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SOME GENERALIZATIONS OF CONTRACTION
THEOREMS FOR FOURIER SERIES

MASAKITI KINUKAWA

This paper deals with some contraction theorems for Fourier series
and certain properties of the Fourier coefficients of functions in the
Lipschitz spaces.

1. We shall assume that functions / and g are integrable in ( — π, π)

and periodic with period 2π. Denote their Fourier series by

f~ 1 cne
iΛX

9 and g~ f dne
ι"\

n— — oo n— — oo

According to B. S. Yadav [10], we say a function g is a shrivel contraction

of order j of a function /if it holds that

(1)

where

and

m = 0

which is the symmetric difference of order j of/(JC) with respect to u.

Yadav proved the following:

THEOREM Y. Ifg is a shrivel contraction of order j of f and if

/-.I i/p
\ P/2

(2) 2Bp{cn) = Σ \n -p/2
< 00,

then

00

WdJp= Σ \dn\P<™> whereθ<p<2.
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Remark that (2) implies \\cn\\p

p = 2™=-^ \ cn \p < oo. (See, for exam-

ple, Yadav's paper.) Therefore, Yadav's theorem means that the shrivel

contraction (1) operates on the class of functions whose Fourier series are

in the class lp with 2Bp(cn) < oo.

We shall give more precise results than Yadav's theorem and make

the situation clear.

2. Throughout the paper, we use the following notations:

χ - 1

k=\
y \c \

a
p/a\

kpa

k=\

\aJ

0<\n\<k

p/a\

ΔJJ(x)
t \a

a

dx
p/a

\t\«
dx

p/a

Σ Kl — I (sin nu)J du
t Jo

dι
t

\/a

K,ΛO =
J •

LEMMA 1. Let 0 <p < a < oo, 0<a<j<oo. The finiteness of

cn), aBpa(cn), and aCpja(cn) are mutually equivalent; that is, we

aCpJJcn)^K{aBpa(cn)}.

have

(3)

(4)

(5)

(6)

(K = Positive constant numbers which may be different from one occurrence

to another.)
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Proof. Let us prove the first inequality. By the definition, we have

1 \cn\
a\(\ύnnu)jdu

λ
\cn\

a\nt\aJ\

J

p/a

y \c \
a

^4 \ L n\

\n\>\/t

say.

Then we have

h =
0 0

00

ft 2d
k=l

c
kpa-

t~pa~
+ 1)

\-pj Σ

\+pj

k

Ίnaj

p/a

dt

which is dominated by K{aCpja(cn)}p. In a similar way, we can estimate

the second part by K{aBpa{c^)\p (cf. G. Sunouchi [9]).

Let us prove (4):

Σ
2 m < | « | < 2 m + ι

p/a

Σ \cn\
a

Σ
k — m

~PJ

which is convergent if aBpa(cn) is finite.

Let us prove (5).

\aJ

p/a

Interchanging the order of summations, we have

\~PJ+P<*

«|<2-+ I

which is finite if aC a(cn) is finite.
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Let us prove (6).

0 0 r\/2k( 1 ί \ Λ P ^^ / /

k=\*\/2{k+\)

Since 0 < | ΛM | < kt < A:/2Λ: < 7r/2

?

 w e have

- ((sinww)7
>K\nt\.

Therefore, we have

1/2Λ
Σ kJ

— Λ Z^ ̂ 1 KΓM
|/ι|<Λ

p/a

p/a

dt.

THEOREM 1. The following finiteness of norms are equivalent:

0 < j p < 2 , 0 < α <y.

. The Fourier series of Δ7

M/(x) is

and so

By the Parseval theorem, we have

U7Γ
1/2

that is,

Now, Theorem 1 is followed from Lemma 1.
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Yadav's result is a corollary of Theorem 1. In fact, we have a more

general result:

THEOREM 2. Suppose the integers I and] are greater than \/p — 1/2. //

a general shrivel contraction

(7) \L«\t,x,g)\<LK\L^\t,x,n\

holds for all x and for all t > 0, and if 2Bp a(cn)
 < °° for a ~

then

Proof. Note that Yadav's condition (2) is equivalent to 2Bpa(cn) < oo

for a — \/p — 1/2. By Theorem 1, we have 2ApJa(f) < oo. However,

the condition (7) implies

2ApJJg)<:K2ApJJf)<oo.

According to Theorem 1, 2Bp α(dn) < oo, by which we have Σ^L-^ | dn \
p

< oo.

We should add another remarks: In the previous paper [4], we

mentioned that 2Λpja(f) < oo is equivalent to 2Bpa(cn) < oo. Therefore,

2Apja(f) < oo is equivalent to 2Λpja(f) < oo. Also, we proved that

2Apja(f ) < oo is equivalent to 2\\cn\\p< oo, which is the Beurling's

norm given in the next section (cf. [1]). Therefore, we have that 2ApJ a(f)

< oo is equivalent to 2\\cn\\p< oo.

3. In this section, we shall discuss some generalizations of the

previous results [4]. Before going into details, we should remark the

following: We have denoted Δ{/(x) the symmetric difference of /(x).

This is somewhat essential in the case of shrivel contraction arguments.

That is, if we replace the symmetric difference by the ordinary one, then

the part of integration in the definition of Yaj(t,cn) must be read as

Io(einu ~ l)Jdu, and we meet some difficulties in the arguments for the

inequality (6).

However, in what follows, the symmetrization has no essential role.

Therefore, in this section, we shall adopt the ordinary difference

that is,

j

)= Σ ( -
m-0
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We also use the following notations:

/(/) = a positive function which is increasing on (0,1).

cπ Π sin/iί/2 1

,||wJ|,= Σ ^

r oo

JkJI P > w = Σ

n— ~oo

I/a

JlcJI, =

/̂̂  = {(c j : JlcJI^ < oc).

By Holder's inequality, we see that | |cn IIp ̂ a\\cn\\p if 0 < p < a < oo.

In particular, Ik^ll^ = ^Ik^ll^. The above inequality holds for the case

0 < p < oo = a. Because, we read

(%)
I wJλ/>sap(\cΛ\w-ι''j\9

J

and we have

THEOREM 3. L ^ 1 < a < 2, \/a + \/a' =l,0<p<a', and j be a

positive integer. Then, we have

The inequality holds also for the case a = 1 and 0 <p < oo = a\



CONTRACTION THEOREMS FOR FOURIER SERIES 127

THEOREM 4. Let 1 < α < 2 , 0 <p < a, and j be a positive integer.
Suppose that a positive and increasing function I(t) on (0, oo) satisfies the
following conditions: There exist positive numbers ε and δ such that

(8) 0 < c < l < δ ,

(9) [>[l(u)Γadu<:Kt^[l(t)Γa,

where β — — 2 + a/p + aj + δ(l — a/p), and

where γ = —2 + a/p + ε(l — a/p). Then, we have

a,ApJJ(f) < K Jcn\n\^-^[l(\/\n\)]-]\\p.

Proof of theorems shall be based on the following lemmata:

LEMMA 2. Let 0 < p < a < oo. Then, we have

a\\cn\n ^ " - ' / ' [ / ( l / l n \)}~X\\p < / ς i ^ Λ O

(//i the norm of the left hand side, we omit the term for n — 0.) The
inequality holds for the case 0 < p < oo —a.

LEMMA 3.LetO<p<a<oo. Suppose that a function I(t) satisfies (9)
and (10). Then, we have

aApJJ{cn)^Ka\\cn\n\Wa'Wp[l{\/\n\)YX\\p.

Proof of Lemma 2. Let us discuss the case 0 < p < a < oo:

= I |c( I |-/1r1[/(0]-'[l r

β f y(ί,cJ]'-β |8inπί/2| >Λ
n= — oo 0

00

= Σ K | β M B , say.
n= —oo

We put
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Then, we have

00 00 00 . ,

v v v f/m r
n=\ n=\ m = n

J\/(m+\)

oo m . ,
"1/moo m ,

= Σ Σί/m [i(t)]-p[γaJ(',ck)]pΛ
m=\ »=\ J\/(m+\)

oo - ,
-1/m [i(t)]-p[YaJt,ck)Ydt

m=\ J\/(m+\)

That is, we have

(wn) G W and

Let us put P = a/p > 1 and \/P + \/Q = 1. Then, by Holder's inequal-

ity,

\/p
sin

= (XM

t-p/° [I(t)]-p I sin nt/2 ΨJdt
JQ

>| n \p/a-][l(l/\ n \)YP Cu-p/a I sin u/2 ̂  du,

where the last integral is a positive constant. So we have, for a positive
constant K,

Now we have

00

>κ y \c
n= — oo

= Ka\\c,,\n\
ι'-V>[l(l/\n\)] - 1 ,
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Therefore, we have

I/J " p,w

by which we have the conclusion for the case 0 < p < a < oo.
For the case 0 <p = a < oo, the result of Lemma 2 is easily seen. In

fact, we have to show that

\\cj(\/\n\)-χ\\»p<[κ pApd<I{cn)]P.

However, the right hand side of the above inequality is

Ό

= Σ I cn r/H«-'[/(«/| n \)YP I sin u/2 ψdu

^2\cn \"Cu-χ[l{u/\ n \)YP I sin u/2 ψ du

which is the required result.
Let us show the result for the case 0 < p < oo = a. Set

and

then we have

We have to show that

Due to the inequality (11), the above inequality is equivalent to
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which must be read as

Therefore we have to show that
ι\1-l

< KwY» = Aτf/ I / W[/(/)] - ' sup (I ck 11 sin la/2 )>)P dt]V",

that is,

I „ Γ X/PW/\ n I)]"1 * κ[f*M[l{t)Y>\ sin nt/2 |"dt)"'.

However, the right hand side integral is

(\/\n\)f[l(u/\n\)]-p\smu/2\"du
Jo

> (1/1 n |)[/(1/| « | ) ] " ^ | sin u/2 ψdu,

which implies the required.

Proof of Lemma 3. Let us discuss firstly the case 0 <p < a < oo.

For any sequence (wn) E W, there is a positive, decreasing, continu-
ous and integrable function w(t) on (0, oo) such that w(n) — wn. For the
numbers ε and δ (0 < ε < 1 < δ), we may find a function w*(t) which
satisfies the following properties:

(ii) tδw*(t) is increasing;
(iii) tεw*(t) is decreasing; and
(iv) /0°° w*(ί) Λ = ίΓ/o00 w(ί) dt. (cf. A. Beurling [1].)

Let P = α/p, 1/P + \/Q = 1. Then, by the Holder inequality, we have

\/P

where the last integral is less than
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Hence we have

oo

X Σ \cn\
a\sinnt/2\aj'dt

n— — oo

X [w*(l/t)Y~a/p I sin nt/1 \ajdt,

where the last integral will be denoted by /. We split the integral / into

two parts;

= Jλ -t- J2, say.

Then

<K\n\aj

o

Since ( l / ί δ )w*( l/ ί ) is decreasing and is greater than | n |δw*(|« |), we

have

Jλ<K\n r [ | « |«w (| n \)Y~'/p Γ^iΦ)]-' dt,
o

where β — — 2 + α/p + α/ + δ(l — a/p). According to the assumption,

the above integral is estimated by K\n \~β~λ[I{\/\ n \)]~a. Therefore, we

have

< tf| n n \)Γ[w*(\ n
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Now, we should estimate the second part J2:

i/M

r1

\/\n

— Jζ Cl

J λ

X

Since (l/ίε)w*(l//) is increasing and greater than | n |εw*(| n |), we have

\/\n\

where γ = — 2 + a/p + ε(l — a/p). According to the assumption, the
last integral is estimated by K\ n |~ γ~ 1[/(l/| n \)]~a. Therefore we have
the same estimate for J2 as for Jλ. Using the above estimation for /, we
have

]F \cnp

Since \\w*\\x = K\\w\\x a n d iv(| n |) < w * ( | « | ) , w e h a v e

ί °° 1 1 / α

I w = —oo J

Therefore, we have Lemma 3 f o r O < / 7 < ^ < o o .
For the case/? = a, we have to show that

\,AptJJ{cH)]p <LK\\cn[l{\An\)YX\\>.

In fact, the left hand side of the above is

Σ\cn\"frι[l(t)ΓP\smnt/2rdt,
0

where the integral part is less than

Γι[l(t)]-pώ<K[l(l/\n\)]-p,
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by which we have the conclusion. (In the above calculation, we have used
the inequalities (9) and (10) with a — p.)

Proof of Theorem 3. The Fourier series of tJtf{x) is

ΔJf(x)~K 1 cne
inx{eint- 1)''.

n— — oo

Therefore, by the Hausdorf f - Young inequality, we have

Ya,Jt,cn)<KUif(-)\\a,

and hence,

Then, apply Lemma 2, we have the conclusion.

Proof of Theorem 4. By the Hausdorff-Young inequality, we have

(The above inequality also holds for the case a = 1, af — oo.) Therefore,
we have

By Lemma 3, the proof is complete.

From Theorems 3 and 4, we have

THEOREM 5. Let 0 <ρ < 2. Suppose I(t) satisfies (9) and (10) for
a = 2. Then, 2ApjI(f) < oo if and only if

4. We shall give several remarks:
In the definition of the shrivel norm aAp y a(f) in §1, let us replace

the factor ta by I(t)\ then we have a general shrivel norm aApjI(f). (In
the case, the difference Δ^/(x) should be read as the symmetric difference.)
Through the similar discussion as in the previous section, we can show
that 2XpjI(f) < oo if and only if 2^P,jj(f) < °°> under the same
assumption of Theorem 5.

Some discussion on general B-type and C-type norms (cf. §2) may be
found in the paper by R. G. Mamedov and G. I. Osmanov [7], and by M.
and S. Izumi [3].
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We have shown that the norms 2ApjI(f) are, up to equivalence,
independent of the choice of the difference order j , indirectly through the
result of the §3. However, this can be shown by the argument due to C.
Herz([2]; Appendix 1.)

C. J. Neugenbauer's result (Theorem 2 in [8]) is quite similar to our
Theorem 3.

Similar discussions can be used for the case of Fourier transforms in
the π-dimensional Euclidean space. Cf. Kinukawa [6].
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