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A PROOF OF THE BENDER-KNUTH CONJECTURE

BASIL GORDON

Let br(n \ Im) denote the number of r-rowed partitions of n whose
parts lie in the set Im = {1,2, . . . ,/w} and decrease strictly along each
row. It is shown that

mi" = n n o - *r+i+'-')/o -
n=0

1. Introduction. For any given set S of positive integers, let br(n \ S)
denote the number of r-rowed partitions of n whose parts lie in S and
decrease strictly along each row. Put b(n \ S) — \imr_+^br{n \ S). Bender
and Knuth [3] have proved the remarkable formula

n
B(x\S) = 2 b(n\S)x"

n=0

valid for | x |< 1. As yet no such simple expression has been found for
Br(x\S) = 2^=0 br(

n I S)xn. However there are two situations where a
"product" formula for Br(x\S) can indeed be given, namely when
S = Im= {l,2,...,m} or S = Jm= {1,3,5,.. .,2m - 1}. The formulas
are:

(i) * ( i / j n n \ "i/j=n n \ - '
m 1 _ v r + 2 / - l m 1 _

n \" n \, L

Equation (2) was conjectured by MacMahon [5], while (1) was conjec-
tured by Bender and Knuth [2]. Some years earlier the author had already
found a proof of (1), but published only the limiting case m -> oo. Then
Andrews [1] proved (2), and also showed in [3] that (1) and (2) are
equivalent. This of course gave another proof of (1). Over the years, a
number of people have expressed a desire to see the original direct proof
of (1) in print. It will therefore be belatedly presented here.
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100 BASIL GORDON

2. Notation. If n is a positive integer, while a and y are inde-
terminates, we write

(a; y)n = (1 - a){\ - ay){\ - ay2) • • • (l - ay"-*).

By convention, (a; y)0= l . I f O < A : < « , put

n] _ (x;x)n

(x\x)k{x\x)n_k'

If k < 0 or k > n, define [£] = 0.

3. Proof of (1). Let Xl9 X2 , . . . ,Xr be a sequence of integers satisfy-
ing A 1 > X 2 > : - - - > : X r > : 0 . We consider r-rowed partitions of the type
enumerated by br(n \ 5) , but where there are exactly Xt non-zero parts in
the ith row (/ = 1,.. . , r) . Let br(n; \l9... ,Xr | 5) be the number of such
partitions of «, and put

B,(x;\l9...9\r\S)= 1 ^ ( / i j X ! , . . . , ^ ! ^ " .

Clearly Br(x\ S) = S ^ j ^ x ; X,, . . . ,X r | S), where the sum is extended
over all sequences (X,.) with X, > • • • > Xr > 0. We now obtain an expres-
sion for Br(x; X1?... ,Xr | Im) as a determinant.

THEOREM 1.

Proof. Given a partition TT of « of the type enumerated by
br(n; X l 9 . . . ,Xr | Im), we subtract 1 from each of its parts. If X = X! + X2

+ • • • +X r , this gives a partition of n — X of the type enumerated by
br(n — X; Xj — c l 5 . . . ,Xr — e r | /m_]) , where ey = 0 or 1 according as the
last part of theyth row of m is greater than 1 or equal to 1. Moreover,
every such partition of n — X is the image of exactly one TT under this map.
It follows readily that

where we make the convention that Br(x; Xx — el9...,Xr — 6 r | Im-X) = 0
if the inequalities \{ — e{ > X2 — e2 ̂  • • • ̂  Xr — er > 0 are not satisfied.
IfX, = ••• = Xr = 0, w e h a v e 5 r ( x ; 0 , . . . , 0 | / m ) = 1.
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Now let Cr(x; \]9... ,Ar | Im) be the determinant in the statement of
the theorem. Then

since the diagonal entries are all equal to 1, while those above the diagonal
vanish. Thus Br(x; 0,... ,01 Im) = Cr(x; 0,...,01 Im). The proof can now
be completed by induction by showing that

I

Cr(x; X l 9 . . . 9 X r \ I m ) = x x 2 Cr(x; Xx ~ el9...9Xr - e r \ / „ , - , ) .
J

To do this, we recall the well-known identity

b- 1

Using this identity, we can write the general term of the determinant
Cr(x; X,,...,Ar| Im) in the form

X{ 2 >

Now

so the above term can be written as

m — \ \ (l~j+x +K m— \

V 2

We can now remove a common factor of xi from the zth row, and a
common factor of x~jJrXJ from the yth column. The product of these
factors hxX{Jr'"+Xr ~ xx. Hence

(3) Cr(x;Xl9...,Xr\Im)
l 1 J m

The general term of the determinant on the right side of (3) can be written
in the form

I

e, = 0
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Hence, since the determinant is a linear function of each column vector,
we have

Cr(x; X , , . . . , X r | Im) = x* 2
_ e

1

= xx 2 Cr(x; Ai — e,, , X — © I
e,=0

This completes the proof of Theorem 1.

Now let

Then the result of Theorem 1 can be written in the form

The requirement Xx >: A2 >: • • • > \ r is equivalent to hx > h2 > • — > hr9

and therefore

Br(x\Im)= 2 det(agi+hj).
hx>">hr

Set s = 2?=0an9 cv - 2%*anan+w9 dv = c0 + 2(c, + - • • +cv_x) + c,
(^ > 0), Jo = 0, and d_v — -dv. Then by Lemma 1 of [4], we see that for
even r, Br(x\ Im) is the Pfaffian of the skew-symmetric r X r matrix
Dr = (^7_,), while for odd r, 5r(x | Im) is the Pfaffian of the (r + 1) X
(r + 1) matrix

0

obtained by bordering Dr with a row of s 's, a column of -s 's, and a zero.

We next proceed to evaluate the quantities s and cv_x + cv.

THEOREM 2. s = 11^,(1 + JC1'),

Proof. The quantity av = x("2+1)[JT] can be interpreted combinatori-
ally as the generating function of ordinary (i.e. one-rowed) partitions into
exactly v distinct parts, all < m. This observation follows from Theorem 1
with r — 1, but is also easy to see directly. On the other hand, if the
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product II^i(l + x'y) is expanded as a power series in x and y, the
coefficient of yv is also the generating function of such partitions. There-
fore

m oo

(4) II (1 + *'y) = 2 a,y\
1=1 K = 0

Puttingy = 1 in (4), we get IIf=1(l + x1) = 2%0<*, = s. Now let/m(x, y)
= 11,1,(1 + x'y)(\ + x'y-1). Then from (4) it follows that

mm m /

fm(*,y)= 2 2axa,y*-'= 2 2 axa

For i> > 0, we have 2x_ / i = , axa^ = 2^=0 ^«^n+, = <V Hence if we put
c_v — cv9 we have/w(x, y) = S^L.^ c^/w)^", where we have written cy(w)
instead of cv to emphasize the dependence on m. Now

/ (* , y) = / w - t (x ,

and hence

1 cv{m)yv - (1 + x
- 0 0 - 0 0

Equating powers of yv in these two Laurent series, we find that

(5) cv(m) = (1 + * 2 m K(m - 1) + x ^ . ^ m - 1) + xmcv+x{m ~ 1).

For convenience of notation, put yv(
m) = c*-i(m) + ^ ( m ) - H in equa-

tion (5) we replace v by v — 1, and then add the result to (5), we obtain

(6) y,(m) - (1 + xlm)yv{m - 1) + ^ ^ ( m - 1) + *my,+ 1(m - 1).

When m = 0, we have #0 = 1 and av — 0 for all P > 0. Hence co(O) = 1,
while cy(0) = 0 for all v ^ 1. This gives yo(O) = y^O) = 1, and y,(0) = 0
for all v ¥=" 0,1. On the other hand, when m = 0we have

G )[ 2 m + 1 1 (5)[ 1 1

which is also equal to 1 when v — 0 or 1, and is equal to 0 otherwise. This
proves the theorem in the case m — 0.

Now suppose that m > 0, and that the theorm has already been
proved for m — 1. Then from equation (6) we have

(7) *(„) = (, + S'V>\2 " ] + *"*T'>L2 ~

I m + v
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It is a straightforward matter to check that the expression on the right side
of (7) is equal to

m + v

This proves Theorem 2 by induction on m.

If v > 0, we have dv — 2^=1(c/I_, + cM), and therefore by Theorem 2,

m

Consider now the determinant det Dr, where r is even. Subtracting each
row from the previous row, we obtain

det Z), =

Yi

Yi

Y2

Yi

Y3

Y2

Yr-2 Yr-3 Yr-4

Y.-2

Yl

0

Adding all the rows to the last row, we get

det Z> =

Yi

Y2

0

Yi

Yi

Y2

Yi

Y3

Y 2

Yr-2 Yr-3 Yr-4

• Y,-2

Yi

It is now convenient to extend the definition of yv to v < 0, by putting
yv = Yj _̂  in that case. Thus for v < 0, we have

(
2m

=

If we make the convention that C2) - v(v - l)/2 for all v E Z, then we
have
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for all v. The above expression for det Dr can be written as

105

(8) det Dr -

Yo

Y-i

Yi

Yo

Y2

Yi

Y4-r

In exactly the same way we find that for r odd,

Yr-2

Yi

det D'r =

and hence

Yo

Y-i

'.

Y2-r
0

Yi

Yo

Y3-r

dx
s

Y2

Yi

Y4- r •

s

Y r - 1

• • Y r-2

Yi

0
0

0
-s

0

(9) det Dl =

Yo
Y-i

1

Yi

Yo

Y3-r *
1

•• y r -

" Y -

Y,
1

The idea is now to put the determinants (8) and (9) into superdiagonal
form by elementary row operations. All but the last of these operations
are the same for both determinants; we describe these in terms of an
arbitrary matrix {atj% 1 ̂  i9j < r. For the moment we leave the bottom
row unchanged. For each i in the range 2 < i < r — 1, we multiply the
(/ — l)th row by ail/ai_ll and subtract the result from the ith row. This
gives a matrix (b^) with bn = 0 for 2 < / < r — 1. Next, for each i in the
range 3 < i < r — 1, we multiply the (i — l)th row by bil/bi_xl and
subtract the result from the /th row. This gives a matrix (ctj) with cn — 0
for 2 < i < r — 1 and ci2 — 0 for 3 < i < r — 1. We proceed in this
manner until we obtain a matrix which, except for its bottom row, is in
supertriangular form.
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In the present case, if we temporarily ignore the factor s2 in (9) we
have, for both (8) and (9).

[ 2m + 1 1 (J-t) ~ . . . . ,
a,•. i- = 7,•- i~ i • • \x for 1 < / < r — 1.

When the above procedure is applied, the first step yields

- J C ' - ' T 2m + 2
£,,= —— , . i i U C 2 ) f o r 2 < i < r — 1,m+i ym ~r j — i -\- \\

the second step yields

CU (\ _ Ym + i\(i _

2m+ 3
— i + 2xm+i){\

etc. In general if a,^ is the matrix obtained after p steps of the procedure,
we have

(10) a\)(p) =

m + i
P

2m+p+ 1
m + j — i + p for/? + 1 < / < r — 1.

The proof is by a straightforward induction on /?, which we omit here.
Since the ith row (1 < i < r — 1) remains constant after i — 1 steps, the
final determinant obtained from (8) is

An Ai2

0 ^ 2 2

0 0

0 0 0

0 <*. d,

,

dr_x

where

(12)

/ - 1

m

1m + /
m+j- 1
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(This is obtained by putting p = i — 1 in (10).) Similarly, the result of
performing these operations on (9) is the determinant

(13)

n
0
0

0
1

A22

0

0
1

A23

0
1

A2r-i

" A*-rl

•• Ar-\,r-

1 1

The next task is to clear out the bottom rows of (11) and (13), except for
their rightmost entries. To do this for (13), we multiply the (2k + l)th row
(0 < k < (r - 4)/2) by

(14) 1
2 m + 1

and subtract the result from the bottom row. To clear out (11), we
multiply its (2k + 2)th row (0 < k < (r - 3)/2) by

(15)

and subtract the result from the bottom row. To show that these opera-
tions do indeed clear out the bottom rows of (13) and (11), we must
evidently prove that

(r-4)/2

2 BkA2kJ = 0 ( l < 7 < r - l )

and
(r-3)/2

In view of (12), (14) and (15), this is tantamount to showing that

'2m + 2k+ 1
(r-4)/2

(16) 2 2k + / - 1
2m + 1

m

.2m+3. V 2. V 2 \
' = 1

(1 <y<r - 1),
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and

( r~^ ) /2[ }\2m + 2k + 21 }\
- 1JLH- 1JL m + y - 1 J(JC2«+4;jc2)ik i + x ^ i ^

(1 < 7 < r - 1).

To simplify the notation a little, we puty — 1 = n. Moreover we note that
because of the inequality j < r — 1, the summations in (16) and (17) can
be extended from k = 0 to oo without affecting the left sides. Indeed
outside the indicated /^-ranges, we have [^ l] = 0 in (16), and [J

2Z+\] — 0
in (17). The restriction j < r — 1 then becomes irrelevant. Thus we wish to
prove that

I" n ]\2m + 2k+ 1]
V L2£j[ m + n J {x\*2)k r-^> _ .
^ F 2 m + l l /Y2m + 3. y2\ X ~ A

L « J

and
(x2; x2)kx<m~"~l)

m +

for all « > 0. Professor Andrews has pointed out to me that (18) and (19)
can be derived from Saalschiitz's summation of basic hypergeometric
series [5, p. 247], To keep the presentation self-contained, however, we will
give direct proofs. Let F(m, n) and G{m,n) denote the left sides of (18)
and (19) respectively. When n = 0 or 1, the only non-vanishing term of
the series in (18) is the one with k — 0. Hence

and

Thus to complete the proof of (18) it suffices to show that F(m,n) =
F(m, n + 2) for all « > 0. It is easy to verify that

2m + 2k+l]_ 2 \
m + n \~X [ m + n+ 2

4*ill I Z. /V I .

m + « + 2
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Since

it follows from (20) that

n 1 2m + 2k + 1 \x> x )k c+2-2

[2m
m

+1]F(rn,«) =

In the second sum we replace k by k — 1, thus obtaining

"2m + 11 w , ^ r n ]\2m + 2k +r:i}^)=2j2
n

k}[
'2m + 2k + 11 (x;

"J»+U/= 2 ,"J»»+

'}•
(x;x2)k •»-„,

_ _ _ 2A:—1
A:>0 ' "

lm + 2k+ 1] (^;^2)^
m + /i + 2 ' ' ~ •- -

Since

(21)

* — Y ( " + V

, v [ n l [ 2 m + 2k + 3 ] ( * ? x 2 ) k { \ - x 2 " )
t l 2 A : J [ + + 2 J ( 2 ^ 3 ^

m + n + 2 J { 2 ^ 2 )

2k\X ^L2^-2J i-x2k I 2k J'

we have

completing the proof.

The treatment of (19) is similar. First of all, when n = 0 the terms of
(19) all vanish, so G(m,0) = 0. When n = 1, only the term A; = 0 of (19)
is non-zero, so

(1 + x»)G(m, 1) = ,1 [
m + 1 J 1 - x m + 1 L m
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Hence it suffices to show that

G(m,n + 2) = G(m,n)+\ 2m+}Ax^+\ 2 f + } ,
Lm + ft+lJ lm + n + 2

for all n > 0. The relevant analogue of (20) is

2m + 2k
k + 2] = 2*-2k\2m + 2A: + 2]

« J [ m + n + 2 \

m + n + 2 J*

Using this, we split the series for G(m, n) into a sum of two series, and
replace k by k — 1 in the second of these. This yields

2m-h 2k + 2] (x2;
m + n + 2

where the second term in the curly bracket is to be interpreted as 0 when
k = 0. In analogy with (21) we have

rr , ^ i

if&>0,

Therefore

(22) G(is

2m + 2
m + n + 2

V 2 \ /i i vm+l \

+ ( [ i ]x"["!
It is easily checked that

l\n] \n + 2]\\ 2m + 2 1 ^("2+'}
.m+1

2m
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Hence from (22) we get

\ 2r" +jL J m + n +

completing the proof of (19).

Identities (18) and (19) also enable us to determine the entries which
appear in the lower right corners when the clearing process is applied to
(11) and (13). In the case of (11), the process subtracts from dr_x all the
non-zero terms of the series on the left of (19) with n = r — 1, except for
the term with k — (r — 2)/2. In view of (19), the resulting entry in the
lower right corner is the term with n — r— 1, A: = (r — 2)/2, viz.

f r - l l f 2m + r
q[r - 1 Jim + r - 1 »;* 2 ) ( r _ 2 ) / 2 ( l+*" + 1 )

2m + r 1 I*2; ^2)(r-2)/2
r ~ 1J (JC2 W + 4 ; *2) ( r_2) /2(l + xm+x)

Hence for even r we have

detD =r\\ A \ 2m

' i1 i^

m + i ~ 1J \ 2m + r 1 ( * ; *2)<r-2)/21 fv-2- v2>l

2m + r \ yx , x ){r-2m + i\ lm + r- 1J (X
2m+A\ x2\r-K»{\ +

/ - 1

by (12). Denote this last expression by/(/•). For even r, 5r(x | /m) is the
Pfaffian of Dr, and hence Br(x | /m) = {f(r). Now

-xm+x

m Jl i « + 1 J l -x
2m+2 i m

I]2

Hence B2(x\IJ = //(2) = [2m^!]. On the other hand, when r = 2 the
right hand side of equation (1) telescopes to

\i ^ / V / * * * v / J 2 m ~\~
(1 - J C ) (1 - x 2 ) ••• (1 - x m ) ~\- m
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This proves the Bender-Knuth formula for r = 2. We proceed by induc-
tion to prove it for all even r. Clearly

\2m + r+ l] \2m + r + 2]
/ ( / • + 2 ) = 1 m + r \ [ m + r + l \ 1 - xr

f(r) Fm + r l fm + r + l l 1 - x
2~m+7+1'

After some straightforward cancellation, the right side reduces to

TT V1 "" X ) _

from which we conclude that

Br+2(x\IJ _ * 1 -

On the other hand, if the right side of (1) is denoted by h{r), then

h{r + 2) = ^ Ĵ 1 - xr+ <+j+i

Here we have essentially the same telescope as the one mentioned above.
The surviving factors are

(1 - xr+m+2)(l - xr+m+3) • - - (1 - xr+2m+x)

which is the right side of (23). This completes the induction (through even
values of r).

We can deal similarly with the case of odd r. When the clearing
process is applied to (13), it subtracts from the 1 in the lower right corner
all the non-zero terms of the series (18) with n — r — 1 except the term
with k = (r — l)/2. Hence the resulting entry in the lower right corner is
just this missing term, viz.

2m+ r 1
m + r — 1J (x; x )(r-i)/2

1 1 / v 2w + 3. V 2 \
1 [X , X )(r-\)/2

Jm

Thus for odd r we have

2m + i . .
T lm + i — 1J [m + r — 1J (x; x )(r-i)/2

m + /l \2m + r~
i - 1 j L m
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If we temporarily denote the right hand side of this equation by g(r), we
have

Br(x\Im) = fo{r) for odd r.

The proof that ]jg(r) is equal to the right side of (1) is completely
analogous to the one given above for / / ( r ) , so can be omitted here.
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