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PRODUCTS OF POSITIVE REFLECTIONS

IN REAL ORTHOGONAL GROUPS

DRAGOMIR Z. DJOKOVIO

Let O(f) be the orthogonal group of a symmetric bilinear form /
defined on a finite-dimensional real vector space V. If / i s indefinite then
O(f) has two conjugacy classes of reflections, one of which consists of
so called positive reflections. We denote by G+ the subgroup of O(f)
generated by all positive reflections. In this paper we describe this
subgroup and solve the length problem in G+ with respect to the
distinguished set of generators. When / is non-degenerate this problem
was solved by J. Malzan. Our proof (in the case of arbitrary/) is shorter
and completely different from his proof.

Introduction. Let O(f) be the orthogonal group of a symmetric
bilinear form / defined on a finite-dimensional real vector space V. If / is
indefinite then O(f) has two conjugacy classes of reflections, one of
which consists of so called positive reflections. We denote by G+ the
subgroup of O(f) generated by all positive reflections. In this paper we
solve the length problem in G+ with respect to the distinguished set of
generators. When / is non-degenerate this problem was solved by J.
Malzan. Our prooof (in the case of arbitrary/) is shorter and completely
different from his proof.

A non-isotropic vector a determines a unique orthogonal reflection Ra

and we say that Ra is positive iff (a, a) > 0. The weak orthogonal group
O*(f) consists of all isometries which fix every vector in Rad V. To avoid
trivial and known cases let us assume that/is indefinite, i.e., that/(x, x)
takes both positive and negative values. Then O*(f) D G+ D O*(f)
where O*(/) denotes the identity component of # * ( / ) . Moreover
O*(f)/O*(f) ^Z2XZ2 and G+/O*(/) s Z2.

Our main theorem (Theorem 2) gives explicit formulas for the length
of any u G G+ with respect to the generating set consisting of all positive
reflections. When / is nondegenerate this result is due to J. Malzan [5].
The proof is based on some earlier results of M. Gόtzky [3] on O*(/).
One should point out that Gόtzky considers also weak unitary groups and
his underlying field F is arbitrary (char F φ 2 in the case of O*(/)).

The main idea of the proof is to take a shortest representation of
u E G+ as a product of reflections and then try to convert all reflections
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into positive ones. This method is effective in the generic case; the
exceptional cases are treated separately.

1. Weak orthogonal groups in general. Let V be a finite-dimen-
sional vector space over a field F, char F φ 2, and let / be a symmetric
bilinear form on F. An automorphism u of V is called an isometry if
f(u(x), u(y)) = f(x, y) for all x, y E V. The group of all isometries will
be denoted by O(f) and we refer to it as the orthogonal group of the form
/. (Note that we allow/to be degenerate.)

The weak orthogonal group O*(/) is the subgroup of O(f) consisting
of all isometries which fix every vector in the radical Rad V — [x E V:

For MGO(/)we define its fixed space Fix u and its residual space
Res u by

Fix u = Ker(w — 1), Res u — Im(w — 1).

We also define the residue r(u) and the radical residue ro(u) of u to be

r(u) = dim Res w, ro(u) = dim(Res u Π Rad V).

If a is a non-isotropic vector, i.e.,/(α, a) Φ 0, then the transformation
Ra: V ^ Vdefined by

belongs to #*(/) and is called a reflection. We have

F i x i ? α = ( α ) ± , ResRa=(a)

and Ra{a) = — α. (For any subspace W of V we denote by W1- the
orthogonal complement of Wwith respect to the form/.)

We shall now state some results of M. Gotzky [3] concerning the
group O*(/). (In his paper he also treats the weak unitary groups but we
shall not need those results.) For further results and generahzations we
refer the reader to a paper of E. Ellers [2].

Every u E O*(f) can be expressed as a product of reflections

(1) « = ΛβΛβ 2-- Ram.

Since det Ra = — 1 for every reflection Ra, it follows that det u = ±1 for
all u E O*(/). Moreover the subgroup

SO*(f) - { w E 0

has index 2 in O*(/).
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For u E #*(/) we shall denote by l(u) the length of u with respect to
the generating set consisting of all reflections. Thus l(u) is the smallest
integer m{> 0) for which a factorization (1) exists.

THEOREM 1. (M. Gόtzky) For u G O*(/) we have l(u) = r(u) + ro(u)
except when (Fix w)"1 is totally isotropic and uφ\. In the exceptional case
we have l(u) = r(u) + ro(w) + 2.

When / is non-degenerate, i.e., Rad V — 0; this theorem is due to P.
Scherk [6].

2. Real case and the statement of the main result. From now on we
shall assume that F is the real field R. A vector x is called positive (resp.
negative) if /(x, x) > 0 (resp. f(x, x) < 0). We shall denote by n the
dimension of V and by (/?,<?, *?) the signature of/. This means that every
orthogonal basis of V consists oίp positive vectors, q negative vectors, and
s isotropic vectors.

A reflection Ra is positive (resp. negative) if a is positive (resp.
negative). It follows from Witt's theorem that all positive (resp. negative)
reflections are conjugate in O*(f). We shall denote by G+ (resp. G~) the
subgroup of O*(/) generated by all positive (resp. negative) reflections. If
p — 0, i.e., / is negative semidefinite then there are no positive reflections
and we have G+ = {1} and G~ = O*(/). If q = 0 then G+ = O*(/) and
< r = {l}.

In view of these remarks and Theorem 1 we shall assume throughout
that f is indefinite, i.e., p > 1 and q>\. Clearly O(f) and O*(/) are real
algebraic groups and so Lie groups. Let O*(f) be the identity component
of O*(f) viewed as a Lie group.

Let V- Vλ @ RadF and let fλ be the restriction of / to Vλ X Vv

Clearly fx is a non-degenerate symmetric bilinear form on Vλ of signature
(/?, q, 0). Then the elements uoί O(f) axe represented by matrices

where M, e #(/,), M0 is an automorphism of Rad V and v: Vx -» Rad F is
an arbitrary linear map. We have u G O*(/) if and only if u0 = 1.

LEMMA 1. O (/)/O, (/) = Z 2 X Z 2.
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Proof. If s = 0 this is well known, see e.g. [4, Lemma 2.4(b), p. 451].
In general the assertion follows from this special case and the above
matrix description of elements of O*(f).

COROLLARY. G+ Ό*(f)/O*(f) and G~ Of(/)/O*(/) are cyclic
groups of order two. The three subgroups G+ O*(f)9 G~ •#*(/), and
SO*(f) are distinct.

Proof. Since all positive (resp. negative) reflections are conjugate in
# * ( / ) , they he in a single connected component of #*(/) . This implies
the first assertion. We have G + 0 f ( / ) Φ G~ Of(f) because O*(f) is
generated by reflections. These two groups are different from SO*(f)
because det R = — 1 for each reflection R.

For M G G+ we shall denote by /+ (u) the length of u with respect to
the generating set consisting of all positive reflections. We can now state
our main result.

THEOREM 2. We have G+ D 0f(/) . For u e G+ we have /+(w) =
r(u) + ro(u) except in the following cases:

(i) The subspace (Fix u)1- is negative semidefinite and uφ\,
(ii) u2 = 1 andu(x) = — x for some negative vector x.
In the exceptional cases we have /+ (u) = r(u) + ro(u) + 2.

When / is non-degenerate this theorem is due to J. Malzan [5]. Our
proof below even in the more general case is simpler and more elementary
than his. For instance we do not need the detailed knowledge of the
conjugacy classes of O(f), which is heavily used in [5] in the case when/
is non-degenerate.

3. Proofs. We shall assume that the reader is familiar with Gόtzky's
paper [3] and we shall use some of his technical lemmas in addition to
Theorem 1. The main tool in our proof is the following technical lemma.

LEMMA 2. Let a, b, c be linearly independent vectors with a positive and
b and c negative. If the sequence a, b, c is not orthogonal then the isometry
u = RaRbRc can be written as a product of three positive reflections.

Proof. Without any loss of generality we may assume that/(α, a) = 1
and/(Z>, b) =f(c, c) = - 1 . Set/(a, b) = a9f(a, c) = β, and/(ft, c) = γ.
By hypothesis at least one of α, β, γ is non-zero. Since RbRc = Rd

Rb
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where d = Rb(c), we may assume that in fact β or γ is non-zero. Then for
e = (17 — aξ)a + ξb we have

f(e, e) = (η - aξf -ξ2 + 2aξ(η - aζ) = η2 - (1 + «2)|2,

and

f(c,c) f(c,e)
Δ =

f(e,c) f(e9e)
(γ - «

Since β or γ is not zero, we can choose £ and η so that f(e,e) = — 1 and
Δ < 0 . By Dreispiegelungssatz [1, Proposition 6.1] the product R =
RaRbRe is a reflection. Since 6 and e are negative vectors, we have
RbReE Of(f) and so i? must be a positive reflection by Lemma 1, Cor.
We have u = RReRc where Re and Rc are negative reflections. Since
Δ < 0 the space W — (c9e) is a hyperbolic plane. We claim that ReRc is
a product of two positive reflections. To prove this it suffices to consider
the restrictions of Re and Rc to W. Then in W the operators — Re and
— R c are positive reflections whose product is ReRc. This completes the
proof.

Proof of Theorem 2. Let w G 6 + O*(/).

Case 1. u is not exceptional, i.e., neither (i) nor (ii) holds.

Clearly t (u) > /(w) and by Theorem 1, /(w) = r(u) + ro(u). Write
m — l(u) and let (1) be a factorization of u into a product of m reflections
containing a maximal number, say k, of positive reflections. We have to
prove that k — m.

This is clear if m — 0, i.e., u — 1. Otherwise we prove first that fc > 1.
Since (i) does not hold there exists a positive vector a E (Fix w)^. It
follows from [3, Hilfssatz 2.1, p. 385] that for v — Rau we have r(v) = r(u)
and ro(v) = ro(u) — 1. By Theorem 1 I(v) — m — \ and since u = Rαv we
have k>\. We may assume that the vectors αt are positive for 1 < / < k
and negative for k < i < m.

Now assume that /: < m. By Lemma 1, Cor. m — k must be even, and
so k < m — 2. Assume that for every pair of indices (/, y) such that
1 < / <j < m and j > k we have <zz -L ̂ f . Since (ϋ) does not hold there
must exist a pair of indices (/, j) such that 1 < i <y < A: and/(a/9 αy ) T^ 0.
Without any loss of generality we may assume that f(αk_x, αk) Φ 0. Let
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b G (ak, ak+λ) be a positive vector such that b £ (ak). By Dreispiege-
lungssatz the product RbRaRak+χ is a reflection, say Rc, and by Lemma 1,
Cor. it is a negative reflection. Thus we can replace in (1) the product
RaRakχ by RbRc. Note that f(ak_λ,c) Φ 0. This shows that we may
assume that there exists a pair of indices (/, y) such that 1 < ι <y < m,
y > A: and /(#,, α,.) T^ 0. Without any loss of generality we may in fact
assume that the sequence ak, ak+v ak+2 is not orthogonal. By Lemma 2
the product R R ROk+2 can be replaced by a product of three positive
reflections. This contradicts the maximality of k.

Hence we have shown that k — m, and in particular « G G + .

Case 2. (i) or (ii) holds. Let m — r(u) + ro(w). We prove first that
/+ (u) > m + 2. This is clear if l(u) — m + 2. Otherwise we have l{u) — m
and since det u = (— l) w , it suffices to show that w cannot be written as a
product of m positive reflections. Assume that it can and let (1) be such a
factorization.

We claim that ak G (Fix w)-1 for all k. It suffices to prove this for
k = 1. Thus let us assume that ax £ (Fix u)x. Then by [3, Proposition
2.1.3] for v = Rau we have Resv = Resw θ (ax), and consequently
r(t>) = r(u) + 1 and ro(t>) = ro(w). It follows that

l(v) = r(v) + ro(ϋ) = r(iι) + ro(w) + 1 = m + 1.

This is a contradiction since v is a product of m — 1 reflections. Hence
our claim is proved.

If (i) holds then since ak E (Fix u)1- for all k, we conclude that all
reflections in (1) are negative, contrary to our hypothesis. Thus if (i) holds
then/+(w) > m + 2.

Now assume that (ii) holds. Since u2 — 1 we have V — Fix u θ Res u
and Fix u ± Res w. Since Rad V C Fix w, it follows that Res u is non-de-
generate, ro(w) = 0, and so m — r{u). From (1) it follows that Res u C
(al9...,am), see e.g. [2, §3]. Since r(u) = m, we conclude that al9...,am

is a basis of Res w.
We claim that this basis is orthogonal. It suffices to show that ax -L at

for 2 < i < m. Let 6 be a non-zero vector in Res u such that b _L α. for
2 < i < m. Since w is — 1 on Res w, we have w(Z>) = — b. On the other
hand it follows from (1) that u(b) = Raι(b). Hence we have Raι(b) = -b
and so aλ G (b). This proves our claim.

Since the basis av...9am of Resw is orthogonal and each of these
vectors is positive, we conclude that Res u is a positive definite subspace.
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This contradicts (ii). Hence also in the case (ii) we must have /+(w) >:
m + 2.

It remains to show that /+ (u) < m + 2, i.e., that u can be written as a
product of m + 2 positive reflections.

Assume first that (i) holds. Since the positive vectors form an open set
in V9 we can choose a positive vector a such that a £ Fix u. Since (i) holds
we have also a £ (Fix u)1-. Therefore Fix u is not invariant under Ra.
Hence we can choose x E Fix u such that Ra(x) & Fix u. Let v = Rau
and note that

υ\x) = RauRa{x) φ RaRa(x) = x,

and so v2 Φ 1. By [3, Proposition 2.1.3] we have Res v — Res u @ (a),
and so r(v) — r(u) + 1 and ro(υ) = ro(w). Thus D is non-exceptional and
by the result of Case 1 we have

/+ (v) = l(υ) = r(υ) + ro(v) = m + 1.

Since w = Rav, u is a product of m + 2 positive reflections.

Now assume that (ii) holds. Choose an orthogonal basis al9... ,am of

Resw such that au...,ak are positive and α Λ + 1 , . . . , α m are negative

vectors. It follows from (ii) that k < m. Let

v = Raι-Rau.

This υ satisfies (i) and we have l(v) = m — k. Hence l^~ (v) = m — k + 2
by the result just proved above, and so /+ (u) < m + 2.

This completes the proof of Theorem 2.

REMARK. It is easy to modify Theorem 2 so that it applies to the case
when V is infinite-dimensional. Clearly if u E G+ then r{u) < oo. The
length formulas of Theorem 2 remain valid.
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