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A NOTE ON FRACTIONAL DERIVATIVES
OF SEMIGROUPS AND COSINE FUNCTIONS

H. O. FATTORINI

It was proved by Komatsu that if S(-) is a strongly continuous
semigroup in a Banach space E then the space of all u € E such that
t — S(t)u possesses a fractional derivative of order a = 0 coincides with
the domain of the ath power of (a translate of) the infinitesimal
generator A. We prove here that a similar relationship holds for strongly
continuous cosine functions, at least if E belongs to a class including
Hilbert spaces; in general Banach spaces only an inclusion can be
assured.

1. Introduction. Let @ be a densely defined operator in the Banach
space E such that R(A\; @) = (A — @) ! exists in A > 0 and satisfies

(1.1) IRA; @) <c/A  (A>0).
It was shown in [1] that fractional powers (—&)* can be defined for any

complex «; we limit ourselves to real values of a. For 0 < a <1 (-®)“is
the closure of the operator

(12) CJCu:sinomr

a

foo)\“_‘R()\; @)(@)u dA

where D(H,) = D(®); form <a <m + 1 (-@)* is defined as the closure
of K__, (@)™ where D(¥K,_,(@)™) = D(@™""). The integer powers are
defined as usual. See [1] for details and for the definition in the range
a <0 when @ has a bounded inverse. If 4 is an operator such that
R(A; A) exists in A = w, and satisfies |R(A; A)|| <c/(A — w,) then
@ = A — bI satisfies (1.1) for b = w, so that the powers (b — 4)* can be
defined; it is easy to see directly from (1.2) and the first and second
resolvent equation that if b, ' = wyand 0<a <1 (bl —A)*— (b'1—A)*
is bounded in D( 4) so that

(1.3) D((bI — A)*) = D((b'IT— A)*) (b, = w,).

This equality can be extended to the whole range o = 0 noting that if
m=a<m+ 1 then

D((bI — 4)*) = {u € D(4™); (I = 4)"u € D((bI — 4)" ")}
={ueD(A™); Am"ue D((bl —4)* ")}
= {ue D(4™); (b — A)"u e D((b'T — 4)"")}.
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We shall denote henceforth by F, the domain of (b — A)* for any
b = w,.

Let S(-) be a strongly continuous semigroup in E, A4 its infinitesimal
generator, ¢, w constants such that

(1.4) IS(2)] < ce*! (r=0)

(so that A4 satisfies the conditions above and (b1 — 4)“ can be defined at
least for b = w). It was proved by Komatsu [9] that 1 - S(¢)u has a
continuous fractional derivative of order a = 0 if and only if u belongs to
D((bI — A)*). The theory of singular perturbations of differential equa-
tions in Banach spaces ([11], [12]) leads naturally to the consideration of
the same question for strongly continuous cosine functions, that is, strongly
continuous operator-valued functions C(-) defined in —0c0 <t < o0 and
satisfying the cosine functional equations C(0) = I, C(s +t) + C(s — t) =
2C(s)C(t). The infinitesimal generator A of C(-) is defined by Au =
C"(0)u, the domain of 4 consisting of all u € F where t —» C(t)u is twice
continuously differentiable. It can be shown that there exist ¢, w = 0 such
that

(1.5) IC(2)l| < ce“™ (-0 <t < 0)

and that AR(A?; 4) is the Laplace transform of C(-) for A > w so that
IR(A; A)|| < ¢/ VA (YA — w) there: here it follows that @ = 4 — b*[ satis-
fies (1.1) for b = w, hence (b*I — A)* can be defined; again D((b* — A)%)
is independent of b. (For this and other details on cosine functions see
[11], [4], [5]). The identification of the subspace E, of all u where
t - C(t)u has a fractional derivative of order & = 0 is considerably more
challenging than in the semigroup case. Except for the fact that E,, =
D(A") (consequence of the definition of A4) all that can be shown in
general is that E,, C D((b’I — A)*) for a =0, a # 1, 3,... (Theorem
3.1), the inclusion being in general strict (Remark 4.3). For a =3, 3,...
neither this inclusion nor the opposite can be assured (Remarks 3.2 and
4.3). However, we can still show that E, = D((b’I — A)*) if E is a
Hilbert space or more generally if E = L” with 1 < p < oo (Theorem 4.2).
The proof for this case is based on a decomposition theorem for cosine
functions in [5] and on Komatsu’s result on groups reproduced in §2. We
point out several applications at the end of §4 and develop one in detail.

2. Semigroups. Let 4 be the infinitesimal generator of a strongly
continuous semigroup S(-) satisfying (1.4). If b > w the fractional powers
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(bI — A)"* (a > 0) can be obtained directly from S(-) by means of the
formula

@.1) (b — A) v =—P-(1;)-f°°ta—'e~b's(z)udz

(see [15, p. 260]); the positive powers (which coincide with those defined
in §1) are recovered through multiplication by (bI — A)™ for sufficiently
large m.

Fractional derivatives of S(-)u shall be defined by Riemann-Liouville
integrals in (¢, co) rather than in (a, ¢) to avoid dependence on the lower
limit of integration (see [16, Chapter XII]): we say that S(-)u has a
continuous derivative of order a =0 in t =0 if and only if there exists
B> w and a function f(-) continuous with 5| fz(s)|| integrable in s =0
and such that

(22) e PS(t)u=—— f(s—z)“ fls)ds  (1=0).

P( )
The function f; is easily seen to be unique multiplying (2.2) by (¢ — r)™“
and integrating in ¢ = r; however, the present definition of fractional
derivative depends on B and on the choice of (¢, 00) rather than the
(equally natural interval) (-o0, ¢) if S(-) is a group (see below), thus the
space of all u € E satisfying (2.2) will be called E; g for the moment. That
the B-dependence is actually absent follows from the next result.

THEOREM 2.1. Let o = 0. Then
(2.3) E z=F, (B> w).

Proof. The case a =0 is obvious. Let a > 0. If u € F, then u =
(BI — A)™ “v so that using (2.1) and applying S(7) to both sides we obtain

(2.4) e PS(t)u= I‘( )f (s —1)" ‘e Pe*1S(s)v ds

(t=0,8>w)

which shows that F, C E +B Assume now that u € E g for some B> w
and let fy(-) be the function in (2.2). Apply the operator P = puR(p; A) (n
large enough) to both sides: we obtain the corresponding representa-
tion for e AS( t)P,u with the function P, f;. However, P,u € D(A4) C
D((BI — A)*), hence (2.4) must hold and

(2.5) P fo(1) = e P 7o78(1)(BI — A)*Pu.
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Write (2.5) for ¢ = 0 and let p — co. Since P, f(0) — f(0) and P,u — u we
use closedness of (b — A)“ to show that u € D((bI — A)*). This ends the
proof, and justifies using the notation E for any E 4, 8 > w.

The case where S(-) is a strongly continuous group deserves special
attention. Here we require that the function f; in the definition of E, ; be
defined and continuous for all t, norm integrable at + oo and the repre-
sentation (2.2) must hold in —o0 < ¢ < c0; moreover, fractional deriva-
tives can be just as naturally defined by integrals in (—o0, ¢). Assume the
constants ¢, w are such that

(2.6) I1S(2)]] < ce™! (—o0 <1< 0).

We define E, ; as the space of all u € E such that there exists an E-valued
function g, continuous for all s, with |s|%||gs(s)|| integrable at —co and
such that

(2.7) eﬁ’S(t)u=f(1—aj/_tw(t—s)a_lgﬁ(s)ds (oo <1< o0).

Make the change of variable s — —s in (2.7); formula (2.2) is obtained for
S(-t)u with fy(s) = e‘i”"gﬁ(—s). Since the strongly continuous semigroup
t > S(—t)u has —A as infinitesimal generator, it follows that

(2.8) E,,=F, =D((BI+4)") (B>w).

a

We have completed the proof of the following result.

THEOREM 2.2. Assume A generates a strongly continuous group S(-).
Then ifa = 0,

(2.9) E . ,=F, , EafﬁzFa (B> w).

We shall henceforth write E, = E,_ 5 (B > ).

ReMARK 2.3. If S(-) is a group, (2.3) still holds if (2.2) is assumed to
be valid only in # =0 (or even in an interval 1 = a > 0). This follows
easily from the fact that the subspaces F, are invariant for S(7).

3. Cosine functions. Let C(-) be a strongly continuous cosine
function with infinitesimal generator 4 and let ¢, w be constants such that
(1.5) holds. Cosine functions stand in the same relation to the second
order equation u” = Au as semigroups to ¥’ = Au. The generator 4 of a
cosine function always generates as well a strongly continuous semigroup
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S(+) analytic in Re ¢ > 0 which can be expressed from C(-) by means of
the abstract Weierstrass formula

(3.1) S(t)uI—L— /we_sz/‘"C(s)uds

Tt
and it follows from direct estimation of (3.1) that ||S(¢)|| < ce“” in 1 = 0.
Accordingly, the negative fractional powers of (b*] — 4), b > w can be
calculated using (2.1): the same expression can be obtained using (1.2)
and expressing R(A; A) as a function of C(-) as outlined in §1. The final
formula is

23/2~—abl/2—a

(3.2) (I —A4) "“u= ) fowsw/zKa_m(bs)c(s)uds

for a > 0, where K, denotes the Macdonald function

w10~ L,(0)

(3.3) K1) =3 —"Gnom

for v #+ +x, £2a,... and extended by continuity to all values of » ([14, p.
78]). We note incidentally that (3.2) is a vector valued analogue of a
well-known integral formula ([7, p. 763, formula 12]). The spaces E_ sEap
relative to C(-) are defined exactly as in the previous section for a group,
that is by the relations (2.2) and (2.7) respectively, both assumed to hold
in —o0 <t < 0.

THEOREM 3.1. Leta =0, a #n + 1, n=0,1,.... Then
(3.4) Ez‘aﬁgFa, E;a,,B(_:Fa (B>w).

Proof. That (3.4) holds for « = 1,2,3,... is a direct consequence of
the definition of 4. To handle the general case we note that if « >0,
a # n + 3, it follows from (3.3) and the power series for I,, I_, that

(3.5) 72K, 5(t) = — (7/2°" 2T (a + §)sin(a — §)m)r2e!
+p,(1)

where p,(1) = 1**7¢ (1) + (1), &, and 1, entire. Also, the asymptotic
estimations of the K, ([14, p. 202]) imply that

(3.6) K(t)=0(t"2"") ast— o
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with similar relations for derivatives of any order. It follows that
0, 5(s) = (23/2_ab]/zva/ﬂvzr(a))sa—l/zKa—l/z(bs)
+ (1/T(2a)sin(a — 4)7)s2* " le7bs

(we have used here formula 1 in [7, p. 952]) satisfies o, ,(s) = O(s**"'e™")
as s —» oo with similar estimates for derivatives of any order; on the other
hand, o, , is continuously differentiable in 7 = 0, infinitely differentiable
in >0 and o, is integrable in ¢ > 0. This is easily seen to imply that
B, ,E C D(A) and that AB_ , is bounded, where

(3.7) B, ,u= fooooa,b(s)C(s)u ds;

it suffices to integrate by parts twice keeping in mind that C"(¢)u =

AC(t)u and use closedness of 4. We shall denote by J, , the operator

_ 1
I'(2a)sin(a — 1)7

Jo ot =

(o]
f s* le™PC(s)u ds
0

where, as before, b > w: we have
(3.8) (B’I—A) *=J,,+B,,.

Assume now that 0 <« <} and let u € EJ, 4 so that there exists an
E-valued function f(-) continuous, with s Js(s)l| integrable at infinity

and such that

2iam

ISR L

Apply P, = pR(p; A) to both sides. Since P,u € D(A), t » e #'C(1)P,u
is (twice) continuously differentiable and it is easy to show that the
integral equation obtained from (3.9) can be explicitly solved by means of
the formula

(3.10) e "1720D(1 — 24)P, f,(1) =f°°(s — 1) (e~BoC(5) P,u) ds

(3.9) e FC(t)u =

=_(1— 2a)ftoo(s - t)'_za(e_ﬁsC(s)Pﬂu)” ds
=-(1- 2a)Afoo(s - t)]~2ae“BSC(s)P#u ds

2B(1 = 20) [ ((s = 1) e P C(s) Puds

t

_B2(1 — 2a)f°°(s — 1) 72 BC(s) P d.

!
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We take advantage of this equality for + = 0. Making use of (3.8) we
deduce the existence of a constant k such that

(3.11) kP, f(0) = A((B — A)' ™" = B, 5)Pu+ Q, 4Pu

a

where Q, 4 is a bounded operator. Letting u — oo and keeping in mind
that A is closed the first inclusion (3.5) follows. The second is obtained in
exactly the same way using the fact that C(¢) = C(~t).

Consider next the case 3 < a < 1. Here we apply P, to both sides of
(3.9), differentiate both sides with respect to ¢ and express f; as in the first
step of (3.10): the result is

e "IN 2a — P f(1) = [ (s = 1) (e C(s) Pu)” ds

so that the argument ends just as in the case 0 < a < 1. The range a > 1
is handled in a similar fashion.

That the argument fails when a@ = 3, 3,... can be traced to the fact
that the Macdonald function K, disgorges a logarithmic term for » integer:
in fact, if « = n + 1 we have

172Ky (1) = 1K (1) = ¢, log t + 1, (1),

where r,, is entire. We show below that the inclusion (3.4) may fail to hold
for these exceptional values of a.

REMARK 3.2. Let E = Cy(—00,00) be the space of all continuous
functions in —o0 <x < oo such that u(x) -0 as |x|— oo, C(t)u(x)
= 3{u(x + t) + u(x — 1)}. It is not difficult to show that A4u = u" with
maximal domain and that (-4)'/? is the singular integral operator

(:12) () ulx) = tim o [ R g

27 Jopy=e s

Obviously E g E1 g (B> 0) contain all continuously differentiable func-
tions in E but not all of these are in F, ,. This shows the failure of (3.4)
for a = 4. The argument can be easily extendedtoa =n + i, n = 1,2,....

That the inclusions opposite to (3.4) may not hold for any a will be
shown in the next section (Remark 4.3).

4. Cosine functions (continuation). Let C(-), A be as in the previous
section. It was shown in [4] that for any complex number a, 4 — a°I
generates a strongly continuous cosine function C, with

(4.1) G, < ce@ M (—o0 <1< ).
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The cosine function C,(-) can be obtained from C(-) by means of the
perturbation series

(42) C.(t)u= C(t)u + § (=a?)"C.(1)u

where C, is given by
(4.3) C(t)u= [C(s,)C(s,,) -+~ Cs,)Clty)udsdt (v € E)

with ds = ds, ---ds,, dt = dt,---dt,_, and the 2n-dimensional integral
is taken in the region 0 =5, <¢ —¢),....0<s, <r—1¢,_|, 0=¢t,=<1
= ---=<t, , =t Using the cosine functional equation we easily show
that

cewml t |2n
4.4 Clls——— >1
(see the details in [4, p. 94]). It is easy to see that if n = 2 each C,u is twice
continuously differentiable for arbitrary u € E; in fact, we have

(45) Cr(Du=[Clt=1, )C(t, = 1,,)C(s, )
< C(s,)C(ty)uds dt

where now ds' =ds, ---ds, ,, dt=dt,---dt, |, and the (2n —2)-
dimensional integral is taken in the region 0 <5, =<t, — ¢),...,0=s, ,
<t,,—tl, 5 0=t;=t,<---=t, <t We obtain from (4.5) an
estimate of the type of (4.4) for the C’; precisely

(n=2).

cew|t1l ! lZn—Z

NG ()l < an—21

Finally, it follows also from the cosine functional equation that C,u is
continuously differentiable with

(4.6) Clltyu=%C(t)u+ [t = 2s)uds

_t 1
—EC(t)u-F 4f_tC(s)uds.

It follows from (4.2) and the preceding considerations that for every
u € E, C(t)u and C,(t)u differ by a continuously differentiable function
h with ||A|, ||A|| = O(e'“ ") for any ¢ >0 so that if E ,,, E 5,
denote the spaces defined in the previous section relative to C,(-) we have

(4.7) E:_,ﬁ,a = E;L,Ba wpa — Eap (B>w+]al)
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at least if 0 < a < 1. Consider next therange | =a =2 Ifu € E;B then
u € E|; so that C(-)u is continuously differentiable and it follows from
(4.5) and (4.4) that C(¢)u and C,(¢)u differ by a twice continuously
differentiable function with |4, [|#']|, ||A”]| = O(e'“ ™ “*M) at infinity, so
that (4.7) holds for 1 < a < 2. Similar arguments work for the spaces E~
and the full range of «. We have then proved

TRANSLATION INVARIANCE LEMMA 4.1. (4.7) holds for all a« = 0 and all
a complex.

Let (X, Z, n) be a measure space ([3, p. 126]). We assume in the next
result that

(4.8) E=L"(X,Z, p).

THEOREM 4.2. Let E satisfy (4.8) with 1 < p < co. Then
(49) E;a,B = Ez_a,B = F;x (B > 2“")
for all a > 0.

Proof. In view of Lemma 4.1 we may prove Theorem 4.2 for E, B.a>
E, s, with a = w arbitrary. It was proved in [5] that if a = w and E is one
of the spaces allowed in Theorem 4.2 there exists a strongly continuous
group U,(-) such that ||UJ(?)|| < c,e“" for any & > + |a| and C,
admits the decomposition
(4.10) C.(1) = 3(U,(1) + U(1));

a

The group U,(-) has infinitesimal generator 4, = i(a*l — A)'/? and can
be expressed from C,(-) by the formula

(4.11) U(t)u= C,(t)u+ iAafOtCa(s)uds

(see [5] for details). On the other hand, it follows from the results in [1]
that there is a @ > 0 such that R(A; —(a*l — A)'/?) exists in the sector
2 ={\; |argA|<7/2 + ¢; A # 0} and satisfies |R(X; —(a*l — A)"/?))
=< ¢/|A|in Z; thus the operator A4, satisfies (1.1). Accordingly, if b = 0 the
fractional powers (bl — A,)* can be defined and D((bI — A4,)%) does not
depend on b; moreover, it can be proved that if @ > w we have (-4,)** =
(=i)**(a*I — A)*. The same considerations apply to -4, = —i(a*l — A)"/2.

Let now u be an arbitrary element of D((a*l — A)*). Then u €
D((-A,)**) and we can apply formula (2.4) to both the group ¢ - U(t)
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with infinitesimal generator 4, and to the group ¢ — U,(-¢) with infinitesi-
mal generator —A4; in both cases we take > w + |a|. Combining the
two expressions thus obtained and using (4.10) we obtain formula (3.9),
with

(4.12) fy(1) = Le Pe (U (1) (Bl — A,)*"u + U(~t)(BI + A4,)"u).

It follows that u € E;, 5 , = E;, g so that F, C E;, ;. A similar argument
applies to the spaces £~ . Combining the results obtained with Theorem
3.1 we obtain (4.9) for « ¥ n + 3, n = 1,2,.... Note, however, that the
arguments above apply as well to these exceptional values of «; thus we
only have to show that E3, . 4, E;,. 13 C F,.,,, (n=0,1,...). This has
been done in [6] for » = 0 and the result can be easily extended to
n = 1,2,...; thus we omit the details. This ends the proof of Theorem 4.2.

REMARK 4.3. Let E be a general Banach space, C a strongly continu-
ous cosine function in E. Assume that for some a, C, admits a decomposi-
tion of the form (4.10) where U, is an arbitrary strongly continuous group
with infinitesimal generator B, (this will happen if and only if

(4.13) A = B2+ a%).

Using the methods in Theorem 4.2 we can show that D((bI — B,)*®) C
E}, g Eyyp (a=0) for b and B sufficiently large. However, B, need not
equal the “principal value” square root i(a*l — A4)'/?; thus D((bI — B,)**)
may not coincide with F, . One such example is the space E and the
cosine function C(-) considered in Remark 3.2; here (4.10) holds for
a = 0 with U the translation semigroup U(#)u(x) = u(x — t); hence
A = B?, B defined by Bu = u’ with maximal domain, but B # (-A4)'/?
given by formula (3.12). In those cases where no decomposition of type
(4.10) exists ([8]), no obvious replacement for F, suggests itself.

REMARK 4.4. A sort of weak version of the inclusions exists in the
general case; in fact, we always have

(414) U Fa +8 - E;a.B’ E;a.B
§>0

for 8> 2w and a = 0. To see this we only have to note that if @ = w,
n>0,v € E and UJ(r) is the operator in (4.10) then U(¢)(a’*l — A) v is
a continuous function of ¢ growing no more than e“ "9 at infinity ([4])
so that if u € F,, ; the representation (3.9) holds with f; given by (4.12).
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REMARK 4.5. We note that the function f; in (3.9) obtained in
Theorem 4.2 for u € F, and B> 2w dies down at infinity faster than
originally bargained for: in fact, || £ (¢)| = O(e™ ™) as t - oo for any
n < B — 2w. The same observation applies to the function f; alluded to in
Remark 4.4 and, in a substantially improved version to the function in
(2.3) corresponding to the semigroup case (where || f(¢)|| = O(e” #~“)) as
t — o0). Similar considerations apply to the spaces £~ .

Applications of the results to singular perturbation problems will be
treated elsewhere. There are other applications, however. One is that of
estimating the degree of approximation to initial conditions of (gener-
alized) solutions of abstract second order differential equations

(4.15) u’(t) = Au(t).

We assume that the operator 4 generates a cosine function C(-); this is
known to be a necessary and sufficient condition in order that the Cauchy
problem for (4.15) be well posed (strong solutions of (4.15) exist for
u(0) = uy, u’(0) = u, € D(A) and depend continuously on u,, #, uni-
formly on compacts of —oo < ¢t < c0; see [4], [5] for details). For u,, u, as
above the only solution of (4.15) assuming these initial conditions is

(4.16) u(t) = C(t)u, +/‘tC(s)ul ds.
0

If u,, u, are arbitrary elements of E then the (continuous) function (4.16)
is declared to be a generalized solution of (4.15).

THEOREM 4.6. Let E be as in Theorem 4.2, u, € F,, u; € F, with
vy = max(a — %,0), u(t) the function in (4.16). Then
@ if0<a<l,

(4.17) lu(z) — u(0)| = O(s**)  (1-0)
(b) if < a < 1, u(-) is continuously differentiable and
(4.18) lw'(t) —w(O) = O(2*7")  (£-0).

Proof. Let u € F,. Then u € EJ, 4 for any 8> 2w and there exists f;
making (3.9) happen. We have

(4.19) e FC(t)u—u=— %fotsz“"'ﬁ;(s) ds

2iam

* lf(2a) f,w((s — 1) = s2 7Y fo(s) ds.
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The first integral is obviously O(#**) as t — 0. As for the second, we use

the easily verifiable inequality (s — ¢)?* ' — s2¢7! < k?%(s — ¢) ! valid
for 0 < a < 3 obtaining a bound of the same form. Accordingly
(4.20) IC()u = ul| = O(s**) (1 -0).

In the case j < a <1 we differentiate both sides of (3.9) and apply the
preceding argument to (e #’C(¢)u)’ obtaining ||(e #'C(t)u)|| = O(t**~ ")
as r — 0. An application of the mean value theorem then yields (4.20). The
case a = 1 is obvious. The result just proved and another application of
the mean value theorem imply thatif u € F,, 0 < a < 1, then

(4.21) “fo’c(s)uds = 0(12*Y) (1 -0)

if u € F,, 0 < a =< 1. This relation and (4.20) are easily seen to imply the
statement of Theorem 4.6.

In case E is a general Banach space, the conclusion of Theorem 4.6
can be obtained under slightly stronger hypotheses on u, namely u, €
F, .5 u, € F, with y = max(a + 8 — 3,0) for some § >0 (see Remark
4.4).

For other results on degree of approximation of initial conditions see
[2].
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