergence of the {Sn} for
suitable TJ, ω; if Δ can be taken to be a reverse logarithmic region
Ω(α, β(cί), ω(α)) with arbitrarily large a (the constant C in (3.8), but not
m, may depend on a) there is in addition uniform convergence of Sn(t)u
and all derivatives on compacts of / > 0. Finally, when Δ is a sector
Σ(φ + 7r/2, γ) there exists η,ω such that the sequence Sn^u (see the
statement of Theorem 2.3) is (TJ, ω)-strongly uniformly convergent in
/ >: 0 for some η, ω, uniformly for | ψ | < φ ' < φ ; Sn(ζ)u is uniformly
convergent together with its derivatives of all orders on compacts of
I ζ I > 0, I arg ξ \ < φ. Corresponding statements hold for uniform conver-
gence.

4.3 REMARK. It is natural to ask whether existence of the limit
distribution P in Theorem 4.1 needs to be explicitly postulated or will
follow from the assumptions of equi-invertibility of the Pn in a logarithmic
region Λ and convergence of the resolvents in Λ. In the present level of
generality the answer must be in the negative, since the limit operator
?R(λ)u = lim ^ ( λ ) ^ may not be the resolvent operator of a vector-val-
ued distribution; it may not be one-to-one for some λ or the range of
9ΐ(λ), only possible candidate for X, may depend on λ. It is well known
that more satisfactory answers exist in particular cases such as Pn =
δ'®In- An or Pn = δ" ®In~An (see §§6 and 7).

4.4 REMARK. Assume that Sn is (η, ω)-uniformly bounded and
(η, ω)-strongly uniformly convergent to S in t > 0. Then the sequence
[Pn, P} is equi-invertible in a half plane Ξ and (4.1) holds there, with a
corresponding statement for uniform convergence; the proof is immediate
upon taking Laplace transforms. This converse to Theorem 4.1 does not
extend to the general case as Example 3.1 shows. However, a sort of
converse can be proved under assumptions of the type of those in Lemma
3.2.

4.5 LEMMA. Assume the sequence {Pn} is (77, ω)-uniformly bounded in
t>0 in the spaces (Xn, En) for some η, ω and that for some η\ T the
sequence of the inverses {Sn} is Ί\'-uniformly bounded in 0 < t < T in
(En; Xn). Finally assume that for every T> 0 there exists η = η(T) such
that {Sn} is η-strongly uniformly convergent in 0 < t < T in (E; X) in the
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sense that Y__η* Sn%nu and 2ίw(7_η * Su) coincide with Xn-υalued continu-
ous functions for t < T for each u E E and

(4.3) \\{Y_n*Sn%nu){t)-%n{Y_^Su){t)\\x^O asn^n

uniformly in 0 < t < T. Then {Pn} is equi-invertible in a logarithmic region
A and (4.1) holds in A.

Proof. Lemma 3.2 applies to show that {Pn} is equi-invertible in a
logarithmic region Λ. We obtain from the formal equation Pn%n — 21 nP
= -Pn * (Sn%n - %nS) * P the equality

= - (Y-η * Pn) * (Γ-, * SH%n - %n(Y^ * 5)) * (y_, * Λ )

wherefrom it follows easily that {Pn} is η-strongly uniformly convergent in
0 < / < Γ in (Xn; En). Since Γ is arbitrary, the boundedness assumption
on the Pn implies that

(4.4) ^n(\)%nu^^{λ)u asn->oo

for all u G X. We apply now Lemma 3.3 with %n = $ n (λ), J9 = Z,
«„ = 31 ww. This concludes the proof.

Although (or because) its assumptions can be easily checked, Theo-
rem 4.1 does not give very significant information on Sn9 since the
η-strong convergence obtained in each interval 0 < t < T depends on the
constants a and m and not on any priori bounds on Sn itself. In the results
that follow, η-strong uniform convergence on Sn in 0 < t < T will be
deduced from η-uniform boundedness in 0 < t < T, with corresponding
results for boundedness and convergence in t >: 0. Obviously, this kind of
theorem will not hold without certain restrictions on the form of P and of
the approximating sequence {Pn}. To see this, consider the following.

4.6 EXAMPLE . Let E = En = X = Xn = C, Sn(i) = y,(0(l + cos ni).
We have 3ίM(λ) - (tSn)(λ) = (2λ2 + «2)/λ(λ2 + «2) so that $ n (λ) =
Sl^λ)" 1 exists in Re λ > δ > 0 and satisfies | $ Λ (λ) | < C | λ | 3 there. It
follows that there exists Pn E Ŝ  with ^n(λ) = £Pπ(λ) = K^λ)""1 so that
Pn * sπ = s; * P Λ = s. Obviously, 9ΐM(λ) -> 1/λ and $ n ( \ ) -> λ uniformly
on compacts of Reλ > δ so that Pn^ 8f = Y_x and Sn -> ^ in §Q.
However, 5^(0, although uniformly bounded in t > 0, is not even point-
wise convergent there.

To prevent this kind of phenomenon, we shall require that P and each
Pn "have a leading term" in the following sense: there exists a real number
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K independent of n such that

(4.5) P = Y_x_κ ® / - Y_κ * Θ = y_κ * (δ ' ® / - θ ) ,

P^y^ («'»/„-©„)

where θ G §£((*; £)), Θn G §ό((^«; £„)) for w > 1. In all later applica-
tions Θ (resp. θ r t) will be an (X; £)-valued (resp. (Xn; EJ-valued)
measure, thus Y_κ * θ will be of "lower order" than Y_λ_κ® I. So will
b e t h e θ n .

The final ingredient in the statement of Theorem 4.7 below is the
requirement that there must exist elements of X to which "Θ can be
applied several times" with similar assumptions on Xn, θ n . Given an
integer/? > 1 and an arbitrary real number ξ we define D(p, ξ) as the set
of all u E X such that

(a)θn G%(X),Q*θu G%(X),...9θ*<p-l)u G%(X)
(b) F 2 + | * Θw, 7 3 + | * Θ* 2 w ? . . . , Yp+ζ * Θ* (/7~1}w are E-continuous in

ί>0.
Note that, although Θ*77*/ exists, no conditions are imposed on it.
The spaces Dn(p, ξ) C Xn are defined in the same way with respect to

the θ n .

4.7 THEOREM. Let P E §'0((X; E)), Pn E S'Q((Xn; En)) have a leading
term in the sense of (A.5) with K independent of n. Let the sequence [Pn, P)
be equi-inυertible in a logarithmic region Λ and assume the inverses {Sn} are
ψuniformly bounded in 0 < t < T < oo with η < K. Finally, assume the
space D(p,κ — η) with p>η + aT+m+l (a the constant in (2.2) for
Λ, m the constant in (3.8)) possesses a subspace D(p, K — η) such that (a)
D(p, K — η) is dense in Xin the topology of X. (b) For each u E D(p, K — η)
there exists a sequence {un},un E Dn(p, K — η) such that

(4.6)

uniformly in 0 < t < Γ; moreover, if fy (resp. f Λ y ) denotes the Laplace
transform ofΘ*Ju (resp. Θ*Jun),

(4-7) | | f f l ^ ( λ ) | | n < C ( R e λ > « , / i = 1,2,...)

where C, ω Jo «#/ depend on n> and

(4.8) f o , , ( λ ) ^ f 1 ( λ ) , fπ, j P(λ)=*f /,(λ) α ί / i ^ o o ( R e λ > ω ) .

Under these hypotheses we conclude that the sequence {Sn} is η-strongly
uniformly convergent inO < t < T to S, that is,

(4.9) {Y_η*Sn%nu)(t)=*(Y_η*Su)(t) asn^n

uniformly in 0 < t < T for all u G E.
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Proof. Since Sn * (J-λ-κ ® In - y_κ * θ J = δ ® /„, convolving both
sides with Y1+(C_η we obtain

( 4 . 1 0 ) (Y_n * Sn)un = Yι+K_n ®un+Yx* {Y_η * Sn) * θnun

On the other hand, if Un is an arbitrary distribution in ty'0(Xn) a similar
computation yields

(4.11) (y_ η * Sn) * Un = Yx+K^ *Un+Y,* ( 7 _ η * Sn) *Θn*Un.

Assume now that u G D(p, K — η) and let {«„} be the sequence pos-
tulated in the statement of Theorem 4.7. Making use of (4.10) in (4.11)
(with Un — &nun) and iterating the procedure, we obtain

(4.12) {Y_η * Sn)un = Yι+K_η ® un + Y2+K_n * βnun

= Σ Yj + κ-r, * θB*°~υ«n + {Yp-r, * Sn) * ®*n

PUn.
7 = 1

We make now use of the representation (2.6), obtaining

7 = 1

( 0 < ί < Γ , π = l , 2 , . . . )

We apply Lemma 3.3 to %— ^S(λ), %n = $ π ( λ ) ; since, in view of the
first condition (4.8) we have ^n(λ)u =^^(λ)u for u G D it follows that
(4.1) holds. We note now that

and work with the integral (4.13) much in the same way as in Theorem 4.1
(see (4.2)); again the integrand is bounded by a constant times | λ \v with
v = η + aT + m — p < - 1 . Using the dominated convergence theorem
we deduce that (Y_η * Snun)(t) => (Y__η * Su)(t) uniformly in 0 < / < Γ.
Observe next that

= r_η * sn(%nu - U n ) + {Y-V* snun -
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therefore (4.9) stands proved for u G D in view of the ττ-uniform
boundedness assumption. A similar argument extends (4.9) from u E D to
M E £ since D is dense in X, thus in E.

4.8 REMARK. If the {Sn} are (η, ω)-uniformly bounded in / > 0 then
the {Pn} are equi-invertible in a half plane Ξ (see §3). No significant
improvement in Theorem 4.3 occurs, except that the condition on p is
p > η -f m + 1, good for all T > 0.

4.9 REMARK. The convergence conclusions of Theorem 4.7 can be
reinforced in case the Pn belong to the subclasses of ^)Q((E; X))~ι

introduced in §2. We look first at the class β+((ls; X))~ι of abstract
parabolic distributions, where the hypotheses are reinforced as follows: (I)
For every a > 0 the sequence {Pn} is equi-invertible in a reverse logarith-
mic region Ω(α, /?, ω) where /?, ω may depend on α; the constant C in
(3.7) (but not m) may also depend on a. (II) The Laplace transforms fy ,
\nj can be analytically extended to the reverse logarithmic regions
Ω(α, β, ω) above with preservation of both relations (4.8). Then the
convergence conclusions of Theorem 4.7 can be supplemented with uni-
form convergence of Sn(-)u and all derivatives on compact subsets of
/ > 0; the argument is the same in Remark 4.2.

Consider now the class 6B(φ; (E; X))~ι- Assume the sequence {Pn} is
equi-invertible in a sector Σ = Σ(φ + ττ/2, γ) and that f., f n . can be
analytically extended to Σ with preservation of both relations (4.8). Then
we obtain convergence of Sn(ζ) uniformly on compacts of Σ(φ') Π
{£; I ζ | > e) for every ε > 0. Convergence statements in the whole sector
Σ(φ) may be obtained under the equi-invertibility assumption above.
Assume that (III) For a T > 0 there exists η such that Y_Ύ] * Sn^ coincides
with a jointly continuous function of /, ψ in / < Γ, | ψ | < φ and

(4.14)

there, for C independent of n (see the definition of Sn^ in §2). (IV) The
convergence relations (4.6) can be analytically extended to the sector
Σ + ( φ ) (that is, ζ.+ Λ_ 1 I θ ^ - 1 > « , Yj+k-η*&:u-l)un admit analytic
extensions to the sector Σ + ( φ ) and convergence is uniform in | arg£ | <
φ, I ξ | < T). (V) The functions f l9 f n u \p, \np can be analytically extended
to the sector Σ(φ + π/2, γ) with preservation of (4.7) and of both
relations (4.8). Then the convergence relation (4.9) can be extended to
I f I < T9 I arg ζ | < φ and is uniform there. This convergence property will
be called ψstrong uniform convergence of {Sn} in | a rg£ |<<p; likewise,
(4.14) is η-uniform boundedness of S in | arg f | < φ, | f | < T1.

We point out finally that Theorem 4.7 contains results of Chen and
Grimmer [2].
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5. Convergence in other intervals. The requirement that η < K in
Theorem 4.3 is essential; if η > /c, ^ i + κ - η is unbounded near the origin
and D(p, K — η) is empty. Moreover, the hypothesis of η-uniform
boundedness of {Sn} in any interval 0 < / < Γis in general contradictory
if η > K as we see taking E = En = X=Xn = C9 Pn = P = δ'=Y_x.
Nevertheless, the restriction that η < K can be totally lifted if 77-uniform
boundedness and convergence are formulated in intervals ε < / < Γ, ε > 0
rather than 0 < / < T. Theorem 4.3 is modified as follows: the conver-
gence relations (4.6) are postulated in ε < / < T and the convergence
conclusion is likewise obtained in ε < t < Γ, the other hypotheses remain-
ing unchanged. We omit the details.

6. Application. P — 8' ® I — 8 ® A. Here A is a closed, densely
defined operator in E and X = D(A) equipped with the graph norm. We
also assume Pn — 8f ® In — 8 ® An with Xn — D(An) and An having simi-
lar properties in En (so that Θ — 8® A, %n — 8®An). The assumption
that P E ^((X; E))~ι simply means that A generates a regular distribu-
tion semigroup in the sense of Lions [19], a similar statement holding for
An; we have $ ( λ ) = XI - A, $ n ( λ ) = λln - An, 5ft(λ) - (λ/ - A)~λ =
R(λ; A), ϋtn(λ) — R(λ; An) hence equi-invertibility of {Pn} in a region Δ
signifies existence of R(λ; An) in Δ for all n and that an inequality of the
form

(6.1) | | i ? ( λ ; Λ j | | π < C ( l + | λ | Γ ( λ e Δ , « > l )

holds, with C and m independent of n. We consider first some applica-
tions of Theorem 4.1.

(I) Exponential formulas for distribution semigroups: [11]. Somewhat
imprecisely, an exponential formula or representation theorem is a formula
that justifies writing S(t) = P*~ι = etA. The "inverse Laplace transform"
(2.6) obviously deserves the title. Other formulas look like

rA"(6.2) S(t) = KmYl(t)e

where the An are, say, bounded operators and the limit is understood in
the sense of distributions; usually one takes E = En = X = Xn. Of special
interest is the Yosida approximation where Av — vAR(v\ A) —
v2R(v\ A) — vl, v sufficiently large (the subindexing by a continuous
variable causes no problems). A simple computation shows that if λ is a
complex number φ -v and λ*>(λ + v)~λ E ρ(A) then λ E p(Av) and

(6.3)
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Given a region Δ and a positive real number σ denote by Δσ =
(λ λ — σ G Δ } , the right translate of Δ. It is obvious that translates of
logarithmic regions, half planes, reverse logarithmic regions and sectors
are regions of the same type; the parameter a and the angle φ in the last
two cases remain unchanged. Let Λ be a logarithmic region. For every
v >: 0 there exists σ(p)>0, σ(v)iθ as v -» 00 such that the function
ξv(λ) =λv(λ + v)~ι maps Aσ{v) into Λ (see [3, p. 541]); moreover,
| f J , ( λ ) | < ϊ ' | λ | ( i ' + ω) thus it follows from (6.3) that the sequence
[Pv] = {δ' Θ / — δ ® Av) is equi-invertible in a suitable logarithmic re-
gion Λσ. Finally, since ζ£K) -> λ as v -> oo it follows again from (6.3) that
R(λ; An) -» R(λ; A) in (E) for every λ G Λ. Consequently, it follows
from Theorem 4.1 that (6.2) holds for the {Av} in the topology of fy'(E);
this was proved by similar means in [8]. Since the maps fw(λ) enjoy the
same properties in relation to half planes, reverse logarithmic regions and
sectors, the improvements to the convergence pointed out in Remark 4.2
hold HA belongs to §£((£; X))~\ e°°((E; X))~ι or β(φ; (E; X))~ι.

In order to apply Theorem 4.7 we check first the hypotheses indepen-
dent of rj-uniform boundedness. It is easily verified that the set D(p9 ξ)
coincides with D(AP)9 the domain of Ap, for any | > 0; note that

D{A") = R(λ;A)pE (λ e p(A))

is dense in X = D(A) in the topology of X. The same considerations
apply verbatim to every Pn. The convergence assumptions in Theorem 4.7
can all be derived from either convergence of An or of the resolvents
R(λ; An) for a single λ. This is made explicit in the following result.

6.1 LEMMA. Let [P, Pn) be equi-invertible in Δ. Assume that

(6.4) Λ(λ; An)%nu ** R(λ; A)u (n -> oo)

for a single λ = λ 0 E Δ and all u E E. Then (a) (6.4) holds for every λ E Δ,
(b) Given an arbitrary integer p and a u E D{AP) there exists a sequence
{un),un<ΞD(Aζ) such that

(6.5) un^u, Ak

nun^Ak

u

for 1 </:</?. Conversely, (6.5) /or A: = 1 m a subspace D Q X dense in X
implies (6.4) for λ E: Δ, u E E.

Proof. We have

R(λo Anf%nu-%nR{λo A)2u

= iί(λ0; Λn)(*(λo; ΛJ21Π" - 8t,Λ(λ0; A)u)

+ (Λ(λ0; ̂ JSt π - 2
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so that in view of (6.1) and (6.4) we have R(λ0; An)
2%nu => R(λ0; A)2u.

Arguing in the same way we show that

(6.6) R(\0;An)
k%Hu=*R(λ0;A)ku

for M G E, k — 1,2, We use now the Taylor series of the resolvents in
I λ - λ 0 1 < r = {max π a l ( | | i?(λ 0 ; A)% | |Λ(λ; ΛJII)}" 1 ; since

= Σ(λ 0 - λ)k(R(λ0; An)
k+l%n - %nR(λ0; A)k^x)

it follows from (6.4) that the convergence relation (6.2) can be extended to
I λ — λ 0 1 < r. An obvious argument using the connectedness of Δ and the
bound (6.1) then shows that (6.4) holds for every λ E Δ, thus proving (a).
To show (b), we fix λ E Δ and set un - R(X\ AnY%nu\ we note that, if

Akun = AkR(λ; An)
pu = -Ak'ιR{X; An)

p~λu + \Ak~xR{\\ An)
pu

and use an obvious inductive reasoning.
The fact that (6.5) for k — 1 implies (6.4) follows from Lemma 3.3:

wetake3Cn = XI - An.
A last observation concerns Lemma 3.2. Note that Y2 * Pn = Yλ ® In

— Y2®An, hence {Pn} is ( —2, ω)-uniformly bounded in t >: 0 in the
spaces {Xn\ En) for any ω > 0. Assume that {Sn} is η-uniformly bounded
in 0 < t < T. Since AnSn = δ' * Sn - 8 ® In it follows that
An(Y_η+ι * Sn) = Y_η * Sn - 7 _ η + 1 ® /„. Accordingly, {Sn} is (η + 1)-
uniformly bounded in 0 < / < Γin the spaces (En; Xn). An application of
Lemma 3.2 then completes the proof of the following result.

6.2 LEMMA. Assume each Pn = δ' ® / — δ ® An belongs to
ty'0{{En\ Xn))~ι, and that the sequence {Sn} is ψuniformly bounded in
0 < t < T for some η, T (T > 0). 77zeτ? {Pw} is equi-inυertible in a logarith-
mic region Λ.

We indicate below how several results in the literature can be ob-
tained in substantially generalized versions as particular cases of Theorem
4.7 and of the preceding observations.

(II) The Trotter-Kato theorem for distribution semigroups. In [32],
Trotter assumes that A and the An generate strongly continuous semi-
groups (i.e. that S = (δ ' ® / - δ ® A)*~\ Sn = (δ 7 ® / - δ ® A)*~ι are
strongly continuous in the spaces where they live). The boundedness
assumption on the {Sn} corresponds to our (0, ω)-uniformly boundedness
in t > 0, which has been seen to imply (see §3) that the {Pn} are
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equi-invertible in a half plane Ξ. The convergence conditions are (6.4) at a
single point of Ξ or the first condition (6.5) in a dense subset of X. It
follows from Theorem 4.7, Lemma 6.1 and Lemma 6.2 that the following
generalization of Theorem 5.1 in [32] holds:

6.3 THEOREM. Let P = δ'®I-δ®A<Ξ %((E; X))'\ Pn =

δ ' ® In - δ ®An E %((En; Xn))~l. Assume the {Sn} are η-uniformly

bounded in 0 < / < Tfor some T > 0 and η>0 and

(6.7)

for all u E £ and a fixed λ o m Λ ( Λ ίΛe regzow in Lemma 6.2) or
exuto α subspace D Q X dense in X and such that for each u E D there is a
sequence {un}, un E Xn with

(6 8) "„=*", Λ^^Λw.

{S }̂ w ψstrongly uniformly convergent to S in 0 < / < 7", ί/20/ ώ, /or
u G E,

(6.9) ( y _ η * ^ 3 ί / 2 W ) ( / ) - ( 7 _ T 7

uniformly / « 0 < / < I

6.4 REMARK, (TJ, ω)-uniform boundedness in ^ > 0 does not guaran-
tee (17, (o)-uniform convergence even if η = 0. To see this let X = £ = En

be a separable Hubert space, {ek; k> 1} a complete orthonormal system
in E, A = 0, ΛΠ(Σ cΛβΛ) = 2{ik/n)ckek, Xn = ΰ ( ^ J (note that all the j ς
coincide). ^4n generates a strongly continuous semigroup Sn given by
Sn(Ickek) = Σexp(ikt/n)ckek and the {Sn} satisfy 11 (̂011 = 1 in ί > 0.
Either (6.7) or (6.8) are easily checked. However, Sn(t) does not converge
uniformly to S(t) — I in t> 0.

It should be pointed out that in Trotter's Theorem 5.1 in [32] (as
completed by Kato [12]) the existence of A and the fact that it is a
semigroup generator are not postulated as in Theorem 6.3 but proved,
i.e. A is obtained as the operator whose resolvent is R(\)u —
limi?(λ; An)%n. However, some reinforcement of the assumptions is
necessary. In the case considered by Trotter and Kato ((0, ω)-uniform
boundedness in t > 0) we have

(6.10) ||Λ(λ; A)\\ < C(Re λ - ω ) " 1 (Re λ > ω)

and R(λ) is the resolvent of a semigroup generator A if we add the
assumption that

(6.11) vR(v; A)Anu =*u as v -» 00
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uniformly with respect to n (see [13, p. 512]); this condition is used to show
that the common nullspace N of all the operators R(λ) reduces to zero, or,
equivalently, that ϋ , the common range of all the R(λ) is dense in E
(since Cl(i?) Π N = {0}). However, inequality (6.10), at least for λ real, is
necessary for the proof and it is not clear whether any reasonable
analogue of (6.11) would do the trick under the less stringent bound (6.1).
Nevertheless, it is possible to impose somewhat contrived conditions on
the {Pn} that entirely dispense with assumptions on existence or proper-
ties of A, as seen below.

(Ill) The Trotter-Kato theorem for distribution semigroups "in the
absence of A." Consider Theorem 6.3 with the following modifications; the
operator A is omitted from the statement and condition (6.7) is weakened
to: for every u E E there exists v E E such that

(6.12)

where λ 0 is a fixed element of the logarithmic region Λ in which the {Pn}
are equi-invertible (see Lemma 6.2). Working in the style of Lemma 6.1
we can extend the limit relation (6.12) to arbitrary λ E Λ and use it to
define an (£)-valued holomorphic function R(λ) (R(λ)u = v) that satis-
fies R(μ) - R(λ) = (λ - μ)R(λ)R(μ), i.e. a pseudo-resolvent ([34, p.
215]). We impose the following additional condition on R: for some
λ E R(λ) is one-to-one and has dense domain. This is known to imply that
there exists a closed, densely defined operator A in E such that R(λ) —
R(λ; A). From this point on we can apply Theorem 6.3 in its original
form and obtain (6.9). Theorems of this type were obtained by Takahashi
and Oharu [31].

A natural generalization of the preceding argument consists of giving
up the assumption of denseness of R(λ) (although we still require the
R(λ) to be one-to-one). In this case the operator^ is not densely defined
(D(A) = R) but the convergence relation (6.4) can still be proved in
EQ — AR. We leave the easy checking of the details to the reader. The
result obtained generalizes theorems of Takahashi-Oharu [31] and Cannon

[1]
Similar generalizations of Theorem 6.3 can be obtained under

weakened versions of condition (6.8). This has been done for strongly
continuous semigroups by Kurtz [16], [17]. Given a sequence of (in general
unbounded) operators An in En9 Kurtz defines the extended limit A of the
An (in symbols, A — ex-lim^) as the operator in E whose domain
consists of all u E E such that there exists a sequence {un}9un E En with

(6.13) un^u, Anun^υ

and Au = v. In the general case, the operator A may be multivalued, i.e. v
may depend on the sequence {un}. Reasonable conditions on the An that
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guarantee that A is one-valued have been given by Kurtz ([16, p. 355]) but
they are essentially based on inequalities of the type of (6.10) holding
uniformly for all the An and it is not clear whether suitable analogues will
hold under the more general bound (6.1).

(IV) Convergence results for semigroups strongly continuous in t > 0.
Diverse generalizations of the Trotter-Kato theorem have been proved for
classes of semigroups strongly continuous in t > 0 but not in t >: 0, for
instance for Hille's class A (see Oharu-Sunouchi [22]) or for Zabreiko-
Zafievskii's class A°>a (see Ponomarev [25]); for the definition of the
classes see [35] and [36]. These results can be embraced by the present
theory: we limit ourselves here to the class (1, A) consisting of all
semigroups {S(t); t > 0} strongly continuous f or t > 0 such that II S( )u 11
is summable near zero for every u E E and such that S(t)u -> u in the
sense of Abel for every u E E, that is,

lim λ Γ
λ-+oo JQ

e~XtS{t)u dt = u (u E E)

(note that strong continuity in t > 0 implies exponential growth of 115(011)-
Finally we assume that the union of all subspaces S(t)E, t > 0 is dense in
E. Under these assumptions the Laplace transform R(λ) = tS(λ) is a
pseudo-resolvent in Re λ > ω such that every i?(λ) is one-to-one and has
dense domain, so that there exists a closed, densely defined operator A
with R(λ; A) = R(λ). We easily check that this means that P = δ' ® / -
δ ® A E %((E; D(A))~X and S = P*" 1 , thus all the results in §4 may be
applied. However, since S may possess a singularity at / = 0, those in §5
are perhaps of more interest.

(V) Convergence results for analytic semigroups and distribution
semigroups. Let the operator A be such that δ' ® J — 8 ® A E
&(φ; (E; D(A)))~ι for 0 < φ < π (see §2) and let An be operators
enjoying similar properties in their home spaces En. The following result
obtains convergence in whole sectors of the complex plane: in it, as in §2,
we denote by S^ the distribution that coincides with S(teiφ) foτt>0 and
with / < 0, and by Sn^ the distributions similarly defined from the Sn.

6.5. THEOREM. Let Γ > 0 , η > 0 be such that {Sn} is ψuniformly
bounded in \ arg f | < φ, | ξ \ < T\ moreover, let the estimate

hold in \ arg ξ | < φ, | ξ | > ε with C independent of n. Finally, assume there
exists a subspace D C X dense in X such that for each u E D there is a
sequence {un}, un E Xn such that (6.8) holds. Then, for each φ' < φ, {Sn} is
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η-strongly uniformly convergent to S in | arg ζ | < φ' < φ, | ζ | < T and

Sn(mnU^S{ζ)u (u(ΞE)

uniformly on compacts of | arg ξ | < φ\ \ ξ | >: ε for every ε > 0.

We sketch the proof. Both boundedness conditions guarantee equi-in-
vertibility in a sector Σ = Σ(φ + ττ/2, γ) (by an obvious deformation-of-
contour argument). On the other hand, the convergence assumption on
the An and Lemma 6.3 produce the convergence relation (6.7) in Σ thus
the conclusion on convergence in ε < | ξ | < ε" 1 follows from Remark 4.8.
The remaining convergence statement follows then from Lemma 6.3 and
Remark 4.8.

Clearly, the same conclusion can be obtained if (6.7) is assumed for a
single λ 0 E Σ.

Theorem 6.5 contains results of Piskarev [23] where the Sn and S are
analytic semigroups (i.e. strong continuity in | arg ξ \ < φ is assumed).

7. Application. P = δ" ® / - δ' ® B - δ ® ̂ 4. We consider first
the case 5 = 0. As in the previous section A is closed and densely defined
in E; we also assume Pn = δ" ® In — δ ® ylw with ^4rt closed and densely
defined in J5rt. The spaces X, Xn are defined as in Section 6. We have
P - F_! * (δ' ® / ~ Yi ® Λ) with a similar equality for each Pn so that
Θ = Yx ® ̂ 4, Θn = ^ ® yln; since K: = 1 in (4.5), the allowable range of η
in Theorem 4.7 is η < 1. We have ^n(λ) = λ2/ - Λπ, 3ΐn(λ) = 9ΐ(λ2; An)
so that equi-invertibility of the {Pn} in a region Δ means existence of
R(λ2; An) for λ G Δ for all « and

(7.1) \\R{X;An)l<C(\ + \ λ \ Γ ( λ E Δ , « > l ) .

All the results in §6 have immediate counterparts here. We note that if A
is a bounded, everywhere defined operator in E then P EL 8" ® I — 8 ® A
G %((E)) with

(7.2)

oo .2A:-I-1

(the use of square roots is purely symbolic here). Accordingly, we may
expect the analogue of the exponential formula (6.2) to be the "sine
formula"

(7.3)

with the corresponding "cosine formula" for the derivative C = S',

(7.4) C(t) = lim Yx(t)cos(tAY2).
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Both can be established for arbitrary δ" ® / - δ ® A G <%((£;
and Av = vAR{v\ A) by the methods in §6 (essentially the same method
was used in [8], where these formulas appear for the first time).

We check next the hypotheses necessary for the application of Theo-
rem 4.7. Once again D(p, ξ) = D(AP) for all ξ >: 0. Lemma 6.1 applies
verbatim and Lemma 6.2 admits an obvious analogue. The case in §6
where A generates a strongly continuous semigroup also has a counterpart
here. Assume C = S" is strongly continuous in t > 0. Then we can show
that C, extended evenly to all t (C(t) = C(\ 11)) is a cosine function or
cosine operator function in the sense of [30] (i.e. it satisfies the "cosine
functional equations" C(0) = /, C(s + t) + C(s - t) = 2C(s)C(t)) and
y4 is its infinitesimal generator, in the sense that Au = C"(0)«, the domain
of 4̂ consisting of all u such that u -> C(t)u is twice continuously
differentiable in (-oo, oo); conversely, if A generates a strongly continuous
cosine function C( •) then P = δ"®I-δ®A<Ξ %(E; D(A)))~ι and
S = p*~* is given by S(0w = foC(s)uds. In the general case (P =
δ" ® / - δ ®A E <%((£: D(A))yλ) we may say that P "generates a
distribution cosine function."

(I) Convergence theorems for distribution cosine functions. The follow-
ing result is an obvious analogue of Theorem 6.3.

7.1 THEOREM. Let P = δ" ® / - δ ® A

δ" ® /„ - δ ® An G ̂ ((JE'Π; Xn))~λ. Assume the {Sn} are ψuniformly
bounded in 0 < / < Γ wiϊA Γ > 0 β«ί/η < 1

(7.5) i?(λ2

0; ^)9l w w => i?(λ2

0; A)u (U G E)

for a fixed λ 0 in the logarithmic region Λ vvAere {Pn, P} is equi-invertible or
that there exists a subspace D Q X dense in X and such that for each u G D
there is a sequence {un},un G Xn such that

(7.6) wM=*w, Anun^Au.

Then {Sn} is ψstrongly uniformly convergent to S in 0 < t < T9 that is, for
each u G E

(7.7) (Y-i SΛ%Λu){t)-{Y^.Su){t)

uniformly in 0 < ί < T1.

Theorem 7.1 considerably generalizes results of Konishi [14],
Goldstein [10] and Piskarev [23] where S is assumed (1, ω)-uniformly
bounded in t > 0 (that is, C is (0, ω)-uniformly bounded in t > 0).

The case P = δ " ® / — δ ' ® ! ? — δ ® Λ is substantially more com-
plicated. Here A and B are assumed closed with D(A) Π D(B) dense in E
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and we define X = D(A) Π D(B) endowed with the "joint graph norm"
II«IIΛ'= \\U\\ + \\Au\\ + \\Bu\\\ An and Bn are subjected to the same
requirements and Sn is correspondingly defined. We can write P =
y_! * (δ' ® / - 8 ® B - Yλ®A) with a similar equality for each Pn so
that Θ = δ ® B + Yx ® A, &„ = 8 ® Bn + Yx ® An; again ij < 1 is the
allowable range. The equi-invertibility assumption translates into the
requirement that (λ2ln — XBn — An)~x should exist (as an operator in
(£„;*„)) and

(7.8) \\{X% - XBn - Any\ <C(1 + | λ Γ (λ E Δ)

with C, m independent of n. To discuss the applications of Theorem 4.7
we must identify the spaces D(p, ξ). It is plain that if ξ > 0, u E D(l9 ξ)
if and only if u E Z>(^) Π Z>(J5), w E D(2, £) if and only if w E D(^4) Π
2)(5) and ylw, Bu E D(,4) Π /)(5), etc.: in general, u E D(p, ξ) if and
only if u E D(LXL2 Lp) where Ly = ̂ 4 or Lj = B. Unlike in the cases
hitherto considered, the subspaces D(p, ξ) may reduce to {0} if p > 1.

7.2 EXAMPLE. Let B, say, be a selfadjoint operator in a Hubert space
H such that 5 < 0 (so that ||i?(λ; B)\\ < (cos φ ) " 1 | λ I"1 in any sector
Σ + ( φ + 7r/2)) and let A be a bounded operator in £\ Noting that
X2I - XB - A = (I - λ~ιAR(λ; B))X(XI - B) we see that 9t(λ) =
X~XR(X\ B)(I - X~ιAR(X\ B))~x exists as a bounded operator in (£; X)
in the intersection of the sector Σ + ( φ + τr/2) with | λ | >
2|MlΓ/2(cosφ)-1 / 2 and satisfies ||Λ(λ)|| < C\ X | " 2 there, hence P E
^ ( ( E ; X))~ι. Consider now the following particular instance of this
situation: H = L2(0,1), 5M = u" with domain Z)(v4) consisting of all
differentiable u with u' absolutely continuous and u" E H satisfying the
boundary conditions w(0) = w(l) = 0, and A is the multiplication operator
(Au)(x) — χ(x)u(x) with χ the characteristic function of the Cantor set
in 0 < / < 1. Then an element of the form Au can belong to the domain of
B only if u = 0, i.e. D(BA) = {0} showing in particular that Z>(2, | ) =
D(A2) Π £>(ΛLB) Π D(BA) Π D(5 2 ) = {0}.

Since the version of Theorem 4.7 applicable here parallels closely that
for a different distribution in the next section, we omit it.

8. Application. P = δ'(t) ® / - δ(/) ® A - δ(t - h) ® B. This
case has many features in common with the one considered in the
previous section: in particular, the assumptions on A, B and the definition
of X are the same. We have here K = 0, Θ = 8{t) ® A + 8(t - h) ® J9.
Finally, φ(λ) = λ/ - Λ - ^" λ / ι5 so that 9t(λ) = (λ/ - 4̂ - e " ^ ) " 1 .
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The same observations apply to Xn, Θrt, 5)3 „, 9ϊn; equi-invertibility trans-
lates into existence of (λln — An — e~λhBn)~x (as an operator in (En\ Xn))
and the estimate

(8.1) \{λln - A n - e-"BnY\ < C(l +|λ|)m (λ G Δ)

with C, m independent of n. The identification of the subspaces D(p, ξ) is
the same as that for P = 8" ® / - δ' ® B - 8 ® ̂  thus a slight modifica-
tion of Example 7.2 produces a P with !>(/?, £) = {0} for/? > 1; the roles
of A and JS are now reversed and we write

XI-A- e~λhB = (I - e-χhBR(λ; A))(λl - A).

Hence 3t(λ) = R(λ; A)(I - e~λhBR(λ; A))~ι in some half plane Re λ >
ω and | |Λ(λ)| | < C(Re λ - ω)" 1 there, so that P G %((E; X))~ι.

We limit ourselves to a sample application of Theorem 4.7.

8.1 THEOREM. Let {Pn, P) be equi-inυertible in a half plane Ξ with
m = 0 in (8.1). Assume {Sn} is ψuniformly bounded in 0 < t < Γ vwY/z
η < 0 α« J //*#/ /Λ̂ r̂  ejcw/̂  β subspace D Q X dense in X such that for each
u EL D there is a sequence {un},un E Xn with

(8.2) un=*u, Anun=>Au, Bnun^Bu.

Then Sn is η-strongly uniformly convergent to S in 0 < t < T.

Unfortunately, Theorem 8.1 leaves out the most interesting case,
namely η = 0. To get at it one has to assume that D C D(A2) Π D(AB)
Π D(BA) Π D{B2% that un G D(A2

n) Π D{AnBn) Π 2)(5M^n) Π
D(B2) and supplement 8.2 with the conditions A2

nun^A2u, AnBnun

=*ABu, BnAnun =* BAu, B2un =*B2u. We omit the details. The case of
several time delays (P = δ'(t) ® I - δ(t) ® A - Σ δ(t - hk) ® 5^) is
handled in the same way.

9. Finite difference approximations. We go one step further by
approximating δ' itself by a finite difference expression. The results here
are, not unexpectedly, adaptations of those in §4. To evade the question of
finite difference approximation of derivatives of fractional order we shall
limit ourselves to distributions of the form (4.5) with K = 0 in this section
and with K = 1 in the next. We assume then that

(9.1) P = δ'®I-Θ

where θ E § Q ( ( I ; E)). We shall only consider the usual difference
approximation Dn = τ~x(δ(t) — δ(i — τn)) for δ', where {rn} is a decreas-
ing sequence of positive numbers tending to zero. The approximating
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distributions will be assumed of the form

(9.2) Qiπ = Dn®IB-Qn ( « > 1 )

where Θ, Θn will eventually be forced to satisfy the assumptions in
Theorem 4.3. We write henceforth @n = E * " 1 (when©n E %((E; X))~ι).

We note in passing that Theorem 4.1 applies perfectly well to the
present situation: if the sequence {©„, P} is equi-invertible in a logarith-
mic region Λ and if

for λ E Λ then, given T> 0 there exists η — η(T) such that {©„} is
η-strongly uniformly convergent to S in 0 < t < T. So does Remark 4.2,
but, for reasons made clear at the end of this section, the hypotheses turn
out to be in general contradictory. On the other hand, direct application
of the other results in §4 is not practicable: if the ©„ are written in the
form (4.5), the Θn will fail to satisfy assumptions like those in Theorem
4.7, hence some modifications will be necessary. We begin by writing the
analogue of (4.13) where K = 0 and 8' is replaced by Dn. We proceed
formally, starting from the obvious equality

and its extension

Y-η *®n*Fn= Y-V * A T ' * Fn + A T ' * ( ^ * ® n) * ®n * K

for Fn E %((Xn)). Feeding the second into the first and iterating we

obtain

(9.3)

Γ2 * Y-n) * ®Un + AT' * (Y-r, * @J

= lDrj*γ-η

(we note in passing that

(9.4)
7 = 0
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The last term in (9.3) cannot in general be expressed as an inverse Laplace
transform as in (4.14) due to the fact that tDn(λyι = τΛ(l - e~λτ»)~ι

does not die down as |λ|-» oo, thus compromising convergence of the
integral. To straighten out this problem we introduce the "averaging
distribution"

(9.5) χn = Dn * δ'~ι = Dn * 7, = T - ' M f ) - Yλ{t- T J ) = τ-%(t)

where ξn is the characteristic function of the interval 0 < t < τn. Convolu-
tion of both sides of (9.3) with χ*p produces the formula

(9.6) x*/ * (y_, * ©„)«„ =

The main result for finite difference approximations follows:

9.1 THEOREM. Let P E SQ((X; E)) be given by (9.1) and let (£„ E
; En))be given by (9.2). Le/ /'Λe sequence (©„, Z1) 6^ equi-invertible in

a logarithmic region Λ. Given p > η + αΓ + m + 1 (α, m as1 m Theorem
4.7) assume that the sequence [χ*n

p * ©„} w η-uniformly bounded i/j 0 < / <
T < oo with η<0 and that the space D(p, —η) possesses a subspace
D(p, —η) satisfying (a) and(b) in Theorem 4.7. Then the sequence χ*p * ©„
is η-strongly uniform convergent to Sn in 0 < t < T.

For the proof we only have to observe that (9.6) can be written

(9.7) 7_η * (χ*P * ©„«)(/) = 2 X ^ ^ * (Yj-r, J
7=1

and the proof ends just like that of Theorem 4.3.

9.2. REMARK. Theorem 9.1 does not have much practical value unless
@n = (£*~ι is amenable to reasonably explicit computation; this can be
achieved for instance by "discretizing" Θ as well. To simplify, assume that
£\ = X, and that ΘM is of the form

(9-8) θ β = Σ
7 = 0
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where the Anj are bounded operators in En and r depends in general on n.
The approximation is called explicit if An 0 = 0 for all n, implicit other-
wise. If {Θn} is explicit then

/„ - θ B = τ-'(δ(f) ® /„ - δ ( f - τn) ® (/„ + τnAnX)

-τnδ{ί- 2τn) ®An2 τπδ(f- rτn)®Anr)

where vn is a measure with support in τn, 2τπ,... ,rτw; accordingly @Λ =
S*" 1 = τrt(δ ® /n + *>„ + *>„ * vn + ), a series which is always conver-
gent since v*k has support in t >: kτn. Moreover, it is obvious that we can
write

(9.9) ©„ = © Γ 1 = τn y

7 = 0

where the Snj are bounded operators in En.
In the implicit case we have

G» = τ - ! ( β ( 0 ® ( 4 ~ rnAnfi) - δ{ί- τn) ® (/Λ + τMΛ,i)

-τwδ(f- 2τJ ® ̂ ,2 ^ ( ί - r r j ® ^ J

thus@n = S*" 1 will exist if τw||^4Πj0|| < 1. It is again obvious that @ n will
be given by an expression of the type of (9.9).

We examine briefly the conclusions of Theorem 9.1 in the case where
©„ admits a representation of the form (9.9). The approximation usually
handled in practice is not @ n itself but the (piecewise constant) first order
average

(9.10) (χ, •©,)(/)= ΣUi-jrn)*SnJ.
7 = 0

9.3 REMARK. It is of obvious interest to inquire whether η-uniform
convergence of χn * @n (rather than ofχ* / 7*@n) can be squeezed out of
Theorem 9.1. The answer is in doubt, but a particular case is easy to
consider and will be of use later. In fact, assume @w is of the form (9.9)
and that {χ*2 * ©„} is strongly uniformly convergent in 0 < t < T. Then
{χw*@n j is as well strongly uniformly convergent in 0 < t < T\ it
suffices to observe that

(X*2 * ®n)(U + l /2)τ j = (Xn * ©„)((./ + l/2)τ j , y = 0,1,. . . .

The result does not extend to p > 2 as the example SnJ — {—\)jS shows.
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9.4 REMARK. Results of the type of those in Remark 4.8 cannot be
expected here, since @π cannot belong to β + , much less to any class
&(φ).

10. Finite difference approximations (continuation). We examine
here briefly "second order equations"

(10.1) P = δ' * ( δ ' ® 7 - Θ).

The sequence of approximating distributions is now

(10.2) &n = Dn*{Dn® /„-©„).

As in §9 we write @n = S*" 1 when the inverse exists. The basic equality
(9.3) suffers no change save convolution of both sides by D*~ι:

{Y-η * @«K = Σ D
7 = 1

thus averaging of order p + 1 (that is, convolution by χ * ( p + 1 ) ) is neces-
sary to remove the last traces of Dn from the last term. After this is done,
we obtain the formula

An obvious analog of Theorem 9.1 results. To avoid tiresome repetition
we only point out the necessary modifications. This time we only need
p > η + aT + m and the allowable range of η is η < 1. The conclusion is
η-strong uniform convergence of the (p + l)th order average χ* ( / 7 + 1 } * @Λ.

11. Applications. P = δ' ® I — 8 ® A. The assumptions on 4̂ are
those in §6 as in the definition of X. The operator An is densely defined
and closed and Xn — D{An) endowed with the graph norm. The sequence
of approximating distributions is (9.2) and we only consider the cases

the first implicit, the second explicit (to lighten the notation we have
eliminated the double indices in (9.8)). Assuming (as is often the case in
practice) that each An is a bounded operator we obtain the formula

(H 2) ©„ = rn Σ *(ί - jτΛ) ® (/„ + τ ^ J y

7 = 0
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for <Bn = e * " 1 with ©„ = £>„ <8> / „ - δ(i- τn) <8> An. Since e©(λ) =
τ~'(l - e~λτ-)In - e'λτ-An we have

When ©M = Dn <8> In — 8(t) ® ̂ 4Λ we do not require that An be bounded
but merely that /„ — τnAn be invertible for τn sufficiently small. We have

(11.3) @n = Tn 2 δ{t~JTn) ® (Λz ~~ Tn^n)
7=0

and, since £©w(λ) = ^ ( l — e~λTn)In — An we have E-S^X)"1 =
/ { ( ^ ( l — e~λτ«); >4n). As in previous sections, we write Pn — δ' ® In —
8 ® An. The next result shows that equi-invertibility of the ©„ can be
deduced from the corresponding property for the Pn9 at least when Λ is a
logarithmic region or a half plane and θn is given by the second equality
(11.1).

11.1 THEOREM. Let the sequence {Pn} be equi-invertible in a logarithmic
region (resp. a half plane). Then the sequence {©„}, where

(11.4) ( £ = Z > < 8 > / — 8® A
v / n n n n

is a well equi-inυertible in a logarithmic region Λ (resp. a half plane Ξ).
Moreover, if

(11.5) R(λ;An)πnu=*R(λ;A)u (λ e Λ)

/or w E E [uniformly in \\u\\ < 1] then

(11.6) e© r t(λ)" I2ίMw=>i?(λ;yl)w (λ E Λ)

/or u E E [uniformly in \\u\\ < 1] w//A α corresponding statement for Ξ.

Since £ e w ( λ ) - 2?(τ~ι(l - e~λτ*); 4 ) it is clear that the proof of
Theorem 11.1 will follow from mapping properties of the functions

(11.7) L(λ) =—(1 - e~λτ») = te-zτ»dz

made explicit in the following result. We use the notation Λσ for the
translate {λ λ — σ £ Λ } (see §6, (I)).

11.2 LEMMA, (a) Let Abe a logarithmic region, σ > 0. Then there exists
m = m(σ) such that ζn, n>m maps Λσ into Λ. The same result holds for
half planes Re λ > ω > 0. (b) We have

(11.8) | f n ( λ ) | < | λ | ,

for all λ, the second relation uniform on compacts of the complex plane.
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Proof, Both relations (11.8) are obvious, the first following from the
second representation (11.7) for ζn. The particular case of (a) correspond-
ing to half planes is immediate since ζn maps Re λ >: ω into the circle
I ζ — r~x | < τ~ιe~ωτ\ To complete the proof we use an idea in [3, p. 541].
Note that since ω > 0 the function fn(λ) does not vanish in Λ and
^ ( λ ) " 1 -» 1/λ uniformly in Λ as n -> oo. Call Λ " 1 the set {λ; 1/λ e Λ}
and define ( Λ σ ) - 1 similarly. Since Λ" 1 is a compact neighborhood of
(Λ σ )~ 1 there exists an integer m such that the function φM(λ) = ζn(λ~ι)~ι

maps (Λ σ )~ 1 into Λ""1 for n >m. This relation is equivalent to ζnAσ C Λ
for n > m, which ends the proof of Lemma 10.2.

11.3 REMARK. Equi-invertibility of the (£„ even in a half-plane does
not guarantee equi-invertibility of the Pn in any reasonable region. An
obvious example is that where E — C, An the operator of multiplication
by an with an > ^ ( l + e~ωTn). The mapping properties of ζn in half
planes pointed out in the proof of Lemma 11.2 imply that || E G ί ^ λ ) " 1 II ^
(an - τn~

ι(l + e~ωτ"))~ι if Re λ > ω (which can be kept bounded) but the
Pn are not equi-invertible in any logarithmic region.

(I) The Hille approximation for distribution semigroups. Here we take
En = E, Xn = X = D(A) &n = Dn®I-δ®A (so that @n is given by
(11.3)) with An — A\ since R(λ; A) exists for λ real and sufficiently large
I — τnA will be invertible for n large enough. As observed above,
β β ^ λ ) " 1 = R(τ~\\ - e~λτ"); A); hence by Theorem 11.1 the sequence
{(£„} is equi-invertible and (11.6) holds uniformly for \\u\\ < 1. Thus, by
Theorem 4.1 ©„ is η(Γ)-uniformly convergent to S — P*~ι in (E; X) in
0 < / < T for all Γ > 0 or, equivalently, in fy'((E\ X)). We have then
proved the following result.

11.4 THEOREM. Let A be the infinitesimal generator of a regular
distribution semigroup S in E, {τn} a decreasing sequence of positive
numbers with τn -» 0. Then

( 1 1 - 9 ) X H * @ Λ = Σ
7-0

inΨ((E;D(A)).

We have used here the fact that χ n * @ n is convergent in ( JE; X) if @ π

is (immediate verification). This theorem is a natural generalization of a
result of Hille (see [11, p. 352]) where S is a strongly continuous semi-
group and χn * ®n converges strongly to S uniformly on compacts of
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/ > 0; this is easily seen to be equivalent to the more familiar formula

/ / \-("+υ
(11.10) S(ήu= lim 7 + -A) u,

convergence as described above. More on this will be found below.
We return to the general set-up. A first tool in the applications of

Theorem 9.1 is a rather obvious analogue of Lemma 6.1.

11.5 LEMMA. Let {©n, P} be equi-inυertible in a region Δ. Assume that

(11.11) mn(\yl%nu=>R(λ;A)u asn-^ao.

for a single λ = λ 0 E Δ and all u E E. Then (a) (11.11) holds for every
λ E Δ. (b) Given an arbitrary integer p and a u E D(AP) there exists a
sequence {un},un E D(Aζ) such that

(11.12) un=>u, Akun=>Aku

for 1 < k < p. Conversely, (11.12) for k — 1 in a subspace D C X dense in
X implies (11.11) for λ E Δ, u E E.

The proof follows closely that of Lemma 6.1. We consider first the
case®, - Dn® In - 8 Θ An so that £&n{\yx = R(ζn(λ); Λn) with fn(λ)
= τn \\ — e~λTn). We begin by extending the convergence relation (11.11)
to powers {R(ζn(\0)\ An)

k%nu => i?(λ0; A)ku as n -> oo) and use then the
power series of the resolvent for extension of (11.11) to arbitrary λ E Δ;
the sequence {un} in (11.12) is obviously un — R(ζn(λ); An)%nu for any
λ E Δ. The converse follows from Lemma 3.3 with %n = ζn(λ)I — An. In
the explicit case Θn = δ(t — rn) ® An the proof is essentially similar.

There is of course an analogue of Lemma 6.2:

11.6 LEMMA. Assume each ©„ — Dn ® In — 8 ® An belongs to
^ ( ( I V , Xn))~λ and that the sequence {@n} = {&t~1} is ψuniformly
bounded in 0 < / < Tfor some η, T (T > 0). Then {&n} is equi-invertible in
a logarithmic region Λ. The result is as well true for &n = Dn ® In —

8(t~τn)®An.

Proof. We only have to show that the hypotheses imply η'-uniform
boundedness of {©„} in 0 < t < T in the spaces (£„; Xw) (in view of
Lemma 3.2). To do this, observe that An&n = Dn * ®n - 8 ® In so that
An(Y_η+{ * @n) - χ π * 7_η * @n - y_ η + 1 O 7n. In case g B = D B ® 7n

— δ(/ - τn) ® v4w the pertinent equality is y4n(y^.η+1 * @Λ) =

β(* + τn) * x , * y_, * ©„ - δ(t + rn) * y_ η + 1 ® in.
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(II) The Lax equivalence theorem for distribution semigroups. We
consider approximations of the form

to S = (δ ' ® J — δ <8> A)*~\ where the Sn are bounded operators in En.
Obviously S« — X«*@« with

As seen above, £&n(λyι = eλτ»R(τ-ι(eλτ» - 1); An). In case the ap-
proximation is

we have ®_n = χn * ©„ - χn * © Γ 1 with <£„ = Z)Λ ® /„ - β ® Λπ, Λn =
T \I — Sn

 ι) (note that An may well be unbounded here).

11.7 THEOREM. Let P E 8' ® I - δ ® A <Ξ %((E; X))'1. Let η > 0
α/?d assume that for some integer r > 0 //*e sequence (χ* r * gw} w i]-ι/«z-
formly bounded in 0 < t < T and there exists a subspace D Q X dense in X
such that, for every u E D there is a sequence {un},un E En such that

(11.15) un=*u, r-\SH-I)un=>u.

Then, if p > max(r — 1, η + aT + m), χ*p * g r t is ψstrongly uniformly
convergent to S = (δ' ® / - δ ® ̂ ) * - I m 0 < ί < Γ. Γ/zβ resw/ί w fl&o
valid for approximations of the form (11.14), the second assumption (11.15)
modified to τ~ι(I — S~λ)un =>Au, un E D(S~ι); here we assume that each
£ is one-to-one and that S^E^ is dense in EMn'

The proof is a direct consequence of Theorem 9.5; the rest of the
assumptions are those in Theorem 4.7 and have already been checked in
§6. The range of p (p > η + aT + m) results from the fact that $„ =
χn * S * " 1 with a similar equality for %n.

Theorem 11.7 is a generalization of Theorem 3.3 in [18] (see also [26]);
approximations are only considered there in the space E (i.e. En — E,
Xn — X) and η = 0, that is boundedness is uniform and convergence is
strong. To be sure, Theorem 11.7 only guarantees in this case that
χ*p * g n will be strongly convergent for some p\ but when E — En,
uniform boundedness of g w or %n in 0 < t < Γis easily seen to imply that
HSn(OII> ll©n(OII - Ceωt h > 0) which in turn implies equi-invertibility
in a half plane (a — 0) with m — 0. We can take then p — \ and reduce it
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to p — 0 via Remark 9.2. The same results hold in the general case when
equi-invertibility in a half-plane Ξ with m = 0 is assumed.

As an application of Theorem 11.7 and the previous remarks we can
obtain easily Hille's exponential formula (11.10) for a strongly continuous
semigroup S(t). Let A be its infinitesimal generator. Take En — E,An — A
and consider ®n with Sn = (I — n~xA)~λ. It follows easily from the
inequalities in the Hille-Yosida theorem that || ®n(t)\\ ^ Ceωt in t >: 0
while n(I — S~ι) -»A thus we obtain strong convergence uniformly in
every interval 0 < t < T.

12. Application. P = δ " ® / - 8 ® A. Three equally natural se-
quences of approximating distributions suggest themselves, namely

®H ()

(12.1) &n

The first two are explicit in the sense that computation of operator
inverses is not necessary to calculate (Bn = S * " 1 : in both cases we assume
An bounded and we have

(12.2) ®Λ = rϊΣ*(t-K)®SΛj
j=0

with SnJ E (En) and Snfi = /. In the third case we do not assume An

bounded but merely that (/ — rfAn)~ι exists for τn sufficiently small;
@n is again given by an expression of the form (12.2) but now (Sn0) —
(I — τ^An)~ι. The distributions θn corresponding to the three choices of

(12.3)

respectively (see (9.4) for D* ]). All the results in the previous section
have obvious counterparts in the present situation. We limit ourselves to
pointing out the necessary changes.

THEOREM 11.1. The distribution ©„ is now D*2 ® /„ - δ ® An so that
2.= R(ζn(λ)2\ A). Lemma 11.1 holds for the functions tf (the proof is

essentially the same).

THEOREM 11.4. Holds without changes for S = (8" ®I- 8® A)*~x

and @w = (D*2 ® In - 8 ® A)*~ι.
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LEMMA 11.5. Holds without changes: note that, corresponding to the
three choices (12.1) for ®n we have £&n(λ)~ι = e2Xτ»R(τ~2(eXτ» - I ) 2 ; A),
eXτ»R(τ-2(eXτ»/2 - e~Xτ»/2)2; A), R(τ~2(\ - e~Xτ»)2; A).

LEMMA 11.6. Holds without changes.

Results of the type of Theorem 11.7 can be formulated in terms of
approximations of the form

(12.4) S B = Σ *„('*->») ® Q ,

where the C satisfy functional equations analogous to the equation
SnJ+k - SnjSnk encountered in the case P = δ'®I-δ®A. To avoid
complicated algebraic computations we state the following result only for
®« = S-*"1? where ©„ is any of the three distributions in (12.1).

12.1 THEOREM. Let P G δ' ® / - δ ® A G ®'0((E; X)Γι. Let η < 1
and assume that for some integer r >0 the sequence {X*r * @n} is ̂ -uni-
formly bounded / « 0 < / < Γ and there exists a subspace D C X such that,
for every u G D there is a sequence {un}, un G D(An) with

(12.5) un^u, Anun^Au.

Then, if p > max(r — l ,η + α Γ + m + 1), (χ^ * @n} is ψstrongly uni-
formly convergent to S = (δ" ® / - δ ® A)*'1 in 0 < t < T.

Once again, substantial simphfications occur when {(£„; p) is as-
sumed to be equi-invertible in a half plane Ξ with m = 0, especially if
η = 1 (which corresponds to approximation of the distribution cosine
function C = S". Observe first that gΛ = χ*2 * (Y_x * ©„) = χ*2 * @;
= χ ; 2 * Σ δ ' ( ί - < / τ Λ ) ® S^ is a function of the form (12.4). If g r t is
uniformly bounded in 0 < / < Γ we may apply Theorem 12.1 with p — 3,
thus the conclusion is strong uniform convergence ofx* 3*@^ = x r t * S w .
We conclude from Remark 9.4 that $n itself is strongly uniformly
convergent to C in 0 < / < Γ (note that if En — E, An — I, uniform
boundedness of {©„} inO < / < Γ implies exponential growth at infinity,
hence the equi-boundedness assumption above is automatic). The preced-
ing particular case of Theorem 12.1 includes results of Piskarev [24] on
approximation of strongly continuous cosine functions by functions of the
form (12.4).

13. Application. P = δ'(ί) ® / - δ(t) ® A - δ(t - h) ® B. We
can use here the explicit approximation corresponding to Θn = δ(/ — τn)
® An- δ{i-h)® Bn or the implicit one where θ Λ = δ(t) ®An-
δ(i — h) ® Bn; if one takes, say, τn = /z/« and v4n, 5rt bounded the inverse
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@n = ©* - 1 is given by an expression of the form (9.9) with SOj = I; in
the implicit case, In — τnAn is assumed invertible and (In — τnAn)~xBn

bounded; again @Λ is given by (9.9) this time with Sn0 — (In — τnAn)~λ.
Theorem 8.1 and the remarks following it have an obvious analogue here.
We limit ourselves to the case η < 0, with ©„ being any of the approximat-
ing distributions above.

13.1 THEOREM. Let (&„, P) be equi-inυertible in a half-plane Ξ with
m — 0 in (3.10). Assume χn * @rt is η-uniformly bounded in 0 < / < T with
η < 0 and that there exists a subspace D Q X dense in X such that for each
u E D there is a sequence {un}, un E Xn with

(13.1) un=>u, Anun=*Au, Bnun=*Bu.

Then χn* &nis ψstrongly uniformly convergent to

S= (8'{t) ®I-8{i) ®A -δ(t-h) 0 5 ) * - 1 m O < / < Γ .

The more interesting case η — 0 is handled in the same way as in the
comments following Theorem 8.1; direct application of Theorem 9.2
produces convergence of χ*2 * @w, and convergence of χn * @rt follows
from Remark 9.4.

14. Extensions. The methods and results in the previous sections
can be made to work (with obvious modifications and omissions) in more
general situations, for instance when £ is a locally convex space. We
mention, however, that of the diverse characterizations of invertible distri-
butions in §2 the only one that survives is the particular case of Theorem
2.1 where S = P*~ι grows exponentially at infinity.
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