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RENORMING AND THE THEORY OF
PHI-ACCRETIVE SET-VALUED MAPPINGS

DAVID J. DOWNING AND WILLIAM O. RAY

Let X and Y be Banach spaces, φ: X -> Y* and P: X-*2Y\P is said
to be strongly φ-accretive if there exists c > 0 so that (w — v,φ(x — y))
> c\\x — y II2 whenever x9 y E X and w E Px, v E Py. Such mappings
constitute a simultaneous generalization of monotone mappings (when
Y = X*) and accretive mappings (when Y — X). By applying a fixed
point theorem of J. Caristi, it is shown that if P is strongly φ-accretive in
a localized sense and if Y can be appropriately renormed, then, under
suitable continuity and range restrictions, P is an open mapping. The
results generalize a number of known theorems and indicate a firm
connection between the theory of φ-accretive mappings and the renorm-
ing characteristics of the space 7.

1. Introduction. Let X and Y be Banach spaces with 7* the dual of
Γ, and let φ: X -> Y* be a mapping such that

(1.1) φ(X) is dense in 7*

(1.2) for each* EX and each £ > 0, llφ(x)|| < IUII

A mapping P from X to Y is said to be strongly φ-accretive (e.g. [1] or [14])
if there is a constant c > 0 such that, for x,u E X

(Px- Pu,φ(χ- u)) > C | | J C - u\\2.

The φ-accretive mappings were introduced in an effort to unify the
theories for monotone mappings (when Y — X*) and for accretive map-
ping (when Y — X). While the theorems obtained for the monotone and
accretive mappings are similar in character, the methods employed are
technically distinct and the goal in the study of φ-accretive operators is to
develop a methodology which is applicable to both classes of mappings.
Fundamental progress in this direction has been realized by F. E. Browder
(e.g. [1]—[4]); one of his basic results in Theorem B below.

THEOREM B ([4]). Let X and Y be Banach spaces with P: X-* Y a
strongly φ-accretive mapping. Suppose that one of the following two addi-
tional hypotheses holds:

(I) Y* is uniformly convex and P is locally lipschitzian.
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(II) Y and Y* are uniformly convex, J satisfies a Lipschitz condition,
φ(X) = Y*9 and P satisfies

IIJC - u\\~ι/2\\Px - Pu\\ -> 0 as \\x ~ u\\ -> 0.

for each u in X.
ThenP(X)= Y.

Browder's techniques employed a non-convex Bishop-Phelps lemma
(Lemma 2 of [3]) and rely upon some fairly deep observations on the
geometry of arbitrary Banach spaces. More recently, W. A. Kirk in [13]
extended Browder's results to the class of locally φ-accretive mappings
under an additional continuity assumption on P~ι: P( X) -» X. We note
that if P is globally strongly φ-accretive, it follows routinely that P{X) is
closed. This need not be the case for mappings of the localized class,
hence the assumption on P"1. Kirk's innovative approach applied a
generalization of the Bishop-Phelps lemma due to I. Ekeland [10]; in
particular, he relied on J. Caristi's reformulation of Ekeland's result as a
fixed point theorem:

THEOREM C [5]. Let (M, p) be a complete metric space, g an arbitrary
function from M into M, and ψ a lower semicontinuous mapping from M into
the non-negative reals. Suppose for each x E M

Then g has a fixed point in M.

Recently W. Ray [15] has refined Browder's approach and, as a
consequence, has obtained sharper results than in [4] or [13]. In this paper
we continue the development initiated in [15] and consider set-valued
mappings P: X -*2Y. Moreover, we are able to obtain stronger conclu-
sions than in Theorem B and the subsequent developments of Kirk and
Ray. In particular, we show that if P: X -» 2Y is strongly φ-accretive then,
under appropriate assumptions on the mapping P and on the space 7, P is
an open mapping; i.e. if U is open in X, P(U) is open in Y. Most
importantly, however, our results indicate a strong relationship between
the mapping theory for φ-accretive operators from X into Y and the
renorming characteristics of the space Y. This enables us to significantly
broaden the class of spaces for which Theorem B remains valid, for
example in Theorem B(I) we need only assume Y is a reflexive Banach
space. In §2 we state our results, discuss the implied geometric conditions,
and derive a number of corollaries; in §3, we give the proofs.

As a final observation, although all of our results are stated for
set-valued mappings, we note that our basic results are new even for
single-valued mappings P: X ~> Y.
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2. Results Before stating our results we need to introduce some
notation and recall some definitions. Let X and Y be Banach spaces. We
will be concerned with the following sets:

— {A C X: A is closed, bounded and non-empty},

β ( X ) = {A C X: A is compact and non-empty.}

Let φ: X -» Y* satisfy (1.1) and (1.2).

DEFINITION 2.1. A mapping P: X -* <$>( Y) is said to be locally strongly
φ-accretiυe if the following condition holds:

/ v For each x E X there exists ε > 0 and a constant c = c(x) > 0
^ ' ' such that for all w, t; E 5(x; ε) and all w E Pu, y E Pv

(w — y , φ ( u — υ ) ) > c\\u — υ\\2.

We will say P: X -> ® ( 7 ) is /ocα//y lipschitzian if there exists a constant
L > 0 such that for each x0 E X there is a neighborhood N(x0) with
i/(Pκ, Pϋ) < L | | κ — ϋ | | for all u,vEN(xQ); here // represents the
Hausdorff metric on ® ( 7 ) . (Recall, for any two closed, bounded, non-
empty subsets A and B,

H(A, B) = max supdist(x, B), supdist( j , A)
^ x<EA y<=B

where dist (x, B) denotes the usual infimum distance between a point and
a set.)

Finally, a Banach space Y is said to have a Frechet differentiable norm
if for each x E Y with || JC II = 1

λ-+0 A

exists uniformly for all j ^ E F w i t h \\y\\ = 1.

THEOREM 2.1. Let X and (Y, || ||) be Banach spaces and suppose
P: X -+ β( Y) is a locally lipschitzian, locally strongly φ-accretiυe mapping.
Suppose, in addition, that Y has an equivalent norm so that Y is Frechet
differentiable and Y* is strictly convex. Then if U is an open subset of X,
P(U) is an open subset of Y.

The next result follows as an immediate corollary.

COROLLARY 2.1. Let X, Y and P: X -> β( Y) be as in Theorem 2.1. //
P(X) is closed in Y, then P(X) = Y.
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Let / : Y -» 2Y* denote the duality mapping from Y into 2y*; i.e., the
mapping given by

J(x) = {x* G 7*: IU* | | 2 - IUII2 = (JC, **)}

where ( , *) denotes the generalized duality pairing. If Y* is strictly
convex, then, as is well-known, / is single-valued. Moreover a classical
theorem of V. SmuΓyan [17,18] states that when Y has a single-valued
duality mapping, that mapping is norm-to-norm continuous on bounded
sets if and only if Y has a Frechet differentiable norm. Thus Theorem 2.1
(and in particular Corollary 2.1) represent extensions of Theorem B(I) and
the subsequent development by Kirk and Ray to a much broader class of
spaces, as well as to the case when the mapping is set-valued. (Definition
2.1 varies slightly from the definition of locally strongly φ-accretive in [13]
or [15]. If one assumes the definition of [13], Corollary 2.1 is still
valid—see §3—although our proof of Theorem 2.1 does not carry over.)

Particular classes of spaces satisfying the renorming conditions of
Theorem 2.1 are generally well-known and we summarize at least part of
this information in Proposition D below. As usual, either [6] or [8] are
excellent references. Recall that a Banach space Y is weakly compactly
generated (WCG) if there exists a weakly compact set K C Y such that the
linear span of K is dense in Y. Easy examples of WCG spaces are co(Γ)
for any index set Γ and any separable space. Thus, in light of Proposition
D, any Banach space Y with separable dual satisfies the renorming criteria
of Theorem 2.1.

PROPOSITION D (cf. [6, page 160]). Let Y be a Banach space. Suppose
either

(i) Y — co( Γ) for some index set Γ, or
(ii) Both Y and 7* are WCG.

Then Y can be renormed so that Y* is strictly convex and Y has a Frechet
differentiable norm.

The proof of Proposition D essentially consists of showing that in
either case Y can be renormed so that 7* is dually locally uniformly
convex. (Thus, given a sequence y* of norm one elements and an element
yξ of norm one for which %\\y* + yg|| -> 1, we must havey* -»y£.) If (i)
holds, this is accomplished by appealing to a theorem of Troyanski [19]
which shows 1{(T) can be renormed to be locally uniformly convex and
then observing this new norm is a dual norm; in case (ii), the result is the
John-Zizler renorming theorem [12]. The proof is concluded by noting Γ*
locally uniformly convex implies Y* is strictly convex and Y has Frechet
differentiable norm (cf. [8, pg. 31-32].) Of course, as a consequence of this
last remark, any space Y which can be renormed so that y* is locally
uniformly convex satisfies the assumptions of Theorem 2.1.
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We have already mentioned one example of WCG spaces with WCG
dual. One final class of spaces satisfying (ϋ) of Proposition D merit special
attention.

THEOREM 2.2. Let X and Y be Banach spaces with Y reflexive. Suppose
P: X -> %(Y) is a locally lipschitzian, locally strongly φ-accretive mapping
with Px convex for each x E X. Then, if U is open in X, P(U) is open in Y.
In particular, if P(X) is closed, P(X) = Y.

We now turn to some immediate implications of the two previous
theorems. For the first of these assume that φ: X -> 7* satisfies (1.1) and
(1.2) and that c: [0, oo) -> [0, oo) is a nonincreasing, continuous function
with f™c(t)dt= oo for each a > 0. Theorems 2.1 and 2.2 yield the
following improvements of Theorem 4.11 of [1].

COROLLARY 2.2. Let X and Y be Banach spaces with Y satisfying the
renorming conditions of Theorem 2.1. Let P: X -> β ( 7 ) be a locally strongly
φ-accretive mapping. Suppose, in addition, P satisifies

(2.2) for each x, y E X and x E Px,u E Py

(w - u,φ(x -y)) > c(max{\\x\\,\\y\\})\\x -y\\2.

Then P is an open mapping with P( X) = Y.

COROLLARY 2.3. Let X and Y be Banach spaces with Y reflexive.
Suppose P: X -* %(Y) is a locally lipschitzian mapping satisfying (2.2) with
Px convex for each x G X. Then P is an open mapping with P( X) — Y.

We note that Corollary 2.2 (respectively Corollary 2.3) follows im-
mediately from Theorem 2.1 (respectively Theorem 2.3) and Theorem 3.3
of [16]. While Browder's original result only deals with mappings from X
into X; we are able to consider mappings from a space X into a different
space Y. Thus Corollaries 2.2 and 2.3 represent an extension of Browder's
result into the theory of φ-accretive mappings from X into Y. Theorem
4.11 of [1] has recently been extended in yet another fashion. W. Ray and
A. Walker [16] have shown that any continuous mapping P: X -» X
satisfying (Px — Py, J(x — y) > c(max{||jc||, II jll})IU — jμli2 is in fact a
homeomorphism of X onto X. Their approach involves showing P is an
open mapping by using standard techniques from the theory of ordinary
differential equations; although we retain the locally lipschitzian condi-
tion on P our approach is rather more self-contained and avoids any
reliance on differential equations.

Our next corollary represents a localized version of some results of
Deimling, however we need to place more restrictive conditions on both
the space X and the mapping than are required in [7].
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COROLLARY 2.4. Let X be a reflexive space with X* strictly convex.
Suppose P: X -* %{X) is a locally lipschitzian mapping with Px convex for
each x G X. Suppose, in addition, the mapping P satisfies

/- ^ for each x_E X, there is a neighborhood N(x0) and a constant
^ ' ' c- c(x0) > 0 so that for all u, v G N(x0) and w G Pu, y G Pv:

(w -y, J(u - v)) > c\\u - v\\2

where J: X -* X* is the duality mapping. If U is open in X. then P(U) is
open in Y.

We add parenthetically that if X and P: X-> <$>(X) satisfy the
assumptions of Corollary 2.4 and if P(X) is closed, then P(X) = Y.
Moreover, if P: X -» β( X), we need only assume that X* is strictly convex
and that X can be renormed to be Frechet differentiable; in particular,
under this additional assumption on the mapping P9 any space X with X*
locally uniformly convex will suffice in Corollary 2.4. Following [7], we
will say a mapping P: X -* X, where X* is strictly convex, is said to be
strongly accretive if for each x j G l

(2.4) (Px - Py9 J ( x - y ) ) > a ( \ \ x - y\\)\\x - y \ \ ,

where α: [0, oo) -» [0, oc) is a continuous function with α(0) = 0 and
α(/) > 0 for / > 0 . If, in addition, we impose the condition that
l iminf f _ o α(ί)/ί > 0 (as in [7, Theorem 1]), then condition (2.4) clearly
implies (2.3). Thus any strongly accretive mapping (in the sense of [7])
with liminf^o <x(t)/t > 0 will satisfy Corollary 2.4.

In each of the preceding results we have required the mapping to be
locally lipschitzian. As in Theorem B(II), this continuity assumption can
be weakened by placing a more restrictive geometric condition on Y*. We
will also assume φ: X -» 7* is a mapping satisfying (1.2) with φ(X) — 7*.

THEOREM 2.3. Let X and Y be Banach spaces and let P: X -» ® ( y ) be
a locally strongly φ-accretive mapping with Px convex for each x G X.
Suppose P satisfies the condition:

(2.5) for each u, v G X andy G Pu,

liminf dist( j , P(xt))/\\xt - u\\^2 = 0

where xt = u + tv. Suppose, in addition, that Y can be renormed so that Y*
is strictly convex and so that the duality mapping J: 7 -* 7* is lipschitzian
on bounded sets. Then, if U is open in X, P(U) is open in Y.
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Condition (2.5), which in the single-valued case reduces to a Holder
condition of order 1/2 along line segments, was introduced in [9] where
surjectively results are obtained for locally strongly φ-accretive set-valued
mappings which do not necessarily have closed range. However in [9, The-
orem 4] it is assumed that both 7 and Y* are uniformly convex. If
P: X-* Y is a single-valued mapping then Theorem 2.3, under the
assumption that Y* is strictly convex and /: Y -* 7* is lipschitzian, is
implicit in [15].

We should note that any space Y satisfying Theorem 2.3 is superre-
flexive (and hence reflexive.) This is easily seen by combining a theorem
of V. Smul'yan [17,18] with the fundamental result of Per Enflo [11]
characterizing those spaces which can be renormed to be uniformly
convex.

Since the assumptions on the mapping in Theorem 2.3 are of a local
nature, we make one final observation.

COROLLARY 2.5. Let X, Y and P: X->%(Y) be as in Theorem 2.3. //
P(X) is closed in 7, P(X) = Y.

3. Proofs. The proofs of our main results are based on the proofs of
Theorems 1 and 2 in [15]. As a preliminary observation, we note that if
(M, p) is a metric space and H is the Hausdorff metric generated by p
then, for any ε > 0 and any two closed, bounded subsets A and B C M,
given flGiwe can choose b G B so that ρ(a, b) < H(A, B) + ε. More-
over, if A and B are compact, we can choose b G B with p(α, b) <
H(A, B).

Proof of Theorem 2.1. Let || ||j be the norm on Y which is Frechet
differentiable with strictly convex dual norm. Then the duality mapping /:
(7, || II j) -> 2 ( n " lll}* is single-valued and norm-to-norm continuous.
Notationally, for A C 7, let V(A; r) = {y G 7: dist(j>, A) < r) (where
dist(j>, A) - inί{\\y - a\\x: a G A}) and let H be the Hausdorff metric
generated by || ||,. For any Banach space E and x G £, we will let
B(x;r) = {ySE: ||.y - JC|| <Ξr}.

Since 11 11, is an equivalent norm, P is locally lipschitzian with respect
to H and, for each x G X, Px is compact in (7,11 | | ,). Moreover, there
exist constants n, N > 0 so that

whenever x G X (here || | |* is the dual of the original norm on 7 and
II II* is the dual norm of || ||,.) Define φ: X -> 7* by φ = φ/N. Then

(i) φ( * ) is dense in (7, ll !!,)*>
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(ii) for each x E X and ξ > 0, Φ(ξx) = ξφ(x) and

H Φ ( * ) I I * = ^ I I Φ ( * ) H * ^ H Φ ( * ) H * ^ 11*11-

Let ί/ C X be open. Fix x0 E C/ and choose ε, > 0 so that P is
lipschitzian on 2?(x0; 2ελ)—say with constant L—and so that B(x0; 2ελ)
C U. Using the facts that P is locally strongly φ-accretive and that 11 11, is
an equivalent norm along with the definition of φ allows us to select
c = c(x0) > 0 and ε2 > 0 so that

(3.1) if u, v E B(x0; 2ε2), then for all w &Pu9z GPv

(w — z , φ(u — v)) ^ c\\u — v\\2.

Set ε = min{ε,, ε2) and r — cε/2. It suffices to show V(Px0; r) C P(ί/),
so letj^ E F(Px 0 ; r) and note

(3.2) if x E B(xo;2ε) anddist(>^, Px) < r, then | |x - x o | | < ε.

To verify (3.2), let x satisfy these assumptions and suppose z E Px. By
(3.1), for each z 0 E Px 0 ,

c\\χ — x | | 2 < ( z —z , φ(x — x ) ) < | | z —z II IIx — x II

and thus | |x — x o | | < || z — ZQIIJ/C. Using compactness, we may choose
z 0 E Px 0 so that | |y — z o | | j = dist(^, Px 0 ) . Now

||x - x o | | < - | | z - ZQU! < - [ | | z - j l l j + dist(j>, Px 0 )]

and since z is an arbitrary element of Px,

1 O

IIx - x o | | <-[dist(>>, Px) + dist(>>, Px 0 ) ] < — = ε.

and (3.2) is established
Define D = {x E 5 ( x 0 ; ε): dist( j , Px) < r} and let d =

dist(>^, P(D)). It suffices to show J = 0, for then there exists a sequence
{xM} C D and a sequence {yn} converging to j> where, for each «, yn E Pxw.
By (3.1), {xM} is Cauchy and thus converges to some x^ E D\ since P is
locally lipschitzian it follows easily that y E Px^.

Assume d> 0 and fix x ^ D. Choose z E Px so that \\y — z\\x =
dist(^, Px). Since Φ(X) is dense; we may also choose h E X, \\h\\ > 1
with

(3.3) ||φ(Λ) - IIj - z\\-λ

xJ{y - z) | | , < ^ .

Let xt — x + th and let ί > 0 be sufficiently small so that (3.1) implies

{zt- z,φ{xt- x))>c\\xt x\\2
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for all z, G Pxt. This, in turn, yields

{zt-z,φ{h))>ct\\h\\2>c\\xt-x\\

for all zt G Pxt. Using compactness once again, select zt G Px, so that
|| zt — z II, < L \\xt — x || and observe for this particular point

Combining the above inequality with (3.3) we have

(z, - z, J(y - z))

= (z, - z, \\y ~ f H, φ(A) - IIy - ill, φ(h) + J(y - z))

-\\y - f II, (z r - z,φ(h) + ||y - z\\?J(y - z))

j\\y - zWyWz,- zW.-jj-Wy - z\\,\\zt~ z\\,

Using the well-known fact that / is the subgradient of ΐll llf (i.e.,
|| uII \ < II v || \ ~ 2(t» — u, J(u)) for all u, υ G 7), we use the last inequal-
ity to estimate \\y — zt\\^:

(3.4) | |y - 2,||f < | |y - z\\\ - 2(zt - z~,j(y - z,))

= \\y-z\\f-2(zt-z,J(y-z))

+ 2(z,-z,J(y-z)-j(y-z,))

<\\y - z\\ϊ - j^Wy - z\\x\\zt-

+ 2||z, - f 11,11/(̂  - z) - / ( ^ - z ()| |,.

Since P is locally lipschitzian and / is norm-to-noπn continuous, we can
choose t > 0 sufficiently small so that

(3-5) \\J{y-2)-J{y-zt)\\χ^

and since z G Px, H^ - f ||, > dist(^, P{D)) - d. Combining (3.4) and
(3.5), we obtain

| |y - zt\\\ < IIy - z| |f - ^ | | z , - f ||, + jjβWz, ~ ^11,,
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which when rewritten yields

(3.6) | | l k , - i l l , < \\y - ϊ\\\ - \\y - zt\\\

<[dist(j>, P(x)]2 — [dist(j>, Pxt)]2.

Note, in particular, this says \\y — zt\\λ < \\y — z\\x and hence
dist(j>, Pxt) < r.

We now construct a function g on D: let x E D and choose t > 0
sufficiently small so that (3.6) holds and ||JC, — JC || < ε. Set g{x) — xt\
(3.2) then implies g: D -* D. Moreover, since g(x) E D, we can combine
(3.1) and (3.6) to obtain

jj-\\x - g(x)\\ <[dist(^, Px)]2 ~[dist(j, Pxt)f.

Since the mapping ψ0: x -> dist(y, Px) is l.s.c, an application of Theorem
C with ψ = 2 L Ψ Q / C 2 J provides a contradiction to the assumption that
d > 0. Thus j E P(ί/) and P(U) is open, finishing the proof of Theorem
2.1.

We note that if A is a closed, convex, bounded subset of a reflexive
space Y, then A is proximinal; i.e., given any j> E Y, there exists α E i
with \\y — a\\ = dist(j, ^4). Moreover, if P: X-> ®(Y) is a mapping and
u,υ G X are such that //(Pw, Pυ) < L \\ u — v II, given z E Pw and Lo> L
the remarks prior to the proof of Theorem 2.1 allow us to choose w E Pυ
with | | w - z | | < L 0 | | κ - t > | | .

of Theorem 2.2. Since reflexive spaces are clearly WCG, Pro-
position D guarantees the existence of an equivalent norm 11 11, on Y so
that (Y, || | |,) has Frechet differentiable norm and (Y, II | | , ) * is strictly
convex; moreover, for each x E X, Px is a closed, convex, bounded subset
of the reflexive space (Y, II \\λ). Let L be the local Lipschitz constant of
the mapping P: X -» %(Y) and fix Lo > L. By the preceding comments,
we may now duplicate the proof of Theorem 2.1, replacing L by L o, to
establish Theorem 2.2.

The proof of Theorem 2.3 is, as was the case with Theorem 2.2,
essentially a minor variation of the proof of Theorem 2.1. We employ the
same notation as previously.

Proof of Theorem 2.3. Let || |li be the norm on Y so that / :
(Y, || II,) -* (Y, II II,)* is lipschitzian on bounded sets. Let U C X be
open, fix x0 E U and choose ε > 0 so that B(x0,2ε) C U and (3.1) holds
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on £(xo,2ε). Let r - cε/2 and let y E V(Px0; r). Note that (3.2) is still
valid and that it will suffice to show d = dist(y, P(D)) = 0 where D =
{x E B(x0; e): dist(y, Px) < /•}.

Fix x E Zλ Choose £ E Px so that 11 y — f II x = dist(>>, Px) and, since
= Y* implies φ(X) = Y*, we may also choose h E X with φ(Λ) =
z). Letx, = JC + *Λ. Since | | j - z 1̂  < IIΛII, (3.1) implies

(3.7) (z, - z, /(y - z)) ^ clU, - jell \\y - z\\λ

for all zt E Pxr whenever / > 0 is sufficiently small. Let zt E Px^ and
apply (3.7) to get

[dist(j, Px r)]2 < ||.y - zjlf < \\y - z\\\ ~ 2(zt - z, J(y - z,))

= | | ^ - z | | f - 2 ( z f - z , / ( ^ - z ) )

+ 2{zt-z9J(y-z)-J(y-zt))

+ 2||z, - z\\x\\J(y - z) -

Let zt E Pxr be choosen so that 11 zt — z II x = dist(z, Pxr) and let M be the
Lipschitz constant of / on B(0; 2r). Then from the above, assuming d > 0,
we have

, Px,)]2 <[dist(7, Px)]2 - 2cd\\xt - x\\ + 2M[dist(z, PxJ] 2 ,

provided that dist(f, Px,) < 2r, which, by (2.5), is true for all / > 0
sufficiently small. In fact, (2.5) implies

[dist(z,Px,)]2<ε(OIU,-*ll

where e(t) -» 0 as t -> 0. Thus, for t near zero, e(t) < cd/2M and

[dist(j, Px,)]2 <[dist(y, Px)] 2 - crfllx, - x||.

(3.2) again implies x, E 2) and hence we once more obtain a contradiction
via Theorem C.

We conclude by comparing our definition of locally strongly φ-accre-
tive with that introduced by Kirk [13]. To ease this discussion, consider
the case where P: X -> Y. In [13], and subsequently in [15], P: X -» Y is
said to be locally strong φ-accretive if, for each j> E Y and r > 0, there is a
c > 0 such that

(2.1)r If || Px - y || < r, then, for all u E ^ sufficiently near x

(Pw - Px,φ(u - x)) < c | | x - w||2.
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Thus our definition varies from that employed by Kirk in two instances.
First he assumes that inequality (2.1)' holds only for pairs of the form
(w, x) in some neighborhood of JC, we assume the stronger condition that
(2.1) holds for all pairs of points in the neighborhood. Our stronger
condition enables us to show P is locally closed; this is essential to the
proofs of Theorems 2.1 and 2.2. On the other hand, Kirk's constant c
depends on y and holds for any x with || Px — y || < r; in (2.1) we impose
a weaker condition that c need only depend on x. Since c = c(x), we are
able to derive Browder's result [1, Theorem 4.11] as a corollary (Corollaries
2.2 and 2.3).

As mentioned earlier, Corollary 2.1 (and the corresponding result for
Theorems 2.2 and 2.3) remain valid under Kirk's definition (see [9] for the
set-valued version). To see this we again modify the proof of Theorem 2.1.
Suppose P( X) is closed, fix x0 G X and choose εx so that P is lipschitzian
on B(x0; 2ελ). Select c > 0 and ε2 > 0 so that

(3.1)' ifz <ΞP{X) Π K(Px o ;2Lε 1 )andxGP- 1 (^),thenif

IIu — jell <2ε 2 (z - w, φ(x - u)) >c\\x - w||2forallw G Pu.

Set ε = mίn{εl9 ε2) and r = min{cε/2, Lε} where L is the local Lipschitz
constant of P. Let y G V(Px0; r)\ we need only show y G P(X). Claim
(3.2) remains valid, for if z G Px,

dist(z,Px0) <H(Px,Px0) <L\\x - xo\\ < 2Lε

and so by (3.1/

c\\x - xo\\2 < ( z - zo,φ(x - xQ))

< IIZ-ZOIIJIJC-XQII forallz0 E Px0.

Let d — dist(j>, P( X)). If d > 0, the construction in the proof of Theorem
2.1 remains intact and again provides a contradiction to Caristi's Theo-
rem. Thus d=0 andy G P(X).
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