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H°° INTERPOLATION FROM
A SUBSET OF THE BOUNDARY

FRANK BEATROUS, JR.

We obtain necessary and sufficient conditions for a bounded func-
tion on an open subset of the boundary of a smooth, bounded domain D
in Cn to be the restriction of a holomorphic function from D into the unit
disc. Our condition is a quadratic inequality involving the Szegό kernel
of D which is the boundary analogue of the classical Pick-Nevanlinna
condition for interpolation in the unit disc.

The classical interpolation theorem of Pick [7] and Nevanlinna [5]
provides a necessary and sufficient condition for a function / defined on a
subset {<?,} of the open unit disc Δ to be the restriction of a holomorphic
function from Δ into itself. This condition is a quadratic inequality
involving the Szegό kernel of Δ. Specifically, an interpolating function of
the required type exists if and only if for every finitely non-zero collection
{α } of complex numbers we have

(1)

where

S(z,ζ)=[2π(l-zξ)]-1.

This result has been generalized by FitzGerald and Horn [4] (under the
additional hypothesis that {at} is a set of uniqueness for holomorphic
functions) to more general sesquiholomorphic positive definite kernels
defined in arbitrary domains in C". In this note we address the analogous
problem when the function / is specified on a subset of the boundary. In
the case of the disc or the upper half plane, this problem has been
considered by FitzGerald [3] and by Rosenblum and Rovnyak [8].

The method presented here applies to a rather general class of
domains in C". Our condition is similar to (1), but the summation must be
replaced by integration. Thus, a bounded function / defined on an open
subset E of the boundary (or distinguished boundary) of a domain D gives
the boundary values of a holomoφhic function from D into Δ if and only
if for every p E L2(E)

(2) [fs(z,ζ){l -
JEJE
[

JEJE

Here S(z, ξ) is the Szego kernel for D and σ is the induced measure on dD
(or on the distinguished boundary in the case of a product domain).
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Because the Szegδ kernel is singular on 3Z), some care must be taken to
interpret (2) properly. A precise formulation is given in §1.

1. Preliminaries. Let D be bounded a domain in C" with C2

boundary. A characterizing function for D is a real valued C1 function p on
C such that D = {p < 0} and dp ^ 0 on dD. If p is any characterizing
function, then there is an ε0 > 0 such that the domains Dε = {p < — ε)
are subdomains of D with C1 boundary for 0 < ε < ε0. Let σ and σε

denote the surface measures on dD and dDε respectively.
For 0 < p < oo, the Hardy class HP(D) is the class of all holomorphic

functions/on D satisfying

111/111,= sup / \fγdo\ <oo.

If we replace \f\p by log+ | / | = max{log | / | , 0}, we obtain the Neυenlinna
Class %(D). It follows from subharmonicity of log | / | and \fγ that these
classes are independent of the characterizing function used in the defini-
tion. For 1 </> < oo, Hi nij, is a norm which makes HP(D) into a Banach
space. Clearly the Nevanlinna class contains all of the Hardy classes.

Any function / E %(D) has non-tangential limits at almost every
point of 3D. (In fact, even more is true. See [9], Chapter 2.) We will
denote the boundary value function by/*. (We will occasionally omit the
* and write simply /(£) for /*(£) when ξ E dD.) If / E HP(D) then
/* E Lp(dD) and moreover "dilations" of/converge to/* in Lp(dD). To
make this statement precise, let π be the normal projection of a tubular
neighborhood of dD onto dD. Then for ε sufficiently small, rπt —

 tn \dDε is a
C1 diffeomorphism of dDε onto dD. For any function u on D we define
ue = u o π~ι. Our assertion is that for / E HP(D), 0 <p < oo, fe con-
verges to/* in Lp(dD). The mapping/-*/* is a linear isomorphism from
HP(D) onto a closed subspace of Lp{dD). We will denote the range of
this mapping by Hp(dD). For/ E /P(Z>) we define \\f\\p to be || /*|| LP{dD).
For/? > 1, the norms II 11̂  and ||| m̂  are equivalent. The reader is referred
to Stein [9] for a thorough investigation of boundary behavior of holomor-
phic functions.

The space H2(D) with the norm || II2 is a Hubert space. Moreover,
point evaluation at any point of D is a continuous linear functional. It
follows that H2(D) has a reproducing kernel S(z, ζ) defined on D X D.
(See Aronszajn [1]). The kernel S(z9 ζ) is the Szegδ kernel for D, and has
the following properties:

1. S{ -, f) E H\D) for any fixed £ E Z). In particular, 5( , ξ) has
non-tangential limits at almost every point of dD.

2. For any fixed zl9...9zN E D the matrix [5(z/9 zy)] is positive
definite. In particular, S(ξ9 z) =S(z9ξ) and S(z9 z) > 0.
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3. Let S: L2(dD) -»H2(dD) be the orthogonal projection. Then
Sf= (Sf)* where S: L2(dD) -* H2(D) is defined by

Sf(z) = </, S( , z)) L h m = / f(ζ)S(z, ζ) do(t ) .

We will henceforth omit the tilde and use the symbol S to denote either
operator.

We can now give a precise formulation of our main result.

(1.1) THEOREM. Let D be a bounded domain in Cn with a C2 boundary,
E an open subset of dD, and f a bounded, measurable function on E. Then
the following conditions are equivalent.

(i) There is a holomorphic function f from D into Δ {the open unit disc
in C) such that/* \E = /.

(ϋ) For every p G L\E) we have \\SχEpf\\2< \\SχEp\\i-

Here χE denotes the characteristic function of E, and we have
adopted the convention that, if p is a function on E, then χEρ denotes the
function on 3D which agrees with p on E and which vanishes on dD\E.
Theorem (1.1) will be proved in §2.

Condition (ii) in the above theorem can be reconciled with the
integral condition (2) in the introduction as follows. For any p E L2(E)
we have

WSχEρ\\2 = (SχEρ,SχEp)H2(dD)= (SχEp,χEp)L2(dD)

= lim f ίs(z-εp(z)9ς)p(z)ffi)dσ(z)dσ(ζ).
ε^Q+ JEJE

Here v(z) denotes the outward unit normal to dD at z. Thus condition (ii)
of Theorem (1.1) can be reformulated as follows:

(ii') For every p E L2(E) we have

Jim jJs{z-εv{z)Λ){\ ~ f(z)f(ζ))p(z)^{ξ)dσ(z) da(ξ) > 0.

Finally, we remark that, in the one variable case, condition (ii) can
also be formulated in terms of principal value integrals (c.f. FitzGerald
[3]).

2. Proof of the main theorem. We begin with a uniqueness result.

(2.1) THEOREM. Let D be a bounded domain in Cn with a C2 boundary,
and let E be a Borel set in dD with positive measure. Let f E 9l(Z>) and
suppose that /* \E = 0. Then f = 0.
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Proof. Suppose fm 0. Let z0 G D with f(z0) φ 0. If G(z, ξ) is the
Green's function for D, then p = G(z0, •) is a characterizing function for
D. For / 6 i ? and c > 0, set log, c = max{log c, t) and log" c =
min{logc,0}. Since log f |/ | is subharmonic in D we have, for ε > 0
sufficiently small,

(3)

where Dε = {ζ G D: G(z0, ξ) < -ε} . (Note that for f G 3Z)e,
— 9G(z0, f ) / ^ is the Poisson kernel for Dε). It is immediate from (3)
that for t < 0 we have

log|/(z0) |< c,jΓ^ logΓ I/I rfσe + c2jf^ log+ | / | rfσ.

where c, and c2 are positive constants. Since / is in the Nevanlinna class,
the last term is bounded, so we obtain

(4) j log," |/ |έ/σ e> const.

As in §1, we let πε be the restriction to dDε of the normal projection onto
dD, and set fε = / © π~ι. Then we have

(5) ^ l o g Γ | / μ σ ε < c 3 ^ l o g Γ | / ε μ α

for some positive constant c3. It follows from (4) and (5) that for
sufficiently small ε > 0 and for / < 0,

f log, |/e|dσ>c4> -oo.
JdD

Letting t -» — oo, we obtain from the Monotone Convergence Theorem
that

l o g - | / β | d σ > c 4 .

But/ε converges to/* almost everywhere, so by Fatou's lemma

/ log" |/* I do > limsup / log" \fε \ do > c4 > — oo.

It follows that /* cannot vanish on a set of positive measure, so the proof
is complete.

Let us now turn to the proof of Theorem (1.1). That the first
condition implies the second is an immediate consequence of the follow-
ing simple Hubert space result.
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(2.2) LEMMA. Let P be the orthogonal projection from a Hubert space H
onto a closed subspace K of H and let C be a contraction operator on H
which leaves K invariant. Then the operator T' = P — CPC* is non-nega-
tive.

Proof. Since T is self adjoint, it suffices to show that (Tφ9 φ) > 0 for
φ G R(T). For such φ we have

| | P C * φ | | 2 = (PC*φyPC*φ) = (PC*φ,C*φ)= (CPC*φ,φ)

< | | C P C * φ | | | | φ | | < | | P C * φ | | | | φ | | .

But φ G R(T) C K, so φ = Pφ. Thus we have IIPC*φII < | |Pφ| | from
which the desired result follows immediately.

To show that condition (i) of Theorem (1.1) implies condition (ii),
apply Lemma (2.2) with H, K, P, and C replaced by L2(9Z>), H2(dD\ S,
and multiplication by/* respectively.

We now consider the reverse implication. We begin by showing that if
condition (ii) is satisfied then there is an interpolating function in the
Hardy class H\D).

(2.3) LEMMA. Let D be a bounded domain in Cn with C2 boundary, E a
Borel set in dD with positive measure, and let f be a measurable function on
E such that \\SχEρf\\2 ^ \\SχEp\\2for every p G L2(E). Then there is a
unique f G H2(D) with /* \E = /.

Proof. The uniqueness assertion follows from Theorem (2.1). For the
existence proof, we introduce a conjugation operator T on H2(D). Let
{φj} be any orthonormal basis for H2(D) with φ0 = (σ(dD)y\ and
define τ(Σajφj) = Σάjφj. (Of course T depends on the choice of basis).
Then T is an isometry of H2(D) satisfying (τφ9 ψ>= (rψ, φ) for any
φ,ψE.H2(D). Set M0 = {τSχEp: p<ΞL2(E)}, and define C: Mo -»
H2(D) by C(τSχ£p) = τSχEfp. Our hypothesis implies that C is a well
defined operator o£ norm at most 1, so C has a unique continuous
extension to M = Mo, which we continue to denote by C. (In fact, it can
be shown that M = H2(D), but this is not crucial here). Let C*: #2(£>)
-» M be the Hubert space adjoint, and set / = τC*l. Then for any
p G L2(E) we have

p)LHE)= (rC*l,SχEp)H2iD)= (τSχEp,C*l)

= (τSχJPA)= (l9χEfP)= (f,p)L\

so/*!*=/.



28 FRANK BEATROUS, JR.

To complete the proof of Theorem (1.1) we must show that the
interpolating function constructed above is in fact bounded by 1. We will
require some technical lemmas.

(2.4) LEMMA. Let D and Do be bounded domains in Cn with C2

boundaries with DQ C D. Then the restriction mapping f -> f\Do is a continu-
ous linear operator from H2(D) to H2(D0).

Proof. Let P and Po be the Poisson kernels for D and DQ respec-
tively and let z 0 G Do be fixed. For / G H2(D\ set h(z) =
SZD\m\2P{zΛ)do{ζ). Then

9A> *^A>

h(ζ)P0(z0,ξ)dσ(n

9JΛS)\2MS)

where

Cx=[min{Po(zo,ξ):£EdDQ}]-] and C2 - max{P(zo,£): ξ G 3/)}.

(2.5) LEMMA. Lei D αwJ D o 6e as in (2.4) αwd to S(z9 ξ) be the Szego
kernel for D. For u G L2(dD0), z G D, define

(Γiι)(z) = / u(ξ)S(z,ξ)dσ(ξ).

Then T is a continuous linear operator from L2(dD0) into H2(D).

Proof. Set Tx = 3D0 Π dD, Γ2 = dD0\dD, and write T = Γ, + T2

where

(T,u)(z)=fτu(ζ)S(z,ξ)dσ(ζ), 7= 1,2.

We will show that each Tj is a continuous operator from L2(3DO) into
H\D).

We can easily dispose of Γ,. For u G L2(3DO) we have | |Γ,«| | =
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For Γ2, let us first assume that u is a continuous function with
compact support in Γ2. One easily checks that the mapping ξ -> Sζ =
S( -, ξ) is continuous from D into H2(D). Thus ζ -> u(ξ)Ss is a continu-
ous H2(D) valued function with compact support in Γ2. It follows that
jj2u(ξ)Sydσ(ζ) converges in the norm of H2(D) to some function
T2u E H (D). Moreover, for any z G ΰ w e have

= ί
Jτ2

= Uu(ξ)Ssdσ(ξ),Sz\

, Sz) dσ(ξ) = / u(ξ)S(z, ξ) dσ(ζ).
Jv2

Thus f2u = T2u, and so T2u E H2(D) and

\\T2u\\2 = I ( u(ξ)S{dσ(ξ), ί u(η)Sηda(η))
\Jτ2

 Jτ2 I

f , Sη) dσ(ξ) dσ(η)= ( f

< constll r2w II ^2^) || w ||

The last inequality follows from Lemma (2.4). This yields the required
estimate when u is a continuous function with compact support in Γ2.

Now let u G L2(dD0) be arbitrary. Choose a sequence {uj} of con-
tinuous functions with compact support in Γ2 such that lim || u — uj || L2(Ti)

= 0. By the above estimate, \\T2Uj\\H2(D) is bounded, so we may assume,
after passing to a subsequence, that {T2Uj} has a weak limit v in H2{D).
But for z G D we have

= lim

and so ||Γ2iι|| = \\υ\\ = lim||Γ2uy.|| < constllwII^2(Γ2).
Combining the estimates for Tλ and T2 yields the desired estimate

for T.

(2.6) LEMMA. Let D be a bounded domain in C" with C2 boundary, E an
open subset of dD and let f E H2(D) be such that /* \E is bounded and
\\SχEpf\\ < I l 5 χ ^ for every p £ L2(E). Then the kernel K(z9ξ) =

S(z, f) (1 - f(z)f(ξ)) is positive definite in DX D.



30 FRANK BEATROUS, JR.

Proof, (cf. Donoghue [2] Theorem 4). Choose a proper subdomain Do

of D with C 2 boundary such that dD0 Π dD C £ , and such that E' = dD0

Π dD has positive surface measure. By representing/as a Poisson integral
in Z), one easily verifies that/is bounded on Do. We define an operator K:
L\dDQ)-> H\DQ) by

(Ku)(z) = f K{z,ζ)u(ξ)do{ζ).

Note that K is a continuous operator by Lemmas (2.4) and (2.5). By
identifying H2(D0) with H2(dD0), we may view JKΓ as a self adjoint
operator on L 2(3D 0). We will show that K is a positive operator. Since the
range of K is contained in H2(dD0) it suffices to show that (Ku, w)> 0
whenever w G H2(dD0). Let i?: H2(dD0) -> L 2 (£") denote the restriction
mapping. By Theorem (2.1), 7? is one to one, so R*: L2(E') -> H2(dD0)
has dense range. Thus to verify that K is a positive operator, it suffices to
show that (KR*p, R*ρ)L

2(dD0) — 0 f°Γ every p E L2{Ef). But one can
easily check that

(KR*p, Λ * P >

which is non-negative by hypothesis, so K is a positive operator on
2

Next we show that K(z, ξ) is a positive definite kernel on (9Z)O\3Z>)
X (9Z)O\3Z>). Let {/?1?... ?JPΛΓ} be arbitrary points in dD^\dD. For 1 <j <
TV, choose a family {φj, ε > 0} of continuous, non-negative functions on
3Z>O\3Z) such that / φ* do = 1 and such that the support of φj is contained
in {I z — p I < ε}. Then for any complex numbers ( α 1 ? . . . , α^} we have

= εlim jJK(z, ξ)( 2 «,Φ;(z))(Σ«,Φε(n) ^(z) do{ζ)

which is non-negative since K is a positive operator. Thus K(z,ζ) is a
positive definite kernel on (3Z)O\9D) X (9DO\9D).

Finally, to conclude that JSΓ(Z, f) is positive definite on D X Z) it is
only necessary to observe that if we are given any finite set of points in D,
then the domain Do in the above argument could be chosen so that the
given points lie in the boundary of Do.

With the aid of Lemma (2.6) it is now a simple matter to complete the
proof of Theorem (2.1). If condition (ii) holds, then, by Lemma (2.3),
there is an interpolating function / i n the Hardy class H2(D). But by
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Lemma (2.6), the kernel K(z, ξ) = S(z, f )(1 - f(z)f(ξ)) is positive defi-
nite. In particular, K(z, z) > 0 for every z G D. Since S(z, z) > 0, it
follows that \f(z) | < 1 in £>, and the proof is complete.

3. Concluding remarks. 1. Theorem (1.1) can be generalized to the
case of product domains, provided that each factor is a bounded domain
with C2 boundary. In this case, 3D must be replaced by the distinguished
boundary 30D, σ is replaced by the product of the surface measures of the
factors, and S(z, ξ) is the product of the Szegό kernels of the factors. The
Hardy class Hp is identified with a subspace of Lp(d0D), and the
constructions in the above arguments are carried out in each factor.

2. In principle, it should be possible to recover the interpolating
function from its values on E. An explicit formula has been obtained by
Patil [6] in the case of the polydisc. It would be of interest to obtain
analogous formulas for other domains.
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