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THERE ARE NO PHANTOM COHOMOLOGY
OPERATIONS IN ^-THEORY

D. W. ANDERSON

Let h*, h\ be cohomology theories defined on the category of finite
CW-complexes, and suppose that /if(point), /i^(point) are both counta-
ble. Then by Brown's [5] Representability Theorem, there are Ω-spectra
Z1? Z 2 such that h*(X) = [A^Z,]^, the graded group of homotopy
classes of maps of X into the terms of the spectrum. If we exercise some
care in the choice of Z,, we shall see that every stable cohomology
operation φ: h1[(X) -» h%(X) defined for X finite extends to a map ςp:
Z1 -> Z 2 of spectra. We shall examine the question: How many choices,
up to homotopy, are there for φ, given φ? As an intermediate question,
we shall also investigate: How many extensions are there to infinite
CW-complexes are there of φ?

In the case when A*, A* are the connected forms of K-theory (real,

symplectic, or complex), we shall show that every cohomology operation

extends uniquely from finite complexes to all complexes and that the

spectral homotopy class of the representing map is unique. Since a

cohomology class which vanishes on all finite subcomplexes of a complex

is called a phantom class, we shall call a cohomology operation which

vanishes on all finite complexes a phantom operation. We shall call a

spectral map of Ω-spectra a completely phantom cohomology operation if

it vanishes on all CW-complexes. Our main theorem is as follows.

THEOREM 1. There are no phantom or completely phantom cohomology

operations other than the zero operations between the connected forms of

complex, real, or symplectic K-theory, and every stable cohomology operation

defined between these theories on finite complexes is represented by a spectral

map which is unique up to homotopy.

In the course of the proof of Theorem 1, we prove another theorem.

Let 2? £* be the classical to general cohomology spectral sequence (known

to the ^-theorists as the Atiyah-Hirzebruch spectral sequence and to

homotopy theorists by many names).

THEOREM 2. Let E** be the classical to general cohomology spectral

sequence for computing the stable cohomology operations from connected

complex K-theory to itself. Then Er

pq is finite if p is odd, zero if q is odd or
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positive, and for any prime /, the l-index of Z™p l q in Elp l q for q < 0 is no

greater than the l-primary part of:

2Pp if 1=2

[p/l-l] iflφl,

(the l-index is the l-primary part of the index and the l-primary part of a

number is the highest power of I which divides the number). The symbol [ ]

indicates the greatest integer part of a number.

The bound on the /-index given in Theorem 2 is probably the best
possible — this is indicated by preliminary calculations beyond the scope
of this paper.

Since, up to a factor of 2, real and symplectic X-theory are retracts of
complex ΛΓ-theory, the bounds on the /-index for the spectral sequences
involving any of the three forms of A-theory do not exceed the estimates
given above for complex X-theory except in the 2-primary part, where a
factor of 4 may occur in addition to the bound given. As we shall see, this
means that in all cases, Z™q is of finite index in Epφ so that there are no
phantom or completely phantom cohomology operations. It is not too
difficult to show that there is a nontrivial phantom map K(Z, 3) -» BSU
which is an infinite loop map all of whose deloopings are phanton maps.
On the other hand, it is not difficult to show that there are no phantom or
completely phantom maps from complex bordism theory to any con-
nected ίC-theory.

The first part of this paper is devoted to the derived functors of
inverse limit, and the treatment is mostly derived from Grothendieck's
work. Part 2 consists of some elementary applications of this via Milnor's
classification of phantom cohomology classes to relate the classical to
general spectral sequence to the classification of phantom cohomology
classes. Part 3 is devoted to a development of a homotopy theory of
spectra in the setting of Quillen's model categories for homotopy theory.
This generality is used because a map of spectra which is a homotopy
equivalence in each degree need not be a strict homotopy equivalence of
spectra. Also, this allows us to take as weak equivalences of topological
spaces either homotopy equivalence or CW-equivalence as we like. For the
reader who believes that there is such a thing as a homotopy theory of
spectra, this section may be skipped. The thorough treatment of the
homotopy theory of spectra in this way does allow us to perform the
standard arguments of homotopy theory on spectra. The model structure
which we place on spectra is not equivalent to the model structure on
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semisimplicial spectra in Ken Brown's MIT thesis, since in our setting a
map between spectra which induces an isomorphism on (stable) homotopy
groups will not be a weak equivalence unless the spectra are Ω-spectra.
The last section is devoted to connected ^-theory, where the Adams
operations are used to show that there are no phantom operations for the
/-localizations of the connected Λ -̂theory, and sufficient bounds are ob-
tained on the localized spectral sequence to prove Theorems 1 and 2 for
the unlocalized case. While the Adams operations give explicit operations
in the localized cases, they cannot be used in the same way to give
operations in the unlocalized case. Perhaps it is possible to construct the
operations whose existence are implied by Theorem 2 using Adams
operations cleverly.

E. Thomas has called to my attention the ETH thesis "Phantomab-
bildungen und Klassifizierende Raume" of W. Meier. This thesis shows
the existence of many phantom maps between spaces using techniques
closely related to ours.

1. The functors lim'. Milnor [8] has proved a theorem which char-
acterizes the phantom cohomology classes defined on a countable CW-
complex. If H* is a cohomology theory, call H* additive if it takes disjoint
unions of spaces to products of groups (all representable theories are
additive). Milnor's theorem states that if X is a CW-complex, Xx C X2 C
• C X is an increasing sequence of subcomplexes whose union is X,
then for all n there is a natural short exact sequence:

(1.1) 0 -> l im 1 //"" 1 ^) -> Hn{X) -> lim^ίJiζ.) -> 0.

In this exact sequence, lim° is the usual inverse limit functor, and lim1 is a
second functor defined by Milnor for inverse sequences of groups. Notice
that lim1//"" ](Xt) consists of exactly those cohomology classes a E Hn( X)
which vanish on all Xr Thus, if X is a countable complex, we can choose
the Xt to be a cofinal subset of the finite subcomplexes of X, and observe
that the phantom cohomology classes of X are the elements of Iim1//*(X/).

We now turn our attention to the functor lim1. As Milnor points out,
it is the first right derived functor of lim0. It is defined for an inverse
system -* M, -> Mo of abelian groups to be the co-kernel of the map
8: TlMi -> ΠM , where δ(m0, ml9 m2,...) = (mQ — μx{mx), mx —

μ 2(m 2),...). Notice that the kernel of 8 is the group lim0M,.
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It is unnatural to restrict ourselves to increasing sequences of subcom-
plexes of a CW-complex. Milnor's theorem has a variant in which the Xt

can be taken to run over all finite subcomplexes of X. This variant is an
algebraic consequence of the theorem above. We shall now develop
enough of the theory of the derived functors of the limit functor for our
purposes.

Suppose that β, Φ are two categories. If C is an object of 6, let κ(C):
ty -> 6 be the constant functor whose value is C. Recall that if Φ: ty -» β,
C is called a limit for Φ if there is a natural transformation κ(C) -» Φ such
that for all C" in β, the map Hom(C, C) -* Hom(κ(C), Φ) is an isomor-
phism, where the first Horn refers to β, the second to the category of
functors from D̂ to β, and the map sends a morphism γ: C" -* C to the

/c(γ)

composition κ(C') -» κ(C) -» Φ. β is said to be complete if for all D̂ and

for all Φ, Φ has a limit. Recall that limits, if they exist, are unique up to

unique isomorphism.
Let S:0(6D, β) be the category of contravariant functors from Φ to β

and natural transformations between functors. Notice that if & is com-
plete, by making choices, one can define a functor lim: f °(6J), β) -> β
which assigns to each Φ its limit. Observe that lim can be characterized as
a right adjoint to K: 6 -> $-°(<>D, 6).

Suppose now that β is a complete abelian category and that Φ is a
small category. Notice that Sr0(6i), Θ) is an abelian category and that lim
is a left exact additive functor. In Sr0(6ί), 6), call a monomorphism Φ -> Ψ
relatively split if for all D in D̂ the monomorphism Φ(Z>) -> Ψ(D) has a
right inverse. We will say that Ξ is relatively injective if for all relatively
split monomorphisms Φ -> ψ Hom(Ψ, Ξ) -> Hom(Φ, Ξ) is epimoφhic.

LEMMA 1.1. There is a functor Q: ^Γθ(όj), β) -> ̂ °(Φ, β) and a
transformation η: 1 -» β ŵcΛ /Λaί:

(i) /or a// Φ, β(Φ) ώ a relative injectiυe and η(Φ): Φ -* Q(Φ) is a
relatively split monomorphism.

(ii) Q preserves the relatively exact sequences m Sr0(6D, β).
(iii) // β has sufficiently many projectives, Q preserves the exact

sequences in ^ r0(6D, β).

Proof. Construct Q by letting (Q(Φ))(D) be the product over all
objects Df and maps δ: D' -> D in <Φ by Φδ = ΦίD'). If α: Dj ^ D2,
(<2(Φ))(α) is defined by letting its projection onto Φδ be the projection
onto Φaδ = Φδ. Clearly, Q preserves the class of relatively exact sequences.
Let (η(Φ))(Z>) be defined by letting its projection to Φδ be Φ(δ).
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If β has sufficiently many projectives, then in β and thus in Sr0(6D, β),

products preserve exact sequences. Thus Q preserves exact sequences.

Finally, to see that Q is relatively injective, observe that for any Ψ, a

natural transformation ξ: Ψ -» Q(Φ) amounts to a choice for each D in <3)

of a map y(D): Ψ(D) ^ Φ(D), and that any γ defines such a £. The

correspondence is given by letting y(D) be the composition of ξ(D) with

the projection of (Q(Φ))(D) onto Φx = Φ(I>), where 1 is the identity map

of D.

We now define liiri: 5 r0(6D, β) -* β to be the relatively right derived

functors of lim. Since lim is left exact, lim = lim°. Since (1.1) says that

there are sufficiently many relative injectives, we can do this.

LEMMA 1.2. // β has sufficiently many projectiυes, every short exact

sequence 0 -> Φ" -> Φ -* Φ' -» 0 in 5r0(6j), β ) Aαs associated to it a long

exact sequence:

Φ") -> liirf(Φ) -

Proof. Q preserves short exact sequences.

Recall that a category ^ is called a partially ordered set if for any two

objects Z>, D' which are distinct, Hom(Z>, D') and Hon^D', D) have at

most one element between them. We write D' > D if there is a morphism

D -> Z>'. Φ is said to be filtered if for all D, Dr there is a £>" with Z>" > D,

Z)/r > /) ' . By an inverse system we shall mean a contravariant functor Φ:

^ -> β for a filtered partially ordered set 6ύ. We call Φ an inverse sequence

if D̂ is the partially ordered set of the non-negative integers.

If Φ is an inverse system, Grothendieck [7] says that Φ satisfies the

Mittag-Leffler (M-L) condition if for all D in <Φ there is a D' with D' > D,

with lm(Φ(D') -> Φ(Z))) = ImίΦί/)' ') -> Φ(Z))) for all D" > i ) r .

Grothendieck shows (Proposition 13.2.2) that if β is the category of

abelian groups and if 0 -> Φ" -> Φ -> Φ' -> 0 is an exact sequence of

inverse systems such that Φ" satisfies M-L, then 0 -»lim°Φ// -»lim°Φ ->

lim°Φ/ -> 0 is exact. Since there are sufficiently many relative injectives,

this shows that the M-L condition implies the vanishing of lim1. While

M-L is not always equivalent to the vanishing of lim1, we shall see that

these two conditions are equivalent for countable inverse systems of

finitely generated modules over certain rings. The following lemma is a

first step toward proving this.
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LEMMA 1.4. If A is a subring of the rational numbers Q, and if Φ is an
inverse sequence of finitely generated A-modules for which all Φ(i + j) ®A Q
-» Φ(i) ®AQ are isomorphisms, then either Φ satisfies M-L or liπ^Φ is an
uncountable group.

Proof. If M -> N is a map of finitely generated .4-modules such that
M ®Λ Q -* N ®A Q is an isomorphism, both the kernel and the cokernel of
this map are finite groups. Notice that inverse systems of finite groups
satisfy M-L. Let Φ"(i) be the kernel of Φ(i) -» Φ(0), Φ'(ι) be the cokernel
of this map, and let Ψ(i) be the image of this map. Since Φ" satisfies M-L,
it is easy to show that Φ satisfies M-L if and only if Ψ does, since
Ψ = Φ/Φ". The constant functor with value Φ(0) clearly satisfies M-L, so
we have an exact sequence 0 -»lim°Ψ -> Φ(0) -* lim°Φ/ -»lim1^ -> 0. If
Ψ does not satisfy M-L, the index of Ψ(i) in Φ(0) must be an unbounded
function of /, so that Φ' becomes an inverse system of epimorphisms of
finite groups of unbounded order. Thus lim°Φ' is uncountable. Since Φ(0)
is a finitely generated A -module, it is countable. Thus lim1^ is uncount-
able. However, we have an exact sequence 0 -» lin^Φ -> lim1^ -> lim2Φr/,
and as we shall show in our next lemma, lim2 vanishes for inverse
sequences. Thus lirrfΦ = lim!ψ is uncountable.

Notice that an inverse system Φ of monomorphisms satisfies M-L if
and only if there is a D such that for Ό' > Z>, Φ(D') -> Φ(D) is an
isomorphism. If Φ is an arbitrary inverse system, we call Φ eventually
constant if such a D exists. Clearly all eventually constant inverse systems
satisfy M-L.

LEMMA 1.5. // Φ is an inverse sequence, lim'(Φ) = 0 for i > 2, and
Milnor's definition o/lim'Φ agree with ours for i = 0, 1.

Proof. Recall that β(Φ)(/) = Π{Φ(y) \j < /}. Thus if P(Φ) =
lim°ρ(Φ), P(Φ) = Π{Φ(y) | 0 <y}. The short exact sequence 0 -> Φ ->
Q(Φ) -> β'(Φ) -> 0, where β'(Φ) = β(Φ)/Φ, gives us an exact sequence
0 -> lim0 Φ -> P(Φ) -* lim^XΦ) -> l ώ Φ -> 0 and isomoφhisms lim/+1Φ
s limzρ'(Φ) for i > 1. Notice that β'(Φ)(i) = Π{Φ(y) |y < /}, so Q\Φ)

= β(Φ0» w h e r e φ / ( 0 = φ(« " !) f o r ' ^ °' φ/(°) = ° τ h u s KirfβXΦ) =
0 for / > 1, or liπί'(Φ) = 0 for i > 2. Clearly limoρ(Φ') = P(Φ), and it is
elementary to verify that under this identification, the map P{Φ) -»
limoρ(Φr) = P(Φ) is the same as Milnor's.
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We next turn our attention to two related problems. First, when can
the lim' functors be calculated by restricting first to a subpartially ordered
set? Second, given an inverse system over a product of two partially
ordered sets, what is the relationship between the lim' calculated with
respect to both variables simultaneously and those lim'lim 7' terms calcu-
lated with respect to the variables separately?

To begin, we must consider a more general situation. Suppose that Γ:
<®x -> % is a functor. Then Γ*: &°(%9 β) -> ̂ °(6ϋv β) is defined by
composition with Γ. If <>D2 consists of only one object and morphism,
<$0(6ί)2, β) i s naturally isomorphic to 6, and Γ* is the functor K intro-
duced before. We call any functor Rτ: &°(%9 6) -> 9°(%9 β) a right
Kan extension functor if it is right adjoint to Γ*. When Γ* = K as above,
Rτ is just the limit functor. Since adjoints are unique up to homomor-
phism, if they exist, Rr is well defined if it exists and is simply called right
Kan extension along Γ.

LEMMA 1.6. // β has limits and if fyx and 6ύ2 are small, Rτ exists for
allT.

Proof. For Φ: 6ϋλ -» 6, let RT(Φ)(D2) be the limit over the category
whose objects are maps 8: Γ(Dλ) -* D2 (the comma category T/D2) of the
functor ΦD2 which assigns to δ the value Φ(Dλ) (here Dx is in ^ D2 is in
6D2). Elementary arguments show that Rτ is right adjoint to Γ*.

Suppose that Rτ exists. We then have functors i?'Γ: Sr0(6D1, β) ->
Sr0(6D2, β) which are the relatively right derived functors of Rτ. Since RΓ

has a left adjoint, it is right exact, so R? — RΓ. When Γ = K as above,
R'T = lira*".

LEMMA 1.7. // Γ has a right adjoint Δ, Rτ — Δ* and R}γ — 0 for i φ 0.

Proof. Recall that Δ is right adjoint to Γ if and only if there are
natural transformations η: 1 ^ ΔΓ, ε: ΓΔ -• 1 such that (εΓ)(Γη) = 1,
(ηΓ)(Δε) = 1. However, η induces a natural transformation εr: Γ*Δ* -* 1,
since (ΔΓ)* = Γ*Δ*, and ε induces a natural transformation η': 1 -> Δ*Γ*.
These clearly satisfy the conditions which exhibit Δ* as a right adjoint to
Γ*. Since Δ* is exact, Rτ is exact, so it is relatively exact. Thus Λ'Γ = 0 for
iΦQ.
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If Ξ: % -> %9 (ΞΓ)* = Γ*Ξ*, so if Rτ and RE exist, i?Ξ Γ exists and
is equal to R^Rγ- Also, Rτ preserves sufficiently many relative injectives,
since it is elementary to verify that for all Φ, RT(Q(Φ)) = Q(RTΦ). From
this we see that in the usual manner, we have a spectral sequence with
Eξ-q(Φ) = RξR^(Φ) converging to the graded group associated to a finite
filtration of Rξγq(Φ). In particular, when ^3 contains only one object and
one morphism, we see that there is a spectral sequence for all Φ with
Eξ>q = limΛRf(Φ) converging to the associated graded group of

If Ξ: Φ 2 ->
 6ϋι is a monomorphism of partially ordered sets, Ξ has a

left adjoint if and only if every D in 6D1 has a least upper bound in 6ί)2. We
shall call 6D2 completely cofinal in 6ϋι if Ξ has a left adjoint. If Γ is a left
adjoint to Ξ, notice that for any inverse system Φ on ^Dj, lim'Φ =
liirf(ΛΓΦ) = lim'CΞ^Φ) = liirf(Φ | %). Thus the lim'(Φ) can be computed
from the restriction of Φ to 6D2 if <Φ2 is completely cofinal.

LEMMA 1.8. If Φ is a countable filtered inverse system, lim'(Φ) = 0 for

Proof. Every countable filtered partially ordered set clearly has a
completely cofinal sequence.

Let Φj, % be two partially ordered sets, and let 7τz :
 6D1 X % -* 6ϋi be

projection onto the ith factor. If Φ: 6ύι X Φ 2 -> β, for D2 G Φ 2,
i?^(Φ)(i)2) = limf'( —, Z)2)

 τ h i s follows from the observation that the
comma category πλ/D2 is a partially ordered set in which 6ί)ιX[D2] is
completely cofinal. We shall write l im^Φ): βύ2 -> β for Λ'^Φ). Notice
that the standard spectral sequence above now has Ef'* = lim^lim^Φ
and abuts to lim£^(Φ).

Let Z + denote the set of integers i with / > 0.

LEMMA 1.9. Suppose that Φ : Z + X Z + - ^ 6 w an inverse system defined
on pairs (ί, 7) of integers. Then lim l̂im^Φ = 0, lim^Φ = lim^limyΦ, and
there is a short exact sequence

0 -* lim l̂im .̂Φ -> lim .̂̂ Φ -> Um l̂imVφ -> 0.

y = 0 for j^ > 2 since Z + XZ + is a filtered countable

partially ordered set.
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LEMMA 1.10. If D̂ is a partially ordered set in which every pair of
elements has a least upper bound, and if Φ: tf) X ty -* β is an inverse system
in two variables, ]im\DιD2)Φ(Dv D2) = Km%Φ(D, D) for all i {that is, the
limz over two variables agree with the lim' taken over the diagonal).

Proof. The diagonal Φ - ^ Φ X 6 ! ) has a left adjoint which sends
(Dl9 D2) to \.n.b.{Dλ, D2).

LEMMA IΛl.IfA is a subring of the rational numbers Q, and if Φ is an
inverse sequence of finitely generated A-modules, the following are equiva-
lent.

(a) φ satisfies M-L.
(b) lintfΦ = 0.
(c) lim'Φ is countably generated over A.

Proof. Grothendieck showed a => b, and clearly b => c. Thus it suffices
to show that if Φ does not satisfy M-L, lim1 Φ is uncountable. Suppose
first that Φ is an inverse sequence of monomorphisms. Since the dimen-
sions of the Φ(i) ®A Q are finite and monotone decreasing, they eventu-
ally stop. Thus there is a completely cofinal subsequence for which the
Φ(0 ®Λ Q -> Φ(': ~ 1) ®A Q are all isomorphisms, so that we can apply
(1.4) to see that lim'Φ is uncountable in this case.

Let Ψ(i, j) be Φ(i) if i <y, and the image of Φ(ι) -* Φ(j) if i <y. By
(1.10), \im\Φ(i) = l i m ^ i , i) = hm\jψ(i9 j). Since Ψ(i, j + 1) -> Ψ(i, j)
is always an epimoφhism, the vanishing of lim2 for sequences implies that
lim\Ψ(i, j + 1) -> lim^(/, j) is an epimoφhism for ally. If we fixy, the
Ψ(i, j) eventually are monomoφhisms, and if Φ does not satisfy M-L, for
somey the Φ(i, j) do not satisfy M-L. By our previous argument, if Φ
does not satisfy M-L, there is ay for which \im\Ψ(i, j) is uncountable.
Since lim^(/, j + 1) -> ]im\Ψ(i, j) is an epimoφhism, ]im°j]im\Ψ(i, j) -»
lim\Ψ(i, j) is an epimoφhism for ally, so limOj]im\Ψ(i, j) is uncountable.
By (1.9), \im\jψ(i, j) = lim^.Φίi) is uncountable.

We next have two results on inverse systems of filtered objects.
Suppose that FtΦ(a) is an inverse system where / runs over integers, a
over some filtered partially ordered set, and that /)+ 1Φ(α) -> /^Φ(α) is
always a monomoφhism. In this case we speak of FfΦ(a) as a filtered
inverse system, and we call the cokernels GzΦ(α) of the i^+1Φ(α) -
the associated graded inverse systems.
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LEMMA 1.12. If FiΦ{a) is a countable filtered inverse system of finitely
generated abelian groups such that for each a there is some i(a) with
Fi(a)Φ(a) = 0, then for all i the ^Φ(α) satisfy M-L if the G^(a) all satisfy
M-L. Further, if i*]lim°Φ(α) is the kernel of the map lim°Φ(α) -»
lim°(Φ(α)//;Φ(α)), Gί

/lim
0Φ(α) = lim°G^(a),^lim°^(a) -> lim°α^Φ(α)

is an isomorphism, lim^lim^Φ(α) = 0 = lim^ jFJlim^Φία), and lim^Φ(α)
-» lim°(lim^Φ(α)/i^hm°Φ(α)) is an isomorphism.

Proof. Notice that Φ(α) = Φ(a)/Fi{a)Φ(a), so to show that the Φ(α)
satisfy M-L, it suffices to show that the Φ(α)/i^Φ(α) do. Since these are
finite extensions of inverse systems satisfying M-L, so do they.

The exact sequences 0 -* Ffi(a) -> Φ(α) -* Φ(α)/FJΦ(α) -» 0 give us
exact sequences 0 -> lim° f)Φ(α) -> lim°αΦ(α) -> lim°(Φ(α)/f;Φ(α)) -> 0,
since the /)Φ(α) and the Φ(α) satisfy M-L, and lim1

α(Φ(α)/JF)Φ(α)) = 0.
Thus f)lim°Φ(α) = lim°αf;.Φ(α). Since l im^Φ(α) = 0 = Iim^ΦCα), we
have lim^limo

α^.Φ(α) = lim°αlim^Φ(α) - 0, and l i i < ^ Φ ( α ) =
lim^lim^.Φία) = 0. Thus l i m ^ l i m ^ a ) = lim\lim°aF^(a) = 0. The
exact sequences 0 -» Fi+ιΦ(a) -» i^Φ(«) -̂  G/Φ(α) -> 0 give us 0 ->

1Φ(α) ^ lim°αΦ(α) -> lim°aG^(«) -> 0, or limo

αGzΦ(α) -
ία). The vanishing of lim^lim°αΦ(α) and of l i m ^ lim^Φία) give

us the isomorphism lim^Φ(α) -

Notice that if M is an abehan group with a decreasing filtration FtM9

the FtM define a topology on M. This topology is Hausdorff if and only if
lim^FJM = 0, or equivalently, M -> lim^Aί/fJAf is a monomoφhism. M is
complete if and only if M -> lim^ M/FtM is an epimorphism — that is,
lim1/} Jlf = 0. Notice that if M is a complete Hausdorff group topologized
by a sequence JFJM of subgroups, the FέM will not satisfy M-L unless
FέM — {0} for some /, or in other words, M is discrete. Thus if M is a
complete Hausdorff group topologized by subgroups FέM, if M is not
discrete the FtM do not satisfy M-L even though lim ĴFjM = 0. Thus
something like the finite generation hypothesis is needed in proving that
(1.11b) implies (1.11a).

LEMMA 1.13. Suppose that Ffi(a) is a filtered countable inverse system
of filtered objects. Suppose that

(a) limι

βGf.Φ(α) = 0al!i9

(b) every Φ(α) is a complete Hausdorff group in the filtration topology.
Then lim^Φία) = 0, and if f)lim^Φ(α) is the kernel of lim°αΦ(α) ->
liτΆ°a(Φ(a)/FiΦ(a)), lim^Φ(α) is a complete Hausdorff group with
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Proof. Since Φ(α) = lim°(Φ(α)/F;Φ(α)), to show that l im^(a) = 0
it suffices to show that lim1,- α(Φ(α)/jF]Φ(α)) = 0. From the exact se-
quences 0 -> G,Φ(α) -> Φ(a)/Fi+ιΦ(a) -> Φ(α)/F)Φ(α) -» 0, condition
(a) shows that 0 -> l im° a G^(a) -> lim°( Φ («)//? .+^(α)) -»
lim®(Φ(α)//;.Φ(α)) -> 0 is exact, and that hmι

a(Φ(a)/Fι+ιΦ(a)) =
lim1

α(Φ(α)//;Φ(α)). Since Φ(α)/F0Φ(α) = 0, hmι

a(Φ(a)/F^Φ(a)) = 0 all
/, so lim^Iim^ΦίαV/ϊ .Φία)) = 0. Since limo

α(Φ(α)/i^+1Φ(α)) ->
lim^(Φ(α)//)Φ(α)) is always an epimorphism, lim1

l lim^(Φ(α)/i;)Φ(α)) =
0. Thus hm\a(Φ(a)/I]Φ(a)) = 0.

Each Ffi(a) satisfies the same conditions as Φ(α), and thus
l i m ^ Φία) = 0 for all i. Thus the sequence 0 -> lim°α^Φ(α) -> lim°αΦ(α)
-> lim°tt(Φ(α)//;Φ(α)) -> 0 is exact, so that /;iim°αΦ(α) = lim°α/;Φ(α).
Similarly, the vanishing of the l i m ^ + ^ α ) implies that the 0 ->
F/+1lim°αΦ(α) -> ̂ lim°αΦ(α) -> lim°GfΦ(α) -> 0 are exact, so

2. Filiations, spectral sequences, and limits. This section will be
devoted to two theorems which state that certain lim1 terms vanish if a
suitable spectral sequence is locally eventually constant.

Suppose that φ = X_x -> Xo -> is a sequence of cofibrations whose
colimit is X. Then for any additive cohomology theory A*, we obtain in
the manner of Dold [6] a spectral sequence with Ef'q(X) =
hp+\Xp9 Xp_λ). ltX=Xn for some n, E™(X) is the pth graded group
associated with a finite filtration of hpJtq{X). We will say that the
filtration {Xp} of Xis an M-L filtration (with respect to A*) if for sάlp.q
the inverse system Ef±q

p( X) is eventually constant.

THEOREM 2.1. Suppose that {Xp} is an M-L filtration of X. Then
lim1 h*{Xp) = 0 am/ A*(AΓ) -> lim0 A*(J^) w an isomorphism. If Fph*{X)
is the kernel of h*(X) -> A ^ J ^ . J , A*(X) = limo(A*(X)//;A*(^)),
E£q(X) is the pth graded group of hp^q(X) associated to this filtration.

Proof. Since the Xn are finitely filtered, each spectral sequence 2?*
is eventually constant, with E™{Xn) = GpH

p+%Xn). By (1.12), it suffices
to show that limE£q(Xn) = 0 for all/?, q.

The map Eζ*\X) -» E^q(Xn) is an isomorphism for /? < «. Since
E\Λχ

n) = 0 for « >/?, we see that E™(X) -> E™(Xn) is an isomor-
phism for/? < n - r + 1. Thus, if r = r(/?, 9) is such that £/'* = E£q(X),
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» E£q(Xn) is an isomorphism for n >p + r - 1, and thus
E£q(Xn) is independent of n for « sufficiently large. Thus lim1^»«(Xn) =
0.

REMARK 2.2. If the hp(Xn) are all finitely generated ^4-modules, it is
not difficult to show that \imιh*(Xn) = 0 implies that the filtration {Xn}
is M-L. As we shall not need this, we leave the proof to the reader.

THEOREM 2.3. Suppose that X = colimJfαrt w/zere « /wzs m er the
integers and a runs over some countable filtered partially ordered set. Let Zn

be the colimit over a of the Xa n and Ya be the colimit over n of the Xa n.
Suppose:

(a) for all a, {Xatn} is an M-L filtration of Ya,
(b) {Zn} is an M-L filtration ofX,
(c) for allp, q, Ef>*(X) = \im°E[q(Ya) andlimλE™(Ya) = 0,
(d) for all p, q, α, E%>q(X) is a finitely generated A-module and

Eξ-q(Xa) is a finitely generated A-module,
(e) for a < β, Ya-+ Yβ is a cofibration.

Then h*(X) = Km°H*(Ya)9 l im^^ΓJ = 0, and for allp, q, r, E™(X) =
\im°EPq(Ya), limEr(Ya) = 0.

Proof. If C* is an inverse system of cochain complexes with lim]

αC* =
0, standard homological algebra gives us exact sequences 0 -*
limιHn-ι(C*) ^ Hn(]im°Q) -> lim°Hn(C£) -> 0. Inductively, this gives us
short exact sequences 0 -» limιEr

p'r^r~\Xa) -> E™(X) -> l i m 0 ^ ' ^ ^ )
->0. Since E™(X) is finitely generated, limιEr

p~r^r~\Xa) is finitely
generated and thus vanishes by (1.11). Thus, inductively, Ep>q(X) —
\im°aEPq{Xa). By (1.13), to show that h*(X) = lim°Λ*(7J and that
lim1^*^^) = 0, it suffices to show that \imι

aE£q(Ya) = 0 for all p, q.
Since l i m ^ ' ^ y j = \ιm\\im°rEPfp{Ya\ it suffices by (1.9) to show that
1imι

a9rEtfp(Ya) = 0. Since l i m ° β ^ ( y β ) = Etfp{X)9 we see that hypothe-
sis (b) above implies that limVlim^E^i;) = 0. Since l im^/Y^FJ = 0,

= 0. Thus Km\aEtfp{Ya) = 0.

COROLLARY 2.4. // X is a countable CW-complex, and if the following
two conditions are satisfied, then h*(X) = lim°Λ*(ί^) where Ya runs over
the finite subcomplexes of X, and lim1h*(Ya) = 0:

(a) HP(X; Appoint)) is a finitely generated A-module for allp, q.
(b) The skeletal filtration of X is M-L.
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Proof. In this case, Eξ>%Ya) is the^-cochain Cp(Ya; Appoint)), and so
the Ef'q(Ya) form an inverse system of epimorphisms, and thus satisfy
M-L. Thus (2.3c) is satisfied. Each Ya is of finite dimension, so (2.3a) is
satisfied. By hypothesis, (2.3b) and (2.3d) are satisfied, and since the
inclusion of a subcomplex in a CW-complex is a cofibration, we see that
(2.3e) is satisfied.

If h* is a multiplicative cohomology theory with A C λ°(point), it is
not difficult to show that the product of two A -locally finite complexes for
which the skeletal filtration is M-L again has an M-L skeletal filtration.
This follows from the observation that the image of the map

0 Eί'fi(X) <8>Λo(point)Ef«(Y) -> E{«(XX Y)

has finite cokernel. Thus if Z£°(X)9 Zζ>\Y) have finite index in
Eξ\X\ Eξ">%Y) respectively, we see that Z ^ ( I X Y) has finite index
in Eξ*q(XX Y). Since all groups are finitely generated A -modules, the
condition that the skeletal filtration be M-L is the same as the condition
that the index of the Z^-terms in the E2-terms be finite in every degree.
Thus we see that the category of locally A -finite complexes for which the
skeletal filtration is M-L is closed under finite Cartesian product (and,
obviously, also smash product). It seems that this should be true whether
or not A* is multiplicative, but I see no way to prove it.

3. Spectra. In order to compute the stable cohomology operations
from one representable spectrum to another, one computes the inverse
limit of a sequence of cohomology groups. More precisely, if X, Y are two
Ω-spectra whose terms are {Xn}, {Yn}, the stable cohomology opera-
tions of degree t from H*( — ,X) to H*( — ; Y) are the elements of
\mPHn+t(Xn\ Y). Since inverse limit is not exact, these functors do not
behave well with respect to various constructions such as mapping cones
and localizations in the X variable. We shall show how to define groups
H*(X; Y) which do behave well with respect to the usual constructions (in
particular, for which the Mayer-Vietoris sequence is exact). Further, these
are related to the cohomology operations above by a short exact sequence,
which turns out to be closely related to Milnor's:

(3.1) 0 -> Iim1Jϊ l l+f"1(Λ' l l; Y) -> H\X\ Y) -> ]im°Hn+t(Xn\ Y) -> 0.

The obvious definition of H°(X; Y) should be, in some sense, the set
of homotopy classes of maps from X to Y. This will be essentially our
definition, which will allow us to define H~n(X; Y) = H°(SnX; Y) for
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n >: 0, where suspension is done degreewise. Since Y is an Ω-spectrum, it
is an infinite loop space in the category of spectra, since Y = QnYn, where
Yn in degree m is ΏnYn+m.

Unfortunately, the homotopy theory of spectra is somewhat com-
plicated. We have elected to describe it here in terms of Quillen's
axiomatic homotopy theory because of the generality of the results, the
fact that in Quillen's formulation all of the standard apparatus of homo-
topy theory is available, and because this approach makes many things
easier to prove, since typically we only need prove that a map between
spectra is a homotopy equivalence in every degree to know that it is an
isomorphism in the homotopy category, rather than prove that it is a
homotopy equivalence in the category of spectra, which might be true
only if we have been extremely careful in our constructions. The experts
will notice that we are describing the homotopy theory of what Kan calls
prespectra rather than the Kan-Boardman homotopy theory of spectra.
We avoid the truly "stable" homotopy theory of Kan and Boardman
because it is more complicated than our theory and because it has few
advantages for us.

We begin with an abstract description of spectra which will allow us
to talk about both spectra in the homotopy category and the homotopy
category of spectra. Suppose that ?Γis a category with a pair of functors Σ,
Ω: ?Γ -» ?Γso that Σ is left adjoint to Ω. By a spectrum X over ?Γ we mean a
collection of objects Xn out of 9" (n > 0) together with morphisms xn:
ΣXn -> Xn+λ (or, equivalently, c*: Xn -> ΩXn+x). We call the Xn the terms
of X and the xn the structure maps of X. By a map /: X -» Y of spectra we
mean a collection of maps/rt: Xn -» Yn such that for all n,fn+λxn = ynΣ(fn).
We write Spect(?Γ) for the category of spectra over ?Γ.

In Spect(?Γ), limits and colimits are formed termwise. There are
functors Tn: Spect(?Γ) -> ?Γ, S": ?Γ-> Spect(^) given by Tn(X) = Xn9

TnS
n(X) = Σn+m{X). Clearly, Sn is left adjoint to Tn.
If ?Γ is the category of basepointed topological spaces, the suspension

and loop space functors are a pair of adjoint functors Σ, Ω: ?Γ -» ?Γ. These
induce a pair of adjoint functors σ, ω: Ho(ίΓ) -> Ho(?Γ). A spectrum over
Ho(?Γ) is represented by a spectrum over ?Γ which in each term has a
nondegenerate basepoint. There are more maps between two spectra over
Ho(?Γ) than there are between their representatives in Spect(?Γ), for all
that is required in Ho(?Γ) is that the representing maps fn+xxn and
ynΣ(fn) be homotopic. If each xn\ ΣXn -> Xn+λ is a cofibration, then,
beginning with/l9 we can modify the/n by a homotopy so that they define
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a map of spectra. Thus, if we are careful in our choice of representatives,
every object and every map in Spect Ho(?Γ) can be represented in
Spect(S').

Recall that a category ?Γ is called a closed model category if certain of
the morphisms have been distinguished with the terms "cofibration",
"fibration", and "weak equivalences" so that certain axioms are satisfied
(see Quillen [10] or [9] or Bousfield-Kan [4]). The homotopy category
Ho( ?Γ) is obtained from ?Γ by localizing with respect to the weak equiva-
lences. If T: ?Γ -> Ho(^Γ) is the localizing functor, for X, Y objects in ?Γ,
Hom(T(X), τ(Y)) is called the set of homotopy classes of maps from X
to Y.

On Ho(?Γ), suspension and loop space functors can be defined (see
Quillen [9]), but these are not induced by functors on ?Γ unless ?Γ has
further structure. This extra structure, described below, will always exist
for what Quillen calls a closed simplicial model category.

The axioms which Quillen gives are as follows:
(CM 1) ^Γhas finite limits and finite colimits.
(CM 2) If/and g are maps such that gf is defined, then if two of/, g,

gf are weak equivalences, so is the third.
(CM 3) Every retract of a cofibration, weak equivalence, or fibration

is a cofibration, weak equivalence, or fibration, respectively.
(CM 4) (Lifting) Given a solid arrow diagram

A -* X
i i / I p
B ''-* Y

the dotted arrow exists if / is a cofibration, p is a fibration, and either is a
weak equivalence.

(CM 5) (Factorization) Any map/can be factored in as/ = pi where i
is a cofibration,p is a fibration, and either/? or i can be required to be also
a weak equivalence.

An object A is called cofibrant if the initial map φ -> A is a cofibra-
tion. An object X is called fibrant if the terminal map X -> * is a fibration.
A cofibration or a fibration is called trivial if it is also a weak equivalence.

The composition of two cofibrations or of two fibrations is again a
cofibration or a fibration, respectively. The base extension of a fibration
or of a trivial fibration is a fibration or a trivial fibration, respectively. The
cobase extension of a cofibration or of a trivial cofibration is a cofibration
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or a trivial cofibration, respectively. Every isomorphism is a cofibration, a

weak equivalence, and a fibration.

If S, ?Γ are two model categories, and if F: S -> 5* is a functor which

preserves weak equivalences between cofibrant objects, there is an induced

functor LF: Ho(S) -> Ho(5") defined as follows. If S is an object of S,
i p

choose a factorization φ -» 5" -»S where / is a cofibration and p is a trivial

fibration. Then (LF)(S) = τF(S% where T: ?Γ-> HO(?Γ) is the locali-

zation. It is not difficult to extend LF to maps, once it is remembered that

T carries weak equivalences to isomorphisms. Similarly, if G: § -*?Γ

preserves weak equivalences between fibrant objects, one can similarly

construct RG: Ho(S) -* Ho(?Γ).

We will call ?Γ a spectral category if ?Γ is a pointed closed model

category, and there are functors Σ, Ω: ?Γ-» ?Γwith Σ left adjoint to Ω, such

that

(S 1) Σ preserves cofibrations, trivial cofibrations, and weak equiva-

lences between cofibrant objects.

(S 2) Ω preserves fibrations, trivial fibrations, and weak equivalences

between fibrant objects.

According to Quillen ([9] Theorem 1.4.3), L Σ : Ho(?Γ) -> Ho(?Γ) is

left adjoint to ΛΩ.

Every pointed closed simplicial model category in Quillen's sense is a

spectral category. Thus the category of topological spaces is a spectral

category if the weak equivalences are taken to be the usual homotopy

equivalences (see Strain [11]) or if they are taken to be the maps inducing

homotopy equivalences on all homotopy groups with all basepoints (see

Quillen [9]).

Suppose now that ?Γis a spectral category. In Spect(?Γ), we define a

map f: X -> Y to be:

(a) a cofibration if all the maps Σ ( Γ J [_\(Xn) Xn+λ -> Yn+X for n > 0

and Xo -> Yo are cofibrations,

(b) a weak equivalence if all Xn -> Yn are weak equivalences,

(c) a fibration if all Xn -> Yn are fibrations.

THEOREM 3.2. S p e c t ^ ) is a closed model category if ?Γ is a spectral

category.

Proof. Since Σ preserves colimits and Ω preserves limits, (CM 1) is

satisfied. Clearly (CM 2) is satisfied. It is easy to prove (CM 4) by

induction.
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The only part of (CM 3) which is nontrivial is to show that a retract

of a cofibration is a cofibration. However, this follows directly from the

fact that Σ and the cofiber sum construction are functors and that (CM 3)

holds for 5\ To show the factorization axiom, suppose that /: X -> Y is a

map of spectra. Factor /0 = poio so that i 0 is a trivial cofibration, p0:

X'o -> Yo is a fibration. Let * ( ' = Xλ | J Σ Σ * ί . Since ΣX 0 -> ΣX[ is a

trivial cofibration, its cobase extension Xx -> Jf" is a trivial cofibration.

Factor X" -» Yj into a trivial cofibration Jf" -> X[ followed by a fibration

p0: X[ -» Y1? and let /,: X, -> JSf( be the composition of the given maps.

Continue on by induction. The other half of (CM 5) is similarly proved.

Let σ: Sρect(<ϋ ) -> Ho(Spect(?Γ)) be the localization functor. Notice

that T induces a functor which we denote by T*: Ho(Spect(?ί)) -»

Spect(ifo(?Γ)), which sends σ(X) to the spectrum whose «th term is τ(Xn).

THEOREM 3.3. T* is epimorphic on objects, and for all X, Y, T*:

Hom(σ(X), σ(Y)) -> Hom(τ*σ(X), τ*σ(Y)) is an epimorphism.

Proof. Suppose that Z' is a spectrum over Ho(?Γ). Then choose Zn

cofibrant — fibrant in <ϋ so that τ{Zn) is the Λth term Z'n of ΊJ. Since ΣZn

is cofibrant and Zn+λ is fibrant,

Hom(ΣZ n , Z n + 1 ) - H o m ( τ ( Σ Z j , τ ( Z π + 1 ) )

is an epimorphism (see Quillen [9]), we can choose a map zn: ΣZ r t -> Z Λ + 1

such that τ(zπ) is the structure map z'n:ΣZ'n^> Z'n+ι.

To prove the second part, we can choose X cofibrant and Y fibrant

without changing the isomorphism classes of σ(X) and σ( Y). If we choose

representatives/: Xn -> Yn for the maps τ*σ(X)n -» τ*σ(Y)w, the two maps

Σx r t -> Yrt+1 defined by/w and/ w + 1 agree in the homotopy category. Since

ΣXn is cofibrant and Yw+1 is fibrant, these two maps are left homotopic

(see Quillen [9], §1.1). Cofibrations between cofibrant objects have the left

HEP for maps into fibrant objects, so since ΣXn -* Xn+λ is a cofibration,

/ r t + 1 could have been chosen so that fn+λ and Σfn define the same maps

ΣXn -> Yrt+1. Proceeding inductively, we obtain a spectrum map/: X -> Y

which is carried to the given map τ*σ(X) -> τ*σ(Y) by τ*σ. Thus

Hom(X, Y) -> Hom(τ*σ(X), τ*σ(Y)) is an epimoφhism.

From now on, we shall assume that on Ho(?Γ), LΣ is naturally

isomorphic to suspension, or, equivalently that RQ, is naturally isomorphic

to the loop space functor. The next lemma is somewhat tedious to prove,

so we defer the proof until we have investigated its applications.
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LEMMA 3.4. Define Σ, Ω: Spect(?Γ) -> Spect(?Γ) by (Σ(X))n = ΣXn9

(Ω(X))Π = ΣXn. Then for all X, there is a natural isomorphism between
LΣ(σ(X)) and the suspension of σ(X) and a natural isomorphism between
/?Ω(σ(X)) and the loop space of σ(X). Further, these isomorphisms can be
chosen to form natural isomorphisms of functors.

Suppose now that Y is an Ω-spectrum; that is, each Yn -> ΩYn+λ is a
weak equivalence and Y is fibrant. Define (BY)n = Yn+ι. Then the natural
transformation Y -> ΩBY will be a weak equivalence if Y is an Ω-spec-
trum and ΩBY will also be an Ω-spectrum. By the lemma above, there is a
cofibrant spectrum Z which is a loop space for BY, together with a weak
equivalence Z -> ΩBY. Consequently, for all A there is a natural isomor-
phism

(3.5) Hom(τ(A), r(Y)) = Hom(τU), i?Ω(B7)).

Since Ω preserves fibrations, R(ίln) = (i?Ω)n, so we see that we have for
all A and all n > 0 a natural isomorphism

(3.6) Hom(τ(Λ), τ ( r ) ) = Hom(τ(Λ), Rίlnτ(BnY)).

We now define, for X any spectrum, Y an Ω spectrum, and n any
integer, functors Hn(X; Y) = Hom(LΣ'σ(X), i?Ω"+rσ(Bπ+ί(Y)) for t > 0
chosen so that /i + ί > 0. Since for any model category, the iterated loop
functors on the homotopy category take their values in the abelian group
valued objects after the second loop space functor (see Quillen [9]), the
H"(X; Y) are abelian groups in a natural manner.

If X is in ?Γ, we define the cohomology groups of T with values in the
Ω-spectrum Y by Hn(X; Y) = Hom(LΣ'τ(X); <Yn+t)) for t > 0 such
that n + t > 0. Notice that since ?Γ was assumed pointed, these cohomol-
ogy groups are what are usually called the reduced cohomology groups.
Notice that Hn{X\ Y) = Hn(S°(X); Y), where S°(X) is the spectrum
whose nth term is ΣmX.

If X is any cofibrant spectrum, let Xm be the spectrum whose nth
term is Xniίn< m, and is Σn~mXm if n > m. Then if Z_! is the initial
spectrum, X_, -> Xo -> X! -> is a sequence of cofibrations whose
colimit is X. If, for a moment, we assume that the theorem of Milnor's
generalizes, from the observation that Hh(Xm; Y) = Hn+m(Xm\ Y) for any
Ω-spectrum Y, we obtain a short exact sequence:

(3.7) 0 -> \imλHn+m-\Xm\ Y) -> Hn(X; Y) -> l i m 0 ^ 1 1 ^ ^ ; Y) -> 0.
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Notice that for topological spaces in the Serre homotopy theory, if Y
is an Eilenberg-MacLane spectrum and if X has the property that the Xn

are (n — 1) connected and also that the maps Xn -» &Xn+λ induce an
isomorphism on homotopy groups up to dimension n + φ(n), where φ(n)
is an unbounded nondecreasing function, then for all w, Hn(X; Y) =
\im°Hn+m(Xm) Y), and limιHn+m(Xm; Y) = 0. In particular, if X is a
connected Ω-spectrum, this will be true.

Before we prove the generalization of Milnor's theorem needed to
prove the exactness of (3.7), we investigate some of its consequences. First,
suppose that A C Q is a subring of the rationals. Notice that an abelian
group M has at most one A -module structure, and it has an A -module
structure if and only if for every prime p which is a unit in A, M is
uniquely /7-divisible. Thus all abelian group extensions of A -modules are
also A -modules in a well defined manner. Since the forgetful functor from
A -modules to abelian groups is exact and preserves limits, it is compatible
with the functors limz.

THEOREM 3.8. // Y is an Ώ-spectrum of topological spaces such that
every Hn(S°; Y) is a finitely generated A-module, then for all spectra X,
Hn(X; Y) is an A-module for all n.

Proof. We may assume that each Yn is a countable CW-complex
without changing the weak homotopy type of Y, since the homotopy
groups of each Yn are all countable. For any finite CW-complex K, the
groups Hn(K; Y) are all finite extensions of A -modules, and thus are
A -modules. From Milnor's theorem, the groups Hn+m(Ym; Y) are exten-
sions of ^4-modules and thus are ^4-modules. Finally, by (3.7), the groups
Hn(Y; Y) are ^-modules. Thus, there is in i/°(Y; Y) an ,4-submodule M
generated by the identity map. Thus, if / is the residue class of the
identity, it suffices to show that for all integers p which are units in A,
(pi) ' (P~li) — i — (P~Xi) ' (pi), where denotes composition of
cohomology operations. It is a standard exercise to show that for all α:
Y -> Y, (pi) a — pa, so the relation (pi) (p~λi) = i is immediate. The
relation a - (pi) = pa for all a follows from the observation that for any
two cofibrant spectra X', X", Hn(X' V X"; Y) = Hn(X'; Y) θ Hn(X"\ Y)
for all «, where V denotes one point union. This fact follows from the
usual exact sequence for a cofibration X' -> X' V X".

We now show that there is an exact sequence as described in (3.7)
above. To do this, it suffices to show that Milnor's theorem can be
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generalized to additive cohomology theories on pointed model categories.
The proof which Milnor gives is entirely general except in one point. This
concerns a construction which begins with a sequence of inclusions
Xo -> Xλ -> X2 -> of subcomplexes of a CW-complex X, whose union
is X, and forming the mapping cylinders Mo -> Mλ -> . Milnor's proof
that the map M -* X from the colimit M of the mapping cylinders to X
relies on the fact that this map induces an isomorphism on homotopy
groups. This fact can be replaced by a lemma of Reedy's (see Anderson
[3]) which states that if one has a map between two sequences of
cofibrations with cofibrant initial objects, if that map is a weak equiva-
lence at every stage, the colimit of that map is a weak equivalence. With
this modification, Milnor's proof and the usual "Puppe sequence" types
of arguments yield the following.

LEMMA 3.9. If $ is a pointed closed model category with countable

colimits, and if\ is any Ώ-spectrum over ?Γ, then for any sequence φ -> Xo ->

Xλ -> of cofibrations, if X is the colimit of the sequence, there is for all n

a natural short exact sequence:

0 -» \im\Hn-\Xi\ Y) -> Hn(X\ Y) -> U m ^ r t ( ^ , Y) -> 0.

LEMMA 3.10. Suppose that Y is an ίi-spectrum, and that X is any

spectrum such that each Xn is a countable CW-complex and each ΣXn is a

subcomplex of the corresponding Xn+X. Let H*( — \ X) be defined on finite

CW-complexes in the usual manner. Then every stable cohomology operation

φ: H*( — X) -> H*( — Y) defined on finite CW-complexes is induced by a

map X -> Y of spectra.

Proof. Let Xα run over those spectra such that each X% is a finite
subcomplex of Xn9 and for some m — m(a), the maps ΣX^+t -> A^+ / + 1

are isomorphisms for / >: 0. Notice that the Xα, ordered by inclusion,
form a countable filtered system whose colimit is X, and the inclusions are
all cofibrations. Thus by (3.9), the map //*(X; Y) -> lim°#*(Xα; Y) is an
epimorphism. However, H"(Xa; Y) = Hn+m^a\X^a); Y) by (3.7), so we
see that for all n, Hn(X\ Y) -* Um°^n + m ( α )(Z« ( α ); Y) is an epimorphism.
The cohomology operation φ determines a class in hm°/ί' ί+m(α)(X^(α); Y\
which is the image of some class in Hn(X; Y), where n is the degree of φ.
Since X is cofibrant and Y is fibrant, this is represented by a map X -» Y.
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Suppose now that X is any spectrum of topological spaces. We call X
a CW-spectrum if each Xn is a CW-complex and if for all «, ΣXn -> Xn+λ

is the inclusion of a subcomplex. Notice that a CW-spectrum is cofibrant
in the Serre model structure, and for any X there is an X' together with a
weak equivalence X' -> X such that X' is a CW-spectrum.

Suppose that Y is both a CW-spectrum and an Ω-spectrum so that
each Yn is countable. If H*( — Y) has a ring structure on the category of
finite CW-complexes, according to (3.10), we can find a spectrum map
Y Λ Y ^ Y which induces this product, where Y Λ Y is, in degree In the
CW-complex Yn Λ Yn9 and in degree In + 1 is Σ(Yn A Yn). If X is any
spectrum, let DX be ΣnXn in degree In, Σn+xXn in degree In + 1. Then,
by (3.7), we see that the obvious map DX -> X induces an isomorphism
H*(X; Y) -* H*(DX; Y). Thus, the pairing Y Λ Y defines a pairing, using
the maps DX -» X, DX - ^ X Λ X (diagonal map), of the form
H'(X; Y) θ HJ(X; Y) -> Hi+JQί; Y). Unfortunately, there is no reason to
expect this pairing to be associative or commutative even if the original
pairing was on finite complexes.

If X is a CW-spectrum, the filtration * = sk_λX -> sk0X -> is a
sequence of cofibrations with colimit X, where (skmX)n = skm+nXn. Thus,
for any Ω-spectrum Y, we can mimic Dold's procedure [6] and produce a
spectral sequence with E^q = HpJt\skpX/skp_λX\ Y). If Y admits a
multiplication, then by Dold's arguments, this spectral sequence will be a
spectral sequence of bigraded rings, and each differential will be a
derivation from the £2-level on. Notice that since the maps
^{skp+nXJskp+n^λXn)^skp+n+λXn+λ/skp+nXn+x are split monomor-
phisms, since each space is a bouquet of spheres of dimension n + p + 1
and the map is an inclusion of a subbouquet. Thus we see that
limιE[+n%Xn) = 0 for all p, q, and therefore that E™{X) =
lim°-Ef+Πf^(-Xπ). This gives us a short exact sequence by standard homo-
logical algebra: 0 -> lim1^+»-χ«(Xn) -> E™{X) -»lim°£f+π«(Xn) -> 0.
By the standard 5-lemma argument and (3.7) we obtain the following:

LEMMA 3.11. IfX is any CW-spectrum, there is a natural isomorphism

°; Y))),

where K is the Eilenberg-MacLane spectrum functor which associates to a

group A the 0,-spectrum which in degree n is the Eilenberg-MacLane space

K(A9 n).
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We shall simply write HP(X; A) for HP(X; K(A)).

Notice that we now have all of the structure needed to extend
Theorems (2.1) and (2.2) from spaces to spectra. This gives us the
following as a special case.

THEOREM 3.12. Let X, Y be two connected spectra, A be a subring of the
rationals. Suppose that Y is an Ώ-spectrum and that:

(1) //*(X; A) is finitely generated in each degree.
(2) H*(S°; Y) is a finitely generated A-module in each degree.
(3) In the spectral sequence for H*( — ; Y), the terms Ep'q(Xn) are

eventually constant for all n,p, q.
(4) The terms Ej^n*q(Xn) are eventually constant for all p, q.

Then if*(X; Y) = \im°H*{Xn\ Y) = lim°i/*( *«; Y) where X% runs over the
finite subcomplexes of Xn.

For connected Ω-spectra, there is a further phenomenon which can be
exploited to prove the nonexistence of phantom maps. Suppose that X is a
connected Ω-spectrum. Then for m < n, ττn+m(Xn) ® Q = Hn+m(Xn) ® Q,
since rational homology agrees with rational stable homotopy, and we are
in the stable range for π*(Xn). By repeated application of the Serre
spectral sequence and the Zeeman comparison theorem, we see that for all
k < n, H*(Xk; Q) is the free graded commutative algebra on
H o m ^ ^ ^ ) , Q) in dimensions < k + n if ir*(Xk) ® Q is finitely gener-
ated in each degree. Thus, we see, since n is arbitrary, that each
H*(Xk; Q) is the free commutative algebra on Homίίr^A^), Q).

THEOREM 3.13. Suppose that X, Y are two connected Qi-spectra which
are countable CWr-spectra, and that for finite complexes H*( — ; Y) takes its
values in the category of graded A-algebras which are finitely generated over
A in each degree, where A is a subring of the rational numbers. Suppose also
that H*(X; A) is finitely generated over A in each degree. Then if for all p,
the map HP(X; Y) -* Hom( irp(X)9 πo(Y)) has finite cokernel, there are no
phantom elements in H*(Xn; Y) for any n, and there are no completely
phantom elements or phantom elements in i/*(X; Y).

Proof. Suppose that each E?>°(X) is eventually constant. Then Z£°(X)
has finite index in Eξ\X). Since the image of Eξ °(X) -> Eξ+n>\Xn) maps
onto a subgroup of the indecomposables of Hp+n{Xn\ πo(Y)) of finite
index. Thus Z^°(Xn) is of finite index in each degree in E*'°(Xn)- Since
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Z*Λ*n) ®.0(Y) **00 c z*~q(xn\ and since E*>\Xn) ®πo(Y) ττq(Y) is of
finite index in E$>~q(Xn), we see that Z^~\Xn) is of finite index in
Eξ>-q(Xn). (Notice that up to finite groups, E}>°(Xn) = H*(Xn; A)
®A 77O(Y), so that E*»(Xn) 9^m πq(Y) = H*(Xn; A) ®A πq(Y).) Thus the
E^~g(Xn) are eventually constant for all /?, q. Thus part (3) of (3.12) is
satisfied. Since Z£~*(X) clearly has finite index in Eξ>~q(X) for all/7, q by
arguments similar to those above, we see that in the stable range, Zξj ~q(X)
has finite index in Z^n'"q(Xn). Thus part (4) of (3.12) is satisfied. Thus
(3.12) implies the desired result once we prove that each Ef'°(X) is
eventually constant.

Up to finite groups,

E{fi(X) = Hom(Hp(X), wo(Y)) =

Thus if the image of HP(X; Y) in Hom(τr/7(X), πo(Y)) has finite cokernel,
so does Z£°(X) in E£°(X), since the image of HP(X\ Y) in E^p(X) is just
the image of Z£°(X).

4. Operations in Â -theory. We shall prove in this section that if fc*
is the connected cohomology theory associated to complex iί-theory, the
spectral sequence for the stable cohomology operations from A:* to itself
satisfies M-L, so that the stable cohomology operations are the same on
finite complexes, spaces, or spectra. We shall do this by studying the
cohomology operations on the localization of the theory at various primes
where one can describe operations in terms of the periodicity map and the
Adams operations. Over the integers, no such description is possible, as
the only Adams operations which are stable operations are ψ1 and ψ"1.

Let A C Q be the subring of the rationals consisting of those fractions
with denominator not divisible by some prime /. Then — ®A is exact, so
that k*( — ) ® A is a cohomology theory. Unfortunately, it is not additive.
However, by E. H. Brown's theorem, since A:*(point) ® A is countable,
k*(—)®A agrees with a representable cohomology theory on finite
CW-complexes. We denote this theory by &*( — A), and observe that
there is a map k*( —) ® A -* k*( — A) which is an isomorphism on finite
complexes.

Let £**(X) be the spectral sequence for k*(X), and let E**(X; A) be
the spectral sequence for k*(X; A). Then if X is locally finite (H*(X; Z) is
finitely generated in each degree), the map 2s**(X) ® A -> £**(X; A) is an
isomorphism for r — 2, and by the exactness of — ®A, for r < oo. If

satisfies M-L, clearly so does E?>q(X) Θ A.



302 D. W. ANDERSON

LEMMA 4.1. E**(X) satisfies M-L in each bidegree if and only if
£r**(X) ® A does for all /, and £,**( X) ® ̂  = £2**(X) ® Λ /or a// r /or all
but a finite number of primes I. {We assume X locally finite.)

Proof. Ep>q(X) satisfies M-L if and only if Q™(X) =
Eξ'q(X)/Zp'q(X) is eventually constant. Since this quotient is torsion and
finitely generated, Qp'q(X) ® A is zero for all but a finite number of /.
Thus if Q™(X) is eventually constant, so are all Qp/q(X\ A) = Q**q(X)
® A, and for all but a finite number of / they are all zero. Conversely, if
for all / the QP/\X\ A) are all eventually constant and all for all but a
finite number of / they are zero, then there is an r independent of / such
that Q?£(X; A) is constant for all s > 0 and all A. Thus for all primes /
the /-primary part Q?£(X) ®A of Q?£(X) is constant for s > 0, so

is constant. Thus E™(X) satisfies M-L.

Let K* be the usual periodic AΓ-theory defined with complex vector
bundles, so that Kn = Kn~2 for all n. Let π: Kn -» Kn~2 be the periodicity
map. Then according to Adams [2], there are multiplicative cohomology
operations ψ*: K° -> K°, such that ψ*ττ = A:ττψ* where ψΛ: K~2 -> ̂ " 2 is
defined by the suspension isomorphism. If / is a prime, ̂ 4 the localization
of the integers at /, then for k not divisible by / the operation ψ* ® A:
K°(X; A) -* K°(X; A) defined for finite complexes A can be made
into a stable cohomology operation by the rule that \pk: K2n(X\ A) ->
K2n(X; A) is k-n<iτ~n(ψk ® A)πn (we write ψ* for this stable ope-
ration for simplicity). The Chern characters ch": K°(X) -» H2n(X; Q)
can also be extended to stable cohomology operators chw: K\X\ A) -»
H2n+i(X\ A) since ch% = ch""1 if we extend the Chern characters to
K\X) for i < 0 by suspension. Notice that the Adams operations are rela-
ted to the Chern characters by ch"ψ* = Λ^ch".

For X a CW-complex, let sknX denote the ^-skeleton of X. Let kn(X)
be the kernel of the map Kn(X, skn_2X) -> Kn(skn_λX, skn_2X\ It is
now an elementary exercise in the manipulation of exact sequences to
show that A;* is a cohomology theory and that the map kn{X) -* Kn{X) is
a stable cohomology operation. Since skm+n_λ(X Λ Y) lies inside
((skm_x(X)) Λ 7 ) U {X/\skn_λ(Y)\ k* is a multiplicative theory, and
k* -̂  K* is multiplicative. Finally, for every stable cohomology operation
φ: K* -> K of degree < 0, there is an induced cohomology operation φ:
k* -> k* compatible with φ and k* -> K*. Further, for any φ, ψ, φψ = φψ.

The construction of A:* from K* above clearly works for any
cohomology theory defined on CW-pairs. Further, it is clearly compatible
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with localization, since localization is an exact functor. Notice that if X is
^-dimensional, k\X) = 0 for i > n. If X is {n — l)-connected, kn(X) ->
Kn(X) is an isomorphism, as one can find a model for X such that
skn_x(X) is a point. Finally, the image of kn{X) -* Kn(X) is just the
kernel of Kn(X) -> Kn{skn_λX\ or the nih filtration FnK

n{X) in the
skeletal filtration.

Consider the map kn(X) -* kn(sknX). Since kn(sknX) =
k"(sknX,skn_ιX) = Cn(X; A:°(point)) (the ^-dimensional CW-chains),
and since the image of kn(X) in Cn(X\ /:°(point)) clearly lies in the kernel
of 8: kn(sknX, skn_λX) -> kn+\skn+λX, sknX) we see that there is a
well-defined stable cohomology operation γ0: kn(X) -* Hn{X\ A:°(point)).
Further, it is elementary to verify that the following diagram is commuta-
tive:

kn(X) * Hn(X;Z)

ch0

Kn(X) -> H"(X; Q).

It is possibly a simple diagram chase to see that yoπ — 0, where π:
kn+2(X) -> kn{X) is induced by periodicity. Let bu be the classifying
spectrum for A:*. Then each bun has the homotopy type of a countable
CW-complex, so that the map bun+2 -> bun which induces π factors
through the fiber of bun -> K{Z,n). The exact sequence of homotopy
groups of a fibration shows that the map is a homotopy equivalence. If we
choose bu to be cofibrant, the obstruction to extending the map of Σbun+2

into the fiber of bun+x -> K(Z, n + 1) lies in Hn+2(bun+3, Σbun+2) = 0,
so there is a spectral map of degree — 2 of bu to the fiber of bu -> K(Z, 0)
which is a weak equivalence of spectra.

The exact sequence of homotopy classes of maps into a fibration (the
dual of the "Puppe sequence") holds in any closed model category. Thus
from the remarks above, there is an exact sequence

—» kn^2(X) —>kn(X} —>Hn(X} -*kn^^(X} —> •

which holds if A" is a spectrum or a space.
If A C β, we write BU ® A for the spectrum representing K*( — A),

and bu ® A for the spectrum representing k*( — yl). Adams [1] computed
the cohomolgy of bu with mod p coefficients for all primes and since
bu -> bu ® A is a localization, we can determine from the calculations of
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Adams the mod p cohomology of the bu ® A for all A. For now, we need
only two facts: H\\m ®A;A) = 0, H°(bu ® A; A) = 4 .

Let A: be an integer which is invertible in A. Then yo(\fk — 1) =
ch o(ψ* — 1) = 0, so there exists a unique φk G &2(bιi ® A; A) with πφ* =
φk — 1 (TΓ: &2(bu ® ̂ 4; ^4) -> &°(bu ® A; A) is a monomorphism since
/ ^ ( b u ® ^ ; Λ) = 0). Notice that πφkπn = πknπnφk + π(kn - \)€n~\
Thus φ ^ = knπnφk + (fcn - I)*?"" 1.

PROPOSITION 4.2. φ*: /:~2π(point; 4̂) -* &2"~2w(point; ^4) is multiplica-

tion by kn - 1.

Prw/. ^ π : A:°(point; A) -» A:~2"(point; 4̂) is an isomorphism and φ*:

fc°(ρoint; A) -> A:2(point; ^4) = 0 is trivial.

THEOREM 4.3. The spectral sequence for /c*(bu ® A; A) satisfies M-L,
so that stable cohomology operations on finite complexes on /:*( — ; A) have

unique extensions to spaces and to spectra.

Proof. Over the rationals, φk and π generate all maps k'(point; A) to

Appoint; A) for all /, j .

We now turn our attention to the details of the spectral sequence for
Λ;*(bu; A). According to Adams [1] there are cohomology classes ch^ r in
H2q+2r(bu2q\ Z) which have the following properties:

1. If ch e Hlq+2\bu2q\ Q) is the representative of the stable r th
Chern character, chqr ® Q = m(r)chn where m(r) is the product over all
primes/? oίp[r/p~x\ and where [ ] denotes the greatest integer function.

2. Under the map H2q+2r(bu2q; Z) -> H2^2r'2(bu2q_2\ Z) chqr is
carried to ch^_ I j Γ.

Unfortunately, Adams does not state his results quite this way in his
Theorem 2, but it is not difficult to see that his statement implies ours. Let
the Adams-Chern character acr G i/2 r(bu; Z) be the class determined by
the ch^ r for q > 0. Then acr ® Q = m(r)ch r in H2r(bu; Q).

Since πφk = ψ* — 1, chΓ77φ^ = (/c:7* — l)ch r, or c h ^ ^ =

(kr ~ l)ch r. In particular, cho(φ*) = (fcr - 1) (k - l)ch r. Thus

r - m{r)-\kr - \) (k - l)acΓ
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modulo torsion. Consequently, in the spectral sequence for &*(bu; A)
modulo torsion,

m{r)~\kr - 1) (A: - l)acΓ ® 1 E H2r(bu, £°(point; A))

is an infinite cycle representing (φk)r.
Next, let vt{n) be the number of times which / divides n for any

integer n. If k is chosen so that kp~ι — 1 is not zero modulo I2, υ^k' — 1)
is given as follows:

1=2 IΦ2
1 if2{r 0 if/- H r

2 + ©,(/•) if 2 I r l+t>/(r) i f / - l | r

It is now easy to verify that vι(m(r)~\kr — 1) •••(&— 1)) is
ϋ7(| r/{l - 1) I !) if / Φ 2, and is r + t;,(| r/(/ - 1) | !) if / = 2.

THEOREM 4.4. Let n(r) = 2 rn//u/( | r/(/~1) | ! ). Then in the spectral se-
quence for k*(bu), for all r > 0, w(r)acr w, modulo torsion, an infinite cycle.

Proof. We have just seen that the /-localization of this class is an
infinite cycle for all primes /.

Finally, we observe that real, complex, and symplectic ^-theory all
behave in essentially the same manner insofar as lira1 problems are
concerned. To see this, first recall that these maps c: KO°(x) -> KU°(x),
c': KSp°(x) -> KU°(x), r. KU°(x) -> KO°(x), r'\ KU°(x) -> KSp°(x)
which are extensions of scalars along the usual inclusion maps R -» C,
H -> C(2), C -> R{2\ C -> H where R is the ring of real numbers, C is the
ring of complex numbers, H is the ring of quaternions, and i?(2), C(2)
denote the ring of rank 2 matrices over R and C respectively. The.
composition re: K0°(x) -> KO°(x) is multiplication by 2, as is the
composition r'c'\ KSp°(x) -> KSp°(x). Thus, up to a group of exponent
2, the spectral sequence for ko*(x) will always be a retract of the spectral
sequence for k*(x), where ko* is the connected cohomology theory
associated to KO*, and similarly for ksp*(x). Thus, if the spectral
sequence for k*(x) satisfies the Mittag-Leffler condition, so do the
spectral sequences for ko*(x) and ksp*(x). Similarly, modulo finite
cohomology groups, the spectra for ko* and ksp* are retracts of the
spectrum for A:*. Thus if for some cohomology theory h* which is of finite
type over some ring A C Q, if the spectral sequence for operations
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k* -> A* satisfies the Mittag-Leffler condition, so do the spectral se-

quences for cohomology operations ko* -> h* and ksp* -> A*. Thus the

theorems which we have proved for complex ΛT-theory all extend to real

and symplectic iίΓ-theory easily.
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