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NORMAL CURVATURE OF SURFACES
IN SPACE FORMS

IRWEN VALLE GUADALUPE AND LUCIO RODRIGUEZ

Using the notion of the ellipse of curvature we study compact
surfaces in high dimensional space forms. We obtain some inequalities
relating the area of the surface and the integral of the square of the norm
of the mean curvature vector with topological invariants. In certain cases,
the ellipse is a circle; when this happens, restrictions on the Gaussian and
normal curvatures give us some rigidity results.

1. Introduction. We consider immersions /: M -> Qn

c of surfaces
into spaces of constant curvature c. We are going to relate properties of
the mean curvature vector H and of the normal curvature KN to geometric
properties, such as area and rigidity of the immersion. We use the notion
of the ellipse of curvature studied by Little [10], Moore and Wilson [11]
and Wong [12]. This is the subset of the normal space defined as
(α(X, X): X E TpM, \\X\\ — 1}, where a is the second fundamental form
of the immersion and 11 11 is the norm of the vectors. Let χ ( M ) denote
the Euler characteristic of the tangent bundle and χ(N) denote the Euler
characteristic of the plane bundle when the codimension is 2. We prove
the following generalization of a theorem of Wintgen [13].

THEOREM 1. Let f\M-*Qn

cbean isometric immersion of a compact
oriented surf ace into an orientable n-dimensional manifold of constant curva-
ture c. We have the following

(1.1) / l l i/ | | 2 dM + cArea(Λf) > 2πχ(M) + / KNdM
JM JM

with equality if and only if KN does not change sign and the ellipse of
curvature is a circle at every point. If in addition M is homeomorphic to the
2-sphere S2,n = A, and H is parallel, then

(1.2) {\\H\\2 + c) Area(M) = 2m(χ(M) + \ χ(N) \).

COROLLARY 1. Let M be homeomorphic to the 2-sphere S2 and minimal
into the 4-sphere S4(\). Then

(1.3) Area(M) = 2τr(χ(M) + | χ(N) \).

Consequently Area(M) is a multiple of Am. Also, two minimal immersions
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have the same area if and only if they are regularly homotopic {see Barbosa

[3]).

COROLLARY 21". Let M be a compact oriented surface immersed into R4.
Then, ifKN > 0 at every point, we have

(1.4) ( \\H\\2dM> 12ττ.
JM

The equality holds if and only if the ellipse of curvature is a circle.

REMARKS. 1. One way to obtain examples of immersed surfaces that
satisfy (1.3) is to take a minimal immersion of the sphere S2 into S4 (see
do Carmo and Wallach [7]) and project stereographically into R4. The
reason this is so is that the property that the ellipse is a circle is a
conformal invariant.

2. Atiyah and Lawson [2] have shown that an immersed surface in S4

has the ellipse always a circle if and only if the canonical lift of the
immersion map into the bundle of almost complex structures of S4 is
holomorphic. Holomorphic curves in this bundle can also be projected
down to S4 in order to obtain examples of surfaces in S4 with the
property that the ellipse is always a circle, hence giving equality in (1.1).

COROLLARY 3 (Ruh [12]). Let M be homeomorphic to the 2-sphere S2.
If f: M -> S4 is a minimal immersion with trivial normal bundle, then f is
totally geodesic.

REMARK 3. When M is homeomorphic to the 2-sphere S2 and /:
M ^ Sn(\) is minimal, then, by Theorem 1, the ellipse of curvture is
always a circle. It is known that this circle degenerates to a point only at
isolated points and that the plane that contains the circle extends to the
singularities. Hence we have a 2-plane subbundle P of the normal bundle;
let K* be its intrinsic curvature (see §2 for a definition).

In [3] Barbosa, shows that there is a large family of minimal immer-
sions of the sphere. The following theorem shows that this is not so if we
make some restrictions on the Gaussian curvature K and the curvature K*
of the immersion.

THEOREM 2. Let f: M -> Sn(\) be a minimal immersion of a surface M
homeomorphic to the 2-sphere S2 into the n-dimensional unit sphere Sn(\). If
2K> K* at every point, then K and KN are constant and f is one of the
generalized Veronese surfaces studied by Calabi [4] and do Carmo-Wallach
[7]

S. T. Yau has informed us that he obtained the same result.
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REMARKS. 4. If n — 4 then K* = KN9 and, in this case, / must be
totally geodesic or a covering of the Veronese surface.

5. The conclusion in Theorem 2 that the curvatures K and KN be
constant holds actually for any surface with parallel mean curvature
vector with the property that the ellipse is always a circle.

2. The ellipse of curvature. We are considering immersions /: M ->
Qn

c of surfaces into spaces of constant curvature c. Let v x denote the
covariant derivative associated to the induced Riemannian connection in
the normal bundle N of the immersion, and let R± denote its curvature
tensor. If a: TM X TM -» N denotes the second fundamental form and
Av is the symmetric endomorphism of TM defined by (a(X, Y), v) =
(AΌX9 7 ) , where ( , ) is the inner product in TQn

c, then, we recall the
Ricci equation

(2.1) Λx(Jf, Y)u = a(X, AUY) - a(AuX, Y)

where X and Y are tangent and u is a normal vector field along /. If
{Xu X2} is a tangent frame then, we denote α/y = a(Xi9 Xj); /, j' = 1,2
and we define α Λ i a s the endomorphism

(2.2) a Λ b(c) = (6, c)a - (α, c)6

it is easy to see that

(2.3) ^ ί * , , * 2 ) = ( « 1 1 - « 2 2 ) Λ « 1 2 .

Also, if the mean curvature vector H and the Gaussian curvature K are
defined by H — \ trace a and dωn = -Kω] Λ ω2, respectively, it is easy
to see that

(2.4) 4 | | i f | | 2 = l k π + α 2 2 l l 2 , K= (au,a22)- \\al2\\2 + c.

An interesting notion that comes up in the study of surfaces in higher
codimension is that of the ellipse of curvature defined as {a(X, X) GΛ^:
(X9 X)= 1). To see that it is an ellipse, we just have to look at the
following formula, for X = cos ΘXX + sin ΘX2

(2.5) a(X, X) = H + c o s 2 / α n ^ + sin20α12.

So we see that, as X goes once around the unit tangent circle, α( X, X)
goes twice around the ellipse. Of course this ellipse could degenerate into
a line segment or a point.

Facts. 1. The following properties are equivalent at a point of the
immersed surface: (i) the ellipse degenerates into a line segment or a
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point, (ii) ( α π — a22)/2 and α12 are linearly dependent, (iii) R±= 0, and
(iv) if {ϋ,.} is an orthonormal normal frame, the second fundamental
forms A are simultaneously diagonalizable.

2. From (2.3) it follows that if R±^0 then u = (au - a22)/2 and
v = α1 2 are linearly independent and we can define a 2-plane subbundle P
of the normal bundle N. This plane bundle inherits a Riemannian
connection from that of N. Let it* be its curvature tensor and define its
curvature K* by K* = (i?*( JΓ,, A^)^, £3) o r K*ω{ Λ ω2 = -dco34, where
{X1? X2} and {e3,e4} are orthonormal oriented bases of TpM and i^,
respectively. Now, if ξ is perpendicular to P, then from (2.3), Λ x (Xl9 X2)ξ
= 0. Hence, it makes sense to define the normal curvature as

(2.6) KN=(R±(Xλ9X2)e49e3)

where {ΛΓj, Jί2} and {e3,e4} are orthonormal oriented bases of TpM and
iV̂ , respectively. If TM and P are oriented, then KN is globally defined. In
codimension 2, N = P and JKT̂  has a sign. In higher codimension, if
RXΦ 0, P is globally defined and oriented if TM is. In this case, it is
shown in [1] that χ(P) = 2χ(Λf) and, when π = 4, M must be a sphere

3. The area yί of the ellipse is given as A = ±(π/2)KN the sign being
positive if the way the ellipse is traversed by ap{ X, X) — Hp coincides
with the orientation of P. To see this, we observe that we can choose
{Xλ9 X2} orthonormal such that u = (au — « 2 2)/2 and v = α12 are per-
pendicular. When this happens, they will coincide with the semi-axes of
the ellipse. If the parametrization of the ellipse coincides with the orien-
tation of TV, then e3 = u/\\ u \\ and e4 = v/\\ v\\ define a positively oriented
normal frame and

Therefore, we obtain that

(2.7) KN= l | α u - α 2 2 l l l k 1 2 l l .

The case when (w, v} is negatively oriented follows similarly.
4. From (2.5) we can see that the center of the ellipse is the mean

curvature vector H.
5. In codimension 2, if the origin of the normal plane is inside or on

the ellipse, then the Gaussian curvature K < 0. If the origin is outside the
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ellipse, then K < 0, # = 0 or K> 0 according to whether the angle
subtended by the ellipse from the origin is bigger than ττ/2, equal to 77/2,
smaller than π/2 (see Wong [14]).

3. Proofs of theorems.

Proof of Theorem 1. Let [Xλ, X2) be an orthonormal frame at/?; as we
saw in §2, we can choose {Xλ, X2} such that u — (au — a22)/2 and
v — an are the semi-axes of the ellipse. Hence, from (2.4) and (2.7) we
have

(3.1) 0 < ( | | α H - « 2 2 | | - 2 | | α 1 2 | | ) 2

= l h i - «22lί
2 + 4|h2||2 - 4||αM - «22|| ||«12||

= lkil 2 + I M 2 + 2||«12||
2 - 2K-A\KN\ + 2c

= \\a\\2 -2K-4\KN\+2c.

On the other hand,

(3.2) 4 | | / / | | 2 = | k , + α 2 2 | | 2

l l l l + l l l l + 2 ( >

Hence, by (3.1) and (3.2), it follows that

(3.3)

with equality if and only if u = υ, i.e. the ellipse is a circle. Integrating
(3.3) over M, we get

f \\H\\2dM + cArea(M)> f KdM+ ( \KN dM

>2τrχ(M) + ,dM
M

with equality if and only if KN does not change sign and the ellipse is
always a circle.

Now, we suppose that M is homeomoφhic to the 2-sphere S2. Given
isothermal parameters {xλ, x2} on a neighborhood of M and putting
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Xi — 9/9x,; i = 1,2 and z = xγ + ix29 we can see easily that

(3.4) φ=(\\u\\2-\\v\\2-2i(u,v))dz4

is a differential form of degree 4. In order to show that (3.4) is holomor-
phic, we use the following two equations that are obtained from the
Codazzi equations (see Chen [5] or Ruh [12]).

(3.5) V^u+ v£2v = Ev£lH9 V£2u- Vj£ v = -E V#2 H.

Now, we obtain the Cauchy-Riemann equations as follows

Xλ{\\u\\z- \\v\\η =

X2(-2(u,v))

and, similarly,

X2{\\u\\2 - \\v\\2) = -2E((v£2H,u)+ (V^H9V

-Xx(-2(u9v)).

Hence, φ is holomoφhic if and only if

(3.6)

In our situation, since H is parallel, φ is holomorphic. Since the only
holomoφhic differential on the sphere S2 is the constantly zero one, we
get that Hull = lit;II and (w, v) = 0 from which we obtain that u and υ are
semi-axes of the ellipse and that they have the same length. Hence, we
have equality in (1.1). If the codimension is equal to two, then KN is the
curvature of the normal bundle and jMKNdM = 2πχ(N) (see Little [10]),
thus giving (1.2).

Proof of Corollary 1. Formula (1.3) is a direct application of (1.2). The
area of M is a multiple of 4ττ, because χ( JV) is always an even number (in
fact, it is twice the self intersection number of the immersion). Also, it is
well-known that two such immersions are regularly homotopic if and only
if their normal bundles have the same Euler characteristic (see Hirsch [8]).

Proof of Corollary 2. By fact 2, χ(M) = 2, χ(N) = 4, and (1.4)
follows from (1.1).

REMARK 5. In the proof of Theorem 1 we saw that the ellipse is
always a circle. Using isothermal parameters z = xx + ix2 in a neighbor-
hood of p E M9 we obtain from equations (3.5) that the functions ωα(z)
= ( w, ea) — i(v, ea)9 a = 3,... ,n satisfy the condition of the theorem in
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Chern ([6], §4), where [e3,...9en) is an orthonormal frame in a neighbor-
hood of p. Hence, we can conclude that the ellipse degenerates into a
point at isolated points only, and that at these points the "osculating
plane" P is still well defined. Hence P is a globally defined oriented plane
subbundle of the normal bundle N.

Proof of Corollary 3. By the above remark we know that the ellipse is
always a circle and that it is either a point only at isolated points or
always a point. Since, by fact 3, KN is the area of the ellipse, we see that
we can assume that KN > 0. However, since 0 = χ(N) =
(\/2π)fMKNdM, we must have KN = 0. Therefore the immersion is
totally geodesic, since it is minimal.

Proof of Theorem 2. We want to show now that the radius λ of the
circle is a constant function. Let λ 0 be the maximum value of λ2 on M. If
λ 0 is identically zero then the immersion is totally geodesic. Assume
λ 0 > 0 and consider the set B — (λ2)~1(λ0). Since B is always closed, if we
show that it is open in M9 then B = M. Let p be a point in B\ we will
show that Δlogλ2 > 0 in a neighborhood U of p. But then, since the
maximum is attained at /?, λ2 must be constant in U, proving that B is
open.

Since X2(p) ^ 0 and the immersion is minimal, for any orthonormal
frame field {Xl9 X2) tangent to M in U9 e3 — λ'ιau and e4 — λ~ιal2 define
an oriented frame in P. Using the covariant derivatives for the second
fundamental form a and the Codazzi equations, we have

2({vXιa)(XuX2)9a(Xl9X2))

{vXιXl9 X2)9 a(Xl9 X2))+ 2(a{Xl9 VXX2), a(Xλ, X2))

2(v£2a(X l 9 Xλ)9 a(Xl9 X2)) - A(a{vxXλ9 XX), *{Xλ, X2))

2(v£2a{Xl9Xι)9a(Xl9X2))

X2Xu X2) (a(X2, X,), a(Xl9 X2))

= 2\2{ω34(X2)-2ωn(X2)),
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Denoting by J the complex structure of M9 we have J(X2) = -Xϊ9 and we
can write the above equation as

(3.7) dλ2 o J(X2) = 2λ 2(2ω 1 2 - ω34)(X2).

Similarly, we obtain

(3.8) dλ2 o J(Xλ) = 2λ 2(2ω 1 2 - ω 3 4)(X 1)

Hence, from (3.7) and (3.8) we obtain

= -d(2ωn - ω3 4) = 2K - K*.

Hence, under the conditions of the theorem we get that log λ2 is constant
and consequently λ2 is constant. Hence KN — 2λ2 and K — 1 — 2λ2 are
constant. Finally, by [7], M is a generalized Veronese surface.
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