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APPROXIMATION CONSTANT. II

T. W. CUSICK

Given real numbers a and β, let cλ{a,β) denote the Diophantine
approximation constant for the linear form x 4- ay + βz and let c2(α, β)
denote the corresponding dual constant for the simultaneous approxima-
tion of a and β. The paper gives various results about these constants in
the case where a and β lie in some real cubic field. For example, it is
shown that the suprema of cx(a, β) and c2(α, β), taken over all α, β such
that 1, α, β is an integral basis for a real cubic field, are equal, and a
necessary and sufficient condition for this common value to be equal to
2/7 is given.

1. Introduction. There is associated with each real number a a
constant c(a) defined to be the infimum of those c > 0 such that the
inequality

\x{aχ-y)\<c

has infinitely many solutions in integers x, y with x φ 0. A well known
theorem of Hurwitz states that supc(α), where the supremum is taken
over all real numbers α, is equal to 1/ v7 ,̂ and that c(a) = 1/ V̂ " only for
certain numbers, such as ^(1 + \/5~), in the algebraic extension Q(y[5) of
the rational field Q.

In the theory of simultaneous Diophantine approximation, there are
two well known constants associated with each pair of real numbers α, β.
One constant, which I denote by cx(a9 β), is defined to be the infimum of
those c > 0 such that the inequality

I x + ay + βz I max( j>2, z 2) < c

has infinitely many solutions in integers x, y, z with y and z not both zero.
The other constant, which I denote by c2(α, β), is defined to be the
infimum of those c > 0 such that the inequality

max(| x I (ax — y) , | x \ (βx — z)2) < c

has infinitely many solutions in integers x, y, z with x φ 0.
Define L = sup cx(a9 β) and S — sup c2(α, β), where the suprema are

taken over all pairs of real numbers α, β. It is a well known unsolved
problem to evaluate S. Cassels [4] showed that S > 2/7. Davenport [11]
proved that L- S and [10] that S < .384.

Define L* = sup cλ(a, β) and S* = sup c2(a, β), where the suprema
are taken over all α, β such that 1, α, β is a basis of a real cubic field. It is
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often the case that for such α, β we have cλ(a, β) = c2(α, β) (see [7],
especially p. 187, and [8]), so it is natural to conjecture that L* = S*. This
is indeed the case, and in fact L* = S* = 2/7 holds. The work of Cassels
[4] gives the inequality 5* > 2/7, and the opposite inequality follows
from a difficult theorem of Woods [15] — the argument is given by Adams
[2]. The inequalities £* > 2/7 and L* > 2/7 can also be proved by using
an idea due to Davenport [11]; this is carried out in §4 below. Finally, the
inequality L* < 2/7 is proved in §4; the key ingredient is again the result
of Woods [15].

The above results suggest the main unsolved problem in this subject:

Conjecture. L = S = 2/7.

This paper does not deal with the conjecture, but instead gives more
results for the case in which only numbers in a cubic field are considered.
Define L' = sup cλ(a9 β) and S' — sup c2(α, β), where the suprema are
taken over all α, β such that 1, α, β is an integral basis of a real cubic
field. A main result of this paper is the following:

THEOREM 1. We have Lr — S" < 2/7; the inequality is actually an
equality if and only if Hypothesis A below is true.

The Hypothesis A mentioned in Theorem 1 was first stated in my
paper [9], p. 298. In that paper it was proved that if θ — 2COS{2TT/1)

denotes one of the real roots of x3 + x2 — 2x — 1 = 0 (so Q{θ) is the
cubic field of discriminant 49, which is the smallest possible positive
discriminant) and if 1, α, β is any integral basis of β(0), then c{(a, β) <
2/7; furthermore, sup Cj(α, β) — 2/7 for such integral bases 1, α, β if and
only if the following hypothesis is true:

Hypothesis A. The number θ = 2cos(2ττ/7) has a continued fraction
expansion [al9a29...] such that given any integer N9 either a partial
quotient pattern

where Nx > N and N2 > N9 occurs for some «; or a partial quotient
pattern

(an,an+λ,an+2) = (Nl92,N2),

where TV, > N and N2 > N9 occurs for some n.
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We have very little knowledge about the continued fraction expan-
sions of algebraic numbers of degree greater than 2, so there is at present
no hope of deciding the truth of Hypothesis A. However, Hypothesis A is
plausible if one agrees with the widely held but intractable conjecture that
the continued fraction for any algebraic number of degree greater than 2
resembles, in a statistical sense, the continued fractions for almost all real
numbers (so that in particular any given finite sequence of integers will
occur in the sequence of partial quotients). Furthermore, independently of
the validity of Hypothesis A, it is possible to compute lower bounds for U
and 5" which are extremely close to 2/7 (see §6 below).

2. Upper bounds for cx(a, β). Throughout this paper, if δ is an
element of a real cubic field, then δ, δ', δ" are the conjugates of δ. The
norm δδ'δ" of δ is denoted by N(δ).

We need only consider totally real cubic fields in proving Theorem 1,
because the nontotally real case (which is much simpler) is taken care of in
§5 below. Let α0, al9 a2 be a basis for a totally real cubic field and let

M = {£ = aox + axy + a2z: x, y9 z integers}

be the module with basis α0, aλ9 a2. We define

m (M)= inf N(ξ) a n d m (M) = inf \N(ξ)\,

and define m+(M*) and ra_(M*) analogously for the dual module M* of
M. It can happen that m+{M) φ m_{M)\ of course, there is no corre-
sponding possibility for modules over a nontotally real cubic field, which
partly explains why that situation is so much simpler.

If 1, α, β is a basis for a totally real cubic field, we define the binary
quadratic form/(x, y) by

(1) f(x, y) = ((β" - β)x + (α - a")y)((β ~ β')x + («' - a)y).

It is easy to see that the discriminant of/(JC, y) is equal to the discrimi-
nant of the module M with basis 1, α, β, so/(x, y) is an indefinite form.

Our first lemma is a result from [8], which gives formulas for cx(a, β)
and c2(α, /?) in terms of certain quantities depending on the form (1). We
need the following notation: Define the sets £/, U~\ V, V~λ by

U= {x: | J C | < 1 and/(x,l) > 0 } ,
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and

V'1 = {y:\y\< I andf(l9y)<0}.

Define the numbers/^ and/κby

x in U y m £/-i

a n d

fv = m a x m a x \f(x91) | , m a x | / ( 1 , y ) \ \ .

x'mV j inK"1

LEMMA 1. Suppose \, α, β is α basis for a totally real cubic field. Let M
denote the module with basis 1, α, β and let DM denote the discriminant of
M. Let M* denote the dual module of M and define the quadratic form
f(x9 y) by (1). Then

/ imAM) m (AT)
(2) cx(a9 β) = min + v , - ^ — i

\ Jv Ju
and

(3) c2(α, D - m i n 7 , 7
\ Ju J

Define

(4) \x\ < 1

(5) c1(α,j8) = m

7/m+(M*) = m_(M% then

(6) c2(α,j8) = Z)JI#

Proof. This is Theorem 2 of [8] with the special cases (5) and (6)
written out; these last follow from the fact that v(f) — maxί/^, f v ) .

We shall need the following simple lower bound for the quantity v(f)
defined in (4).

LEMMA 2. Define /(x, y) by (1) and let v(f) be given by (4). Let D
denote the discriminant of the module with basis 1, α, /?; then v(f) ^ \DX//1.
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Proof. A special case of this result is proved in [9], Lemma 2. The
general proof uses the same method, but we give it here for completeness.

We label the coefficients of/(x, y) so that

(7) f(x, y) = ax2 + bxy + cy2.

As was already remarked, an easy calculation gives

(8) b2 - 4ac = D > 0.

The form f(x, y) is indefinite, so the only possible values for which the
maximum of /(x, 1) in | x | < 1 could occur are ±1 or -b/2a, and the only
possible values of y for which the maximum of |/(1, y) | in \y | < 1 could
occur are ±1 and -b/2c.

We may assume ac < 0, for if ac > 0 then (8) implies \b\> D 1 / 2 , so
by (4)

v(f) > m a x ( | α + £ + c | ,\a-b + c\) > | 6 |

which is stronger than the inequality in the lemma.

We consider several cases, supposing first that | b | < | 2a | and \b\<
I 2 c I . Then (4) implies

(9)

= max(zy|4fl

Now (8) and the fact that αc < 0 imply | Aac | < i), so either | α | < ^
or I c | < | i ) 1 / / 2 ; combining this with (9) gives the lemma.

Next suppose | b \ > | 2 a \ and | b \ < | 2 c \ . Here (4) implies

(10) v{f) > max(| a + 6 + c \ , | α - b + c | , D/\ Ac | ) .

If I c | < ^2)1//2, then (10) immediately gives the lemma, so we may assume
\c\> \Dλ/1. Now |2c |> |Z? |> |2<2 | by hypothesis, so with the ap-
propriate choice of the ± sign we have

| t f ± 6 + c | = μ | + | c | - | f l | > | α | +\c\>\Dλ/1

\

and the lemma follows from (10).

An argument exactly analogous to the above works if | b | < | 2a \ and
I b | > | 2c I , so the only remaining case is that in which | b | > | 2a \ and
j b j > j 2c j . Since b2 + 4 | ac \ = D by (8), in this case we have b2 > D/2.
Thus with an appropriate choice of the ± sign we have

p(f) >\a±b + c\>\b\

which is stronger than the inequality in the lemma.
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We can now prove some upper bounds for the constants cx(a, β) in
the case where 1, α, β is an integral basis.

THEOREM 2. Let 1, α, β be an integral basis for a totally real cubic field
and let M denote the module with basis 1, α, β and discriminant D\ then

(11) c1(α, jS)

and

(12) Cι(a,

Ifm_(M) < \Dx/2,then

(13) cλ(a,

Proof. We define the quadratic form f(x9 y) by (1), and label its
coefficients so that (7) holds. Then (8) is true, as before.

The proof will resemble that of Lemma 2, but with some complica-
tions. We dispose of the easiest inequality, given by (11), first. Since 1, α,
β is an integral basis, we have m+ (M) = 1, so (2) gives

(14) C l (α, β) = min(l//κ, m_{M)/fυ).

Since the quantity v(f) defined by (4) satisfies v(f) — max(/ί7, fy)9 it
follows from (14) and Lemma 2 that

cλ(a9 β) < m_(M)/v(f) < 2m_(M)/D1/2,

which proves (11).

To prove (12), we shall need the estimate

(15) m_(M)<Dγ/\

which is a result of Chalk [6] (or see Cassels [5, p. 330]).

We divide the proof of (12) into three cases; in the first, we assume
that I b | < | 2a \ and | b | < | 2c | . By (8), this implies ac < 0. We suppose
that a > 0 and c < 0; an exactly analogous argument works if a < 0 and
c > 0 .

Under our assumptions we have

fυ>f(l,-b/2c) = D/\4c\ and fv 7>\f{-b/2a, 1) |= D/Λa.

It follows from (14) that (12) holds if | a \~ι > 2/D3/\ and from (14) and
(15) that (12) holds if | c \'λ > 2/Z)1 / 4. At least one of these inequalities is
true, for if both were false we would have | ac \"λ < 4/2), which con-
tradicts b2 — 4ac = D > | 4ac | .
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For our second case, we assume that | 6 | > | 2 α | and | f e | < | 2 c | .
Parallel arguments work if | b | < | 2 a | and | b | > | 2 c | . First suppose that
ac > 0, say a > 0 and c > 0 (a simpler method works if a and c are
negative). If b > 0, then α + fe + c ^ O s o x ^ 1 is in £/ and therefore

(16) fv^\a\+\b\+\c\.

If, on the other hand, b < 0, then a — b + c > 0 so x = -1 is in [/ and
again (16) holds. Whatever the sign of b, c > 0 implies

fv>\f(h-b/2c)\=D/4c.

If 2)/4c > \DX/A, then l / / κ < 2//) 1 / 4 and (14) gives (12). So we may
assume c > ̂ D 3 / 4 . Then (16) implies Λ / > i D 3 / 4 , so m_{M)/fv<
2Z)1/2/Z>3/4 by (15), and again (14) gives (12).

Next suppose that | b | > | 2a \ , | b | < | 2c | and αc < 0. We consider
the situation with a > 0 and c < 0 first. If 6 > 0, then | 2c | > | Z? | > | 2a \
implies a — b + c <0, so x = -1 is in F and

(17) fv>\b\+\c\-\a\.

If, on the other hand, b < 0, then α + H c < 0 s o ; c = l i s i n F and
again (17) holds. Whatever the sign of Z>, c < 0 implies fυ > D/\ 4c | . If
D/\Ac\> {D^\ then m_/fυ<2/D]/4 by (15), and (14) gives (12). So
we may assume \c\> \ΐ>x/Δt. Now since | b \>| a \ , (17) implies fv >\ c \ ,
so l/fv < 2/Dι/4 and again (14) gives (12). The situation with a < 0 and
c > 0 is taken care of similarly, but we use fυ >:| b \ +\c\ — \ a \ in place of
(17).

For our third case, we assume that | b | > | 2a \ and | b | > | 2c | . First
suppose that ac > 0, so a and c have the same sign. We have | b \ > | a \ +
I c I , so/(1,1) = a + b + c and/(-1,1) = a — b + c have opposite signs.
If b < 0, this means -1 is in U and 1 is in F; if b > 0, then -1 is in F and
1 is in U. In either case, we have

fv>:\a\+\b\+\c\ and fv> -\a \ +\b \ - | c\ ,

so by (14) and (15) we have (12) if either of the inequalities

(18) \a\ +\b\ +\c\<±D3/4 a n d -\a\+\b\-\c\< \DX^

is false. Thus we may assume that both of the inequalities in (18) are true,
and multiplying them together gives

\b\2-{\a\+\c\f<\D.
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We have D = b2 — Aac — b2 — 4 | ac | , so the above inequality becomes

i D < ( \ a \ - \ c \ ) 2 o r ^ L D X ^ 2 < \ \ a \ - \ c

But now the second inequality in (18) and our assumption \b\>
2 max(| a | , | c |) give

which is a contradiction.

Finally, we suppose that | b \>\ 2a | , | 6 | > | 2c | and ac < 0. As be-
fore, we have | 6 | > | α | +\c\ 9 so a + b + c and a — b + c have opposite
signs. We suppose a > 0 and c < 0 (the same reasoning works if 0 < 0
and c > 0). If b < 0, we have -1 in U and 1 in F; if ft > 0, we have -1 in
V and 1 in U. In either case, we obtain

fυ>\a\+\b\-\c\ and / κ > - | f l | + | 6 | + | c | ,

so by (14) we have (12) if

(19) -\a\ +\b\ + | c | < ^ D 1 / 4

is false. Thus we can assume that (19) is true, and hence (since | b | > | 2a |)
we have max(| a \ , | c |) < \Dλ/*. Therefore A\ac\<Dλ/2, so that (8)
implies | b | > (D - Dλ/1)λ/1. Combining this last inequality with (19)
gives

{D -

which is a contradiction. This completes the proof of (12).

To prove (13), we follow the above proof of (12), but use the
assumption m_< \DX/1 in place of (15) throughout the proof. This
completes the proof of Theorem 2.

3. Proof of Theorem 1. If D > 2429 and 1, α, β is an integral basis
for a totally real cubic field F of discriminant D, then by (12) in Theorem
2 we have

(20) cx(a9 β) < 2(2429)~1/4 = .284887 < 2/7.

Let M be the algebraic integers of F; by (13) in Theorem 2, we have
cλ(a9 /?) < D 1 / 4 if

(21)



DIOPHANTINE APPROXIMATION CONSTANT. II 61

holds. Calculation shows that (21) is true for all D < 2429. (The table of
Angell [3] was used. For D < 2429, each discriminant corresponds to a
unique cubic field (apart from conjugate fields). There are 75 such fields,
but m+(M) = m_(M) = 1 for all but 33 of the fields. Inequality (21)
holds comfortably for all 33.) Therefore

( ) ( ) I / 4 = .277350

for all D such that 2429 > D > 169. Hence (20) holds for all D except
perhaps D = 49, 81 or 148. Since m_(M) — 1 for all three of these fields,
it follows from (11) in Theorem 2 that (20) holds except possibly when
D = 49. We know (see §6 below) that we can choose α, β in the field with
discriminant 49 (this is the field Q(θ) mentioned in the Introduction) so
that (20) is false. Hence we have shown that in calculating Z/, we need
only consider the field Q(θ). Hence it follows from the theorem of [9] that

U < 2/7,

with equality if and only if Hypothesis A in the Introduction is true.

In order to complete the proof of Theorem 1, it suffices to show that
U — S"; to do this we need an inequality like (20) for the constants
c2(a9β).

Let M* denote the dual module of M. Given any module M9 let DM

gives

y
denote its discriminant. We have DM* = D^ = D~\ so inequality (14)

(22) m

We also have m+(M*) — D'x since M is the module of all algebraic
integers in F. Therefore (3) in Lemma 1 gives

(23) c2(α, β) - minO//,,, Dm_(M*)/fv).

By imitating the proof of Theorem 2 and using (22) and (23) in place
of (15) and (14), respectively, we find that

(24) c2(a, β) <

and

(25) c2{a,β

We also find that if rn_(M*) < (4D1/2)"1, then

(26) c2(a9

These last three inequalities are the analogues of (11), (12) and (13),
respectively.
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Using (25), we see that inequality (20) also holds for c2(a, β) when
D > 2429. Using (26) and our argument above, we find that (20) holds for
c2(α, β) except perhaps when D is 49, 81 or 169; for this we need to verify
that m_(M*) < (4Dι/2)~ι for all D < 2429, but this is a straightforward
calculation.

Finally, by using (24) and the fact that m+(M*) = w_(M*) = Dι

for D = 49, 81 or 169, we prove that in calculating S' we need only
consider the field Q(θ). Since c{(a, β) — c2(a, β) always holds in Q(θ)
(by (5) and (6) in Lemma 1), we have 5" = L'.

4. Proof that L* = 2/7. Let / denote the algebraic integers in
Q(θ), θ — 2 cos(2ττ/7) (this is the totally real cubic field of discriminant
49 mentioned in the Introduction). Thus Dτ = 49.

Let N be any large positive integer. According to a theorem of
Davenport [11, §2], we can find a basis μ0, μl9 μ2 of / such that for any
ε > 0

and

(27) μ\ « μ'2 - μ'{ ~ -μ'2' = N + O(N').

Here we are actually using a slightly generalized form of Davenport's idea,
as given in Cassels [5, p. 16].

Now we define α, /? and δ > 0 (we change the signs of μ0, μl9 μ2 if
necessary to obtain δ > 0) uniquely by the equations

μ0 + μxa + μ2β = δ,

(28) μ'o + μ\a + μ'2β = 0,

μ'o' + μ'/α + μ'tf - 0.

We obtain

(29) δ = D;/2(μ',μ'2' - μ'.'M';,)-1 - (Ί/2)N-2

by (27). It follows that δ is in Q(θ), and a and /? are also. We define the
module M by

M = {x + ay + βz: x, y9 z integers}.

It follows from equations (28) that δ"1, αδ"1, βδ~ι is the dual basis of μ0,
μ1 ?μ2; hence

(30) M = 81*
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and

(31) DM =

It is easy to see that the dual module /* = ((0 - θ')(θ - Θ")YXI. The
norm of (θ - θ'){θ - θ") is -49, so we have from (30)

(32) m+ (M) = m+ (δ/*) = δ3/49 = m_(M).

It follows from (28) that

μ, = «( jβ '- r W / 2 and μ2 = δ(α" - a')Dj'2.

Therefore if/(*, j>) is defined by (1), we have from (27) and (31)

(33) f(x, y) = DMδ'2(μ[x + μ'2y){μ'{x + μ'ίy)

« DMδ-2N2(x2 ~y2) = {δ4N2/49)(x2 -y2).

If we apply (29), (32) and (33) to formula (5) of Lemma 1, we obtain

cx(a9 β) « (δ3/49)/ (δ4N4/49) « 2/7

as TV -> oo. Hence we have L* > 2/7. A similar argument using (6)
instead of (5) gives an alternative proof that S* > 2/7 (see the Introduc-
tion). Adams [1] gave a similar proof that S* > 2/7, also using Daven-
port's idea.

Now we shall prove L* < 2/7. For this we need two more lemmas.

LEMMA 3. Let /(x, y) = ox2 + bxy + ςy2 /?β a quadratic form
with discriminant D = b2 — 4αc > 0. Let Br be the open square
max(| x I , | y |) < r, αŵ ί to σ, T fee ̂ «y positive numbers. Then provided
r2 > στ1 / / 2, at least one of the curves

intersects Br.

Proof. This is Proposition 2 of Adams' paper [1].

Now let fu and fv denote the numbers defined in §2 above.

LEMMA 4. Letf(x, y) be any indefinite binary quadratic form. Then

inf{r2:/(x, y) - ±1 intersectsBr) = f~ι

and

inf{r2:/(jc, y) = -1 intersectsBr) = f~x.
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Proof. This is Lemma 6 of my paper [8].

Let M denote any module {x + ay + βz], where 1, α, β is a basis of
a totally real cubic field. Define the quadratic form/O, y) by (1), so the
discriminant of/(x, y) is DM. Take

σ = 2m_(M), r = m+ (M)/m_(M)

so or1/2 = 2(m+(M)m_(M))1 / 2 - g(M), say. Let r > 0 be any number
such that r2 > g(M). By Lemma 3 we have either

m_(M)Z>]/2inf{r2:/(x, y) = +1 intersects £r} < g ( M )

or

m + (M)£]/ 2 inf{r 2 :/(x, .y) = -1 intersects^} < g ( M ) .

In either case, it follows from Lemma 4 and (2) in Lemma 1 that
d(α, β) < g(M)/D]/2 and hence

(34) L* ^ s u p 2 ( m + ( M ) m _ ( M ) / ^ M ) 1 / 2 ,

where the supremum is taken over all modules M and all totally real cubic
fields; actually, equality holds in (34) but we do not need this.

It follows from a theorem of Woods [15] that m +

DM/49 always holds, so (34) gives L* < 2/7. This completes the proof of:

THEOREM 3. L* = 2/7.

5. The case of nontotally real cubic fields. Define L* = sup c,(ex, β)
and S* = sup c2(α, j3), where the suprema are taken over all α, β such
that 1, α, β is a basis of a nontotally real cubic field. Define UN and S^
similarly, except that the suprema are taken over all a, β such that l9 a9 β
is an integral basis of a nontotally real cubic field.

The nontotally real case is much simpler than the totally real case. In

fact, it is not difficult to prove:

THEOREM 4. We have

ι/2= .2085...L=S

and

L ^ = 5 ; = c 1 ( γ 2 , γ 2 - γ ) = . 1 7 1 1 . . . ,

where γ is the real root of x3 — x — 1 = 0.
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The inequalities L* > (23)"1 / 2 and S% > (23)~1/2 go back to Daven-
port and Mahler [12]. The inequality S% < (23)~1/2 was proved by Adams
[1]. The inequality L% < (23)"1 / 2 can be proved in a similar way using [7,
Theorem 1] or [8, Theorem 1].

The evaluation of L'N and S'N is easily accomplished by using the
method of [9]. The binary quadratic forms considered in that paper were
indefinite, but the corresponding forms here are definite. This simplifies
the application of the method of [9]. The situation is further simplified by
the fact that cx(a, β) = c2(α, /?) whenever 1, α, β is an integral basis of
the field Q(y) with discriminant -23. This follows from [7, Corollary 1, p.
187] because 1, γ, γ 2 is an integral basis for (?(γ).

6. Lower bounds for U and S'. Since U = S' by Theorem 1, we
need only consider ZΛ Theorem 1 also says that Lf — 2/7 if and only if
Hypothesis A in the Introduction is true. Let θ — 2 cos(2τr/7) have the
continued fraction expansion [al9 a2,..\ Hypothesis A is concerned with
the occurrence of patterns

(35) Nl91,1, N2 or Nl9 2, N2 (Nλ > N and N2 > N)

of successive α/s in the sequence of partial quotients ao where N is a large
integer.

We cannot decide whether such patterns (35) occur with N arbitrarily
large. However, it is clear from the work in [9] that if we can exhibit any
patterns of form (35) with N large, then we can find α, β such that
c/α, β) is near 2/7. Of course these α, β will have the property that 1, α,
β is an integral basis for Q(θ).

A listing of the first 1000 partial quotients for θ is given in [13, p.
128]. We find that a5Ί — 60, a5S — a59= 1, aω = 50. If we apply the
method of [9] to this pattern, we produce numbers α, β such that
Cj(α, β) > .285. This numerical result was needed in §3. Thus U > .285.
By more extensive calculations we could achieve lower bounds still closer
to 2 / 7 = .2857....

7. Concluding remarks. For each real number α, let c(a) denote the
one-dimensional Diophantine approximation constant defined in the In-
troduction. The set of all c(a) is usually called the Lagrange spectrum
(and a closely related set is called the Markoff spectrum). Much is known
about the distribution of the numbers c(a). As was remarked in the
Introduction, the largest possible value of c(a) is 1/ J5. It is known that
this is an isolated value, and that there is an infinite sequence of other
isolated values between 1/ ^5" and the largest limit point 1/3.
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We have very little knowledge about the distribution of the numbers
Cj(α, β) and c2(α, β). Indeed, it is only conjecture (see the Introduction)
that 2/7 is the least upper bound for these numbers. If we confine
ourselves to numbers α, β such that 1, α, β is a basis for a real cubic field,
then 2/7 is the least upper bound, but it is not attained (see §4). This is
quite different from the situation, described above, for the one-dimen-
sional constants c(a).

It is very likely that no result like Theorem 2 is true if the restriction
to integral bases is removed. In particular, it is very likely that for
arbitrary bases 1, α, β of real cubic fields, Cj(α, β) does not tend to 0 as
the field discriminant tends to infinity. The reason for believing this is
that the corresponding result in the one-dimensional case is false (Lemma
5 below), and there is no reason to suppose that the two-dimensional case
is any simpler.

LEMMA 5. There exists a sequence α l5 α 2 , . . . of real quadratic irrationals
such that the an belong to infinitely many different real quadratic fields and
such that c(an) < /Ϊ2" for n = 1,2,

Proof. Let fx=f2= I,...,fn=fn-x+fn-2 (n>3) denote the se-
quence of Fibonacci numbers. A calculation shows that

where the bar indicates the period of the continued fraction on the right
and \n_λ stands for w — 1 repetitions of the digit 1. We define an —
Un+i/fnΫ/2 (n = 1>2> •); then it is easily seen that c(an) < / ϊ ϊ for all
n. It follows from well known results (e.g., the Lucas law of repetition of
primes in the Fibonacci sequence — see for example [14, pp. 421-422])
that the largest prime factor in fn tends to oo as n -» oo this shows that
the numbers an belong to infinitely many different quadratic fields.

Of course the an in Lemma 5 are not all algebraic integers. Indeed, the
analogue of Theorem 2 is true for the numbers c(α), since it is easily
proved that if a is an algebraic integer of the real quadratic field Q(Jd),
thenc(α) < \/dλ/1.
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