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CRAWLEY'S PROBLEM ON THE UNIQUE
ω-ELONGATION OF ̂ -GROUPS IS UNDECIDABLE

CHARLES MEGIBBEN

Let G be an abelian ̂ -group with pωG — 0. Crawley has raised the
following question: If all groups A with pωA cyclic of order p and
A/pωA = G are mutually isomorphic, is G necessarily a direct sum of
cyclic groups? We show this question to be independent of the axioms of
set theory. Specifically, we prove that MA + -,CH implies a negative
answer for some G of cardinality S, whereas, if V = L is assumed, then
every such G of cardinality 8, must be a direct sum of cyclic groups.

1. Introduction. All groups considered in this article are additively
written /^-primary abelian groups. If G is such a /?-group, then pnG —
{pnx:x<ΞG} for n < ω and pωG = Πn<ωpnG. We call G separable if
pωG = 0 and SΓseparable if pωG = 0 and every countable subset is
contained in a countable direct summand. By a subsocle of G we mean a
subgroup of the socle G[p] = {x G G: px = 0}. We shall view the/?-group
G as a topological group endowed with the p-adic topology (the pnG's
form a neighborhood basis at 0) and its socle G[p] as a topological vector
space in the induced topology. A particularly prominent role in our
considerations will be played by dense subsocles P of codimension one
(that is, P is a dense subspace of G[p] and G[p]/P ^Z(p), the cyclic
group of order p). We shall write "Σ-cyclic" as an abbreviation for "a
direct sum of cyclic subgroups."

It has been proved by Crawley [2] and by Hill and Megibben [8] that
if the /?-group G is Σ-cyclic, then any two /^-groups A and B with
pωA = pωB and A/pωA = G ^B/pωB are necessarily isomorphic. That,
conversely, Σ-cyclic groups are characterized as precisely the separable
/?-groups G satisfying this unique ω-elongation property was later estab-
lished by Nunke [12] and Warfield [14]. But Crawly had previously raised
the question of a somewhat stronger converse: If G is a separable/?-group
with the property that all groups A withpωA = Z(p) and A/pωA = G are
mutually isomorphic, is G necessarily Σ-cyclic? We find it convenient to
use the term "Crawley group" for such /?-groups G. The conjecture that
the Crawley groups are precisely the Σ-cyclic /?-grouρs appears, in view of
the Nunke-Warfield theorem, quite promising; and, assuming CH, War-
field [14] succeeded in showing that every Crawley group with countable
basic subgroup is in fact Σ-cyclic. On the otherhand, the Nunke-Warfield
result strongly uses the fact that pωA is allowed to be uncountable and,
mindful of the analogous impact that countability considerations have on
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the Baer and Whitehead problems (see [4]), we should be alert to the
possibility that we might be dealing here with a problem that cannot be
resolved in ordinary set theory. Such indeed is the case. Precisely, we shall
show that Martin's Axiom and the denial of the Continuum Hypothesis
(MA + -,CH) lead to the existence of a Crawley group of cardinality N1

which is not Σ-cyclic; whereas, Godel's Axiom of Constructibility (V = L)
implies that all Crawley groups of cardinality S x are Σ-cyclic.

Unlike most of the independence and consistency results obtained
heretofore for abelian groups (see for example, [4] and [11]), the Crawley
Problem has no natural homological formulation, that is, although it
certainly deals with extensions, the problem is not equivalent to the
vanishing of some Ext(2?, C). There is, nevertheless, an extremely useful
translation of the Crawley Problem to an appropriate question about the
internal structure of the group G. Indeed the following criterion is an easy
consequence of the main theorem of [13]:

RICHMAN'S CRITERION: The separable p-gτoup G is a Crawley group
if and only if Aut G, the automorphism group of G, acts transitively on
the dense subsocles of codimension one.

2. Crawley's problem and V — L. Using a standard variant of Jensen's
<0 -principle, a known consequence of V = L, we shall prove the following
result.

THEOREM 2.1. (V — L) A Crawley group of cardinality Nj is Σ-cyclic.

First we need to recall certain definitions. By an ω, -filtration of the
group A we mean a well-ordered family {Aa}a<ωι of countable subgroups
of A such that Aa C Aa+X for all α, Aa — (jβ<a Aβ if a is a limit ordinal
and A = U α < ω Aa. A cub is a subset of ωx which is closed and un-
bounded in the order topology of ωx and a subset E of ωx is said to be
stationary if it has nontrivial intersection with each cub. Equivalently, E is
stationary if it meets the range of every strictly increasing, continuous
function /: ωx -> ωx. The fundamental combinatorial result we require is
the following observation of Jensen's [10]:

LEMMA 2.2. (V = L) // {Gα}α < ω i is an ωrfiltration of G and if E is a
stationary subset of ωv then there is a family of maps fa: Ga -> Ga (a G E)
such that for each map g: G -> G, {a: g \ Ga = fa) is also stationary in ωx.

We shall prove Theorem 2.1 by using 2.2 to argue that Richman's
Criterion must fail for any separble/7-group G of cardinality tfx which is
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not Σ-cyclic. The crucial link between all these seemingly disparate
notions is contained in our next result.

LEMMA 2.3. Let G be a separable p-group which is not Σ-cyclic and
suppose P is a dense subsocle of codimension one. Then for any ω,-filtration
{Pa}a<ωx of P, E = {a: a is a limit and Pa is not a closed subset of P} is a
stationary subset of ωx.

Proof. Since the limit ordinals in ωx form a cub and the intersection of
a cub with a stationary set is itself stationary, it suffices to show that the
set EQ consisting of all a < ωx with Pa not closed in P is stationary. Let us
suppose to the contrary that Eo fails to be stationary. Then there is a
strictly increasing, continuous function /: ωλ -> ωx having range disjoint
from Eo. If we now set Ta = Pf(a) or all a < ω,, then it is clear that
{Ta}a<ωι is an infiltration and, moreover, each Ta is closed in P by choice
of/. To see what this implies, it is convenient to view P as an object in the
category Ύ of valued vector spaces (in the sense of Fuchs [6]) with
valuation induced by the height function on G. Then since each Ta+X/Ta

is countable and Ta is closed in Ta+V theorems 1 and 2 in [6] imply that
we have a direct decomposition Γα + 1 = Fa θ Ta in the category Ύ where
Fa is free as a valued vector space. It then follows that P = θ α < ω Fa in Ύ
and hence P is free as a valued vector space; that is, in the terminology of
[9], P is a summable subsocle. Since P is a dense subsocle, there is a pure
subgroup H of G such that H[p] — P [5, Theorem 66.3]. Consequently,
the version of the Kulikov Criterion given by Charles [1, Theoreme 1]
implies that H is Σ-cyclic. But G/H is countable since P has codimension
one in G[p] and, by a standard argument, G — K@ C where K is a
summand of H and C is countable. This, however, yields the contradiction
that G itself is Σ-cyclic by Priifer's Theorem [5, Theorem 17.3].

We are now ready to prove Theorem 2.1. Let G be a separable
/?-group of cardinality S, which is not Σ-cyclic and let P be a fixed dense
subsocle of codimension one. Take z E G[p]\P and select an ωx-filtra-
tion {Pa}a<ω] such that z lies in the closure of Pω and P α + 1 = Pa + (za)
for all a. We then construct inductively an ω rfiltration {Ga}a<ωι of G
such that each Ga is maximal in G with respect to Ga[p] = Pa + (z).
Now take E to be the stationary subset of ωj described in Lemma 2.3 and
let fa; Ga -> Ga (a G E) be a family of maps satisfying Lemma 2.2. To
show that Richman's Criterion fails for G, we need to find a dense
subsocle Q of codimension one such that Θ(P) Φ Q for all automorphism
θ of G. We accomplish this by constructing inductively a family of
subsocles {β α } α < ω , satisfying the following three conditions:

(1) Qn - Pn for n < ω, Qa C Qa+λ and z £ Qa for all a and Qa =
U β < α Qβ for limit ordinals a.



208 CHARLES MEGIBBEN

(2) If a E E, fa(Pa) = Qa and fa is the restriction to Ga of some
φ E Aut G with z £ φ(P), then β α + 1 = β α + (ya - z) where >>α = φ(xa)
for some xα E P in the closure of Pa but jot in Pa itself.

(3) Pβ C Qβ + (z) except when /? — a + 1 with α satisfying condi-
tion (2).

Notice that the assumption that z & Φ(P) in (2) guarantees that
z ζ£ βα+i — δ« + ( Λ ~ z ) s o Λat (2) does not conflict with (1). Also
note that if β is a limit ordinal and (3) is satisfied for all smaller ordinals,
then the choice of Qβ dictated by (1) will automatically satisfy (3).
Therefore the only possible difficulty that could occur in the inductive
construction of the Qα's is with condition (3) for successor ordinals
β — a + 1 with a not satisfying (2). But it is easy to see that there is no
real problem here either, since one need only enlarge from Qa to Qβ using
appropriate zγ's when needed.

The gα

5s having been constructed, we take Q = U α < ω j β α and ob-
serve that (3) insures that Q has codimension one since z £ Q and
G[p] = P + (z)= Q + (z) . Since z is in the closure of Qω = Pω, the last
equation shows that Q is a dense subsocle. Finally, assume by way of
contradiction that θ is an automorphism of G such that Θ(P) = Q. Then a
simple back-and-forth argument establishes the fact that {a: θ(Pa) = Qa}
is a cub in ωv But by Lemma 2.2, {a: θ\Ga- fa} is stationary in ωλ and
therefore there is an ordinal β such that θ(Pβ) — Qβ and θ\Gβ= fβ. Since
also z £ g = ^(P), β is an ordinal satisfying condition (2). Let xβ and φ
be as in the statement of (2) and choose a sequence {xn}n<ω in Pβ such
that xβ = limπ^ooxw. Then since automorphisms are continuous relative
to the/?-adic topology,

Φ(χ

n)
n-»oo

fβ{xn) = lim β(xB) = 0 ^ )
n-*oo n-*oo

is in 0(P) = β. This, however, is a contradiction since clearly yβ & Q by
the choice of β^+ 1 in (2).

It would, of course, have been more satisfactory if we had been able
to prove that V = L implies all Crawley groups are Σ-cyclic regardless of
their cardinality, and it would be rather surprising if this were not the
case. There, however, appear to be formidable difficulties in removing the
cardinality restriction from Theorem 2.2. First, one would evidently need
to prove Lemma 2.3 for all regular cardinals; and secondly, to push an
induction through the singular cardinals, one would probably be required
to show in general that pure subgroups of Crawley groups are once again
Crawley groups.
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3. Crawley's problem and Martin's axiom. It is somewhat easier to
prove that MA + -,CH implies there are Crawley groups of cardinality Sj
which are not Σ-cyclic. The reason for this is the fact that we can show the
existence of such a group is a consequence of a result which is suggested
by the corresponding theorem for Whitehead's Problem (see [3]), and
which can be proved by a slight refinement of the argument used in the
proof of that theorem.

Specifically, we can prove the following:

THEOREM 3.1. (MA + -,CH) // G is an S ̂ separable p-group of cardi-
nality W1? then Pext(G, S) — 0 for all countable groups S.

Since, as indicated above, the proof of Theorem 3.1 is similar to that
of Theorem 7.2 in [3], we shall delay sketching the proof until we have
shown the relevance of the theorem to Crawley's Problem. As there do
indeed exist 8 λ -separable /^-groups of cardinality Sj which fail to be
Σ-cyclic [5, Theorem 75.1], the following theorem (proved in ordinary
ZFC set theory) shows that MA + -,CH yields a negative answer to
Crawley's Problem.

THEOREM 3.2. IfGis an X ŝeparablep-group such that Pext(G, S) = 0
for all countable p-groups S, then G is a Crawley group.

Proof. Let P and Q be dense subsocles of G having codimension one
in G[p]. Choose a in G[p]\P and b in G[p]\Q together with sequences
{an}n<ω in P and {bn}n<ω in Q such that a = l i m ^ ^ an and b = l i m ^ ^ bn.
Since G is K, -separable, there is a countable direct summand C containing
all the α's and b's. The crux of the proof is showing that there exist pure
subgroups H and K such that H[p] = P, K[p] = Q and direct decom-
positions G= C@ M= C θ L with M C H and L C K. Indeed assum-
ing that this can be done, observe that H = (H Π C) ® M, K = (K Γ) C)
θ L and C/H ΠC = G/H s Z(p°°) s G/K s C/K Π C. Then by The-
orem 1 in [7] there is an automorphism φ of C such that φ(H Π C) = K
Π C. But then, since M = G/C = L, there must exist an automorphism θ
of G with θ I C = φ and 0(M) = L, that is, 0(#) = # and hence Θ(P) =

β.
Thus it remains only to establish the existence of H, K and the desired

direct decompositions. Since C is countable and thus Σ-cyclic, it is easy to
see that each of its closed subsocles supports a direct summand. Therefore
we have a direct decomposition C = C, θ Bλ where Cλ[p] is the closure
of C Π P. Next choose a basic subgroup A of Cλ with A[p] = C Π P and
a pure subgroup H of G such that H D A and #[/?] = P. Then
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(H Π Cx)[p} — P Π Cλ = A[p] and an easy inductive argument estab-
lishes that H Π Cx —A. Now fix a direct decomposition G — Cλ @ N and
let 77 be the corresponding projection of G onto N. Using the facts that
Cλ/A is divisible and H is pure in G, it is readily shown that π(H) is also
pure in G. Then consider the induced short exact sequence A =»
7/ -H> τr(//). Since Pext(G, Λ) = 0 and ττ(7/) is pure in G, Pext(ττ(H), A)
also vanishes, that is, the short exact sequence splits and we have a direct
decomposition H — A ® J. Since A is basic in Cx and G[/>] C Cx + P,
one can prove inductively that G[pn] Q Cx + H for all « consequently
that G = Cj Θ /. But then C = Cλ θ (C Π /) and since C is a direct
summand of G, it follows that G= C® M where M QJ C H. Indeed if
6 = C θ ΰ , then M = / n ( C , θ f l ) . Of course, the same reasoning
applies to Q to yield a pure subgroup K having Q as its socle and a direct
decomposition G — C ® L with L Q K.

REMARK. In reference to 3.2, it is noteworthy that V — L implies that
the Σ-cyclics are the only separable /?-groups G enjoying the property that
Pext(G, S) = 0 for all countable ^-groups S.

Finally, we must indicate how Theorem 3.1 is proved. Suppose then
that G is an S1 -separable /?-group of cardinality Nj and consider a short

exact sequence S ^ K -3* G where S is a countable pure subgroup of K.
We, of course, need to use Martin's Axiom to find a homomorphism
ψ: G -> K such that πψ — 1G, the identity map of G. As in the proofs of
Theorem 7.2 in [3] and Theorem 3.2 in [4], we consider the poset P of
finite approximations to ψ; that is, P consists of all homomorphisms
φ: T -> K with T a finite direct summand of G and πφ — \τ. It is clear
that, for each g G G, Dg = {φ E P: g is in the domain of φ} is a dense
subset of P and that the existence of a filter (subnet) in P which meets
each Dg will yield the desired ψ. The only difficulty then is to show that P
satisfies the ccc (countable antichain condition) so that Martin's Axiom is
applicable. In other words, given any uncountable subset P' of P we need
to find distinct elements φ1 and φ2 of Pf such that some φ in P extends
both φ, and φ2. But by the same reasoning used in [3] and [4], it suffices to
prove that there is a pure Σ-cyclic subgroup A of G such that A contains
the domains of uncountably many members of P'. Since we, however, are
dealing with torsion groups rather than homogeneous torsion-free groups,
the proof of the existence of such an A involves a slightly more delicate
argument than that given for the corresponding result in [3].

Let Pr — {Φot}a<ωι be an uncountable subset of P with Ta the domain
of φa and φa φ φβ when a φ β. Since countable subgroups of G are
necessarily Σ-cyclic, we may assume that no countable pure subgroup of G
contains uncountably many of the Γα's. Also since each Ta is finite, by
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reducing if necessary to an appropriate uncountable subset of P\ we may
further assume that all the Γα's have the same number of elements. This
then allows us to select a subgroup T of G such that T is contained in
uncountably many of the Γα's, but no subgroup properly containing T
enjoys this property. Again without loss of generality, we may assume that
T C Ta for all a. We now wish to construct inductively a family {Aa}a<:ωχ

of countable pure subgroups of G and a strictly increasing function
/: ωλ -» ίθj such that the following three conditions hold:

(1)ΓC Ao, Aa C Aa+λ for all α, Aa — U β < a A β if α is a limit ordinal.
(2)7} ( β )CΛ β + 1fαrallα.
(3) Aa+ λ/Aa is Σ-cyclic for all a.
If such a construction is possible, the purity of Aa will imply that

Aa+ι=Aa®La [5, Theorem 30.2] and then A= Ua<ωAa = A0®
( Θ α < ω L α ) will be a pure Σ-cyclic subgroup of G containing all the 7}(α)'s.
Suppose then that β < ωx and that the Aa and f(a) with the requisite
properties have been defined for all a<β, except that /(γ) remains
undefined if β — γ + 1. If β is a limit ordinal, then the choice of Aβ

dictated by (1) satisfies all the required conditions and we need not define
f(β) until we construct Aβ+V We may therefore assume that β is a
nonlimit, say, β = y + 1. Since G is Kι -separable, we have a direct
decomposition G = C θ K where C is a countable subgroup containing
v4γ. Let 8 = supα < γ/(α) and enlarge to a basic subgroup B = Aγ θ // of
C. Now there are uncountably many α's larger than δ and we claim that
there is furthermore an a > δ such that (Ta + B/B) Π (C/B) is the zero
subgroup of G/B. Indeed if this is not the case, then for each a > δ we
have a n j c α G Γ α Π C with xa $ B. But C is countable and therefore there
is a fixed c E C such that xα = c for uncountably many α's. By choice of
T, however, T +(c)= T CB, contrary to xa £ B. Then we take/(γ) = μ
where μ is an ordinal such that μ > δ and (7^ + B/B) Π (C/JS) = 0.
Now if x + 5 is a nonzero element of 7̂  + 5/5, we write c = c + &
where c G C, fc G ίί and kφQ. Observe that since C/B is divisible and
K + B/B ^Kis separable, x + B = (c + B) + {k + B) has finite height
in G/JB = (C/B) ® (K + B/B). But Tμ + B/B is a finite group and
therefore by [5, Corollary 27,8] there is a subgroup Aβ — AyΛ.λ of G
containing Tμ + B such that Aβ/B is a finite direct summand of G/B.
Since 5 is a pure subgroup of G, it follows that Aβ is pure and Aβ — Ay+λ

— L® B — L® Ay® H where L is finite. We conclude by observing that
7}(γ) C Ay+X and that Ay+X/Ay = L θ H is Σ-cyclic.
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