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A NOTE ON FRACTIONAL DERIVATIVES
OF SEMIGROUPS AND COSINE FUNCTIONS

H. O. FATTORINI

It was proved by Komatsu that if S() is a strongly continuous
semigroup in a Banach space E then the space of all u E E such that
/ —> S(t)u possesses a fractional derivative of order a > 0 coincides with
the domain of the αth power of (a translate of) the infinitesimal
generator A. We prove here that a similar relationship holds for strongly
continuous cosine functions, at least if E belongs to a class including
Hubert spaces; in general Banach spaces only an inclusion can be
assured.

1. Introduction. Let & be a densely defined operator in the Banach

space E such that R(λ; &) — (XI — &)~ι exists in λ > 0 and satisfies

(1.1) | | Λ ( λ ; 0 ) | | < c / λ ( λ > 0 ) .

It was shown in [1] that fractional powers (-&)a can be defined for any

complex α; we limit ourselves to real values of a. For 0 < a < 1 (-&)a is

the closure of the operator

(1.2) % u^^^L Γ\«-*R(\ ,&)(-®)udλ
π Jo

where D(%a) - D(&); for m < a < m + 1 {-&)a is defined as the closure

of 9Cα_m(-β)m where D(%a_m(&)m) = D(&m+]). The integer powers are

defined as usual. See [1] for details and for the definition in the range

a < 0 when & has a bounded inverse. If A is an operator such that

R(λ; A) exists in λ > ω0 and satisfies | |ϋ(λ; A)\\ < c/(λ — coo) then

& = A — bl satisfies (1.1) for b > cυ0 so that the powers (bl — A)a can be

defined; it is easy to see directly from (1.2) and the first and second

resolvent equation that if 6, br > ω0 and 0 < a < 1 {bl ~A)a - (b'l- A)a

is bounded in D(A) so that

(1.3) D{(bl - A)a) = D{(b'I - A)a) (b, b' > ω0).

This equality can be extended to the whole range α > 0 noting that if

m < α < m + 1 then

D{(bl - A)a) = {u £ D(Am); (bl - A)mu e D((bl -

= [u e ^ίyί" 1 ) ; ^ W M G Z)((W - A)a~

= [u ε Z)(^w); (67 - ^)mw e D{(b'I - A)a'm)}.
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We shall denote henceforth by Fa the domain of (bl — A)a for any

b >co0.

Let S(') be a strongly continuous semigroup in E, A its infinitesimal

generator, c, ω constants such that

(1.4) \\S(t)\\<ceω' (*>0)

(so that A satisfies the conditions above and (bl — A)a can be defined at

least for b > ω). It was proved by Komatsu [9] that t -> S(t)u has a

continuous fractional derivative of order a >: 0 if and only if u belongs to

D((bl — A)a). The theory of singular perturbations of differential equa-

tions in Banach spaces ([11], [12]) leads naturally to the consideration of

the same question for strongly continuous cosine functions, that is, strongly

continuous operator-valued functions C( ) defined in - oo < t < oo and

satisfying the cosine functional equations C(0) = I, C(s + t) + C(s — t) —

2C(s)C(t). The infinitesimal generator A of C( ) is defined by Au =

C"(0)w, the domain of A consisting of all u E E where / -> C{t)u is twice

continuously differentiable. It can be shown that there exist c, ω > 0 such

that

(1.5) \\C(t)\\<ceωlή ( - o o < / < o o )

and that λi?(λ2; A) is the Laplace transform of C( ) for λ > ω so that

||i?(λ; A)\\ < c/ \/λ (v̂ λ - ω) there: here it follows that & = A - b2l satis-

fies (1.1) for b > ω, hence (Z?2/ - ^ί)α can be defined; again D((b2I - A)a)

is independent of b. (For this and other details on cosine functions see

[11], [4], [5]). The identification of the subspace Ea of all u where

/ -* C(t)u has a fractional derivative of order a > 0 is considerably more

challenging than in the semigroup case. Except for the fact that E2n —

D(An) (consequence of the definition of A) all that can be shown in

general is that E2a C D((b2I - A)a) for a > 0, aφ\, | , . . . (Theorem

3.1), the inclusion being in general strict (Remark 4.3). For a = \, f,...

neither this inclusion nor the opposite can be assured (Remarks 3.2 and

4.3). However, we can still show that E2a- D((b2I - A)a) if E is a

Hubert space or more generally if E = Lp with 1 < p < oo (Theorem 4.2).

The proof for this case is based on a decomposition theorem for cosine

functions in [5] and on Komatsu's result on groups reproduced in §2. We

point out several applications at the end of §4 and develop one in detail.

2. Semigroups. Let A be the infinitesimal generator of a strongly

continuous semigroup S(-) satisfying (1.4). If b > ω the fractional powers
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(bl — A)~a (a> 0) can be obtained directly from S(-) by means of the

formula

(2.1) (bI-A)av = —-T- I ta~ιe~htS(t)vdt
T(a) Jo

(see [15, p. 260]); the positive powers (which coincide with those defined

in §1) are recovered through multiplication by (bl — A)m for sufficiently

large m.

Fractional derivatives of S(-)u shall be defined by Riemann-Liouville

integrals in (/, oo) rather than in (a, t) to avoid dependence on the lower

limit of integration (see [16, Chapter XII]): we say that S( )u has a

continuous derivative of order α > 0 /« / > 0 if and only if there exists

β > ω and a function fβ(-) continuous with "̂11̂ (̂ )11 integrable in s > 0

and such that

(2.2) e

The function^ is easily seen to be unique multiplying (2.2) by (/ — r)~a

and integrating in t >: r; however, the present definition of fractional

derivative depends on β and on the choice of (/, oo) rather than the

(equally natural interval) (-oo, /) if S(-) is a group (see below), thus the

space of all u G E satisfying (2.2) will be called E^β for the moment. That

the β-dependence is actually absent follows from the next result.

THEOREM 2.1. Let a > 0. Then

(2.3) K.β = Fa (J8>«)-

Proof. The case a = 0 is obvious. Let a > 0. If u E Fa then u =

(βl — A)~av so that using (2.1) and applying S(t) to both sides we obtain

(2.4) e~βtS(t)u - - ^ r Γ(s - t)a~Xe-βse-ι™S(s)v ds

(t>Q,β>ω)

which shows that Fa C E^β. Assume now that u E E^β for some β > ω

and let^g( •) be the function in (2.2). Apply the operator Pμ = μR(μ; A) (μ

large enough) to both sides: we obtain the corresponding representa-

tion for e~βΐS(t)Pμu with the function Pμfβ. However, Pμu E D(A) Q

D((βl - A)a\ hence (2.4) must hold and

(2.5) Pμfβ(t) = e-βt~^S{t)(βI - A)aPμu.
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Write (2.5) for t = 0 and let μ -> oo. Since Pμf(0) ->/(0) and Pμw -> u we

use closedness of (bl — A)a to show that u E £>((&/ — A)a). This ends the

proof, and justifies using the notation E^ for any E^β, β > ω.

The case where S( ) is a strongly continuous group deserves special

attention. Here we require that the function fβ in the definition of Eaβ be

defined and continuous for all t, norm integrable at + oo and the repre-

sentation (2.2) must hold in -oo < / < oo; moreover, fractional deriva-

tives can be just as naturally defined by integrals in (-oo, t). Assume the

constants c, ω are such that

(2.6) | |5(/)| | < ceω^ (-oo < / < oo).

We define E~β as the space of all u E E such that there exists an E-valued

function gβ continuous for all s, with |^Γ||g^(^)|| integrable at -oo and

such that

a)
(2.7) el"S(t)u = - ^ - f (t- s)a-'gβ(s) ds (-00 < t < 00).

1 [a) •'

Make the change of variable s -> -s in (2.7); formula (2.2) is obtained for

S(-t)u with fβ(s) = e~itπagβ(-s). Since the strongly continuous semigroup

t -» S(-t)u has -A as infinitesimal generator, it follows that

(2.8) E-β = F- =

We have completed the proof of the following result.

THEOREM 2.2. Assume A generates a strongly continuous group S(-).

Then if a > 0,

(2.9) E~β = F~, Eχβ = Fa (β>ω).

We shall henceforth write E~ — E~β (β > ω).

REMARK 2.3. If S( ) is a group, (2.3) still holds if (2.2) is assumed to

be valid only in / > 0 (or even in an interval / > a > 0). This follows

easily from the fact that the subspaces Fa are invariant for S(t).

3. Cosine functions. Let C( -) be a strongly continuous cosine

function with infinitesimal generator A and let c, ω be constants such that

(1.5) holds. Cosine functions stand in the same relation to the second

order equation u" — Au as semigroups to u' — Au. The generator A of a

cosine function always generates as well a strongly continuous semigroup
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S( ) analytic in Re t > 0 which can be expressed from C( ) by means of

the abstract Weierstrass formula

(3.1) 5(/)M = - 7 L Γe-s2/4tC(s)uds
\hτt Jo7Tt

and it follows from direct estimation of (3.1) that 115(011 ̂  ce"2* in t > 0.

Accordingly, the negative fractional powers of (b2l — A), b > ω can be

calculated using (2.1): the same expression can be obtained using (1.2)

and expressing i?(λ; A) as a function of C( ) as outlined in §1. The final

formula is

(3.2) (b2I-A)~au = -

for a > 0, where Kv denotes the Macdonald function

for v φ ±π, ±2ττ,... and extended by continuity to all values of v ([14, p.

78]). We note incidentally that (3.2) is a vector valued analogue of a

well-known integral formula ([7, p. 763, formula 12]). The spaces E^βE~β

relative to C( ) are defined exactly as in the previous section for a group,

that is by the relations (2.2) and (2.7) respectively, both assumed to hold

in -oo < t < oo.

THEOREM 3.1. Let a > 0, a φ n + \, n - 0,1,.. . . Then

( 3 4 ) E2aM^Fa> E2aM^F« (β>^)'

Proof. That (3.4) holds for a ~ 1,2, 3,... is a direct consequence of

the definition of A. To handle the general case we note that if a > 0,

a φ n + {, it follows from (3.3) and the power series for Iv, I_v that

(3.5) ta~ι/2Ka_λ/2(t) = - (ττ/2 α + 1 / 2 Γ(α + £)sin(α - ±)ir)t2"-1

where pβ(ί) = ? 2 α + l£α(ί) + ijα(0, £„ and η β entire. Also, the asymptotic
estimations of the Kv ([14, p. 202]) imply that

(3.6) Kv{t) = O{Γx/2e-') asί-oo
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with similar relations for derivatives of any order. It follows that

+ (l/Γ(2α)sin(α - i)π)s2a-ιe~bs

(we have used here formula 1 in [7, p. 952]) satisfies σa b(s) = O(s2a~ιe~hs)

as s -» oo with similar estimates for derivatives of any order; on the other

hand, σa b is continuously differentiable in t > 0, infinitely differentiable

in / > 0 and σ'a'b is integrable in / > 0. This is easily seen to imply that

Ba hE c D(A) and that ABah is bounded, where

(3.7) Ba,bu= Γoa,b(s)C(s)uds;

it suffices to integrate by parts twice keeping in mind that C'\t)u —

AC(t)u and use closedness of A. We shall denote by Jah the operator

J
α)sin(α —

where, as before, b > ω: we have

(3.8) ( ί » 2 / - ^ Γ β = /βiA + 5β,6.

Assume now that 0 < a < \ and let w G £^,0 s o ^ a t there exists an

iί-valued function fβ( ) continuous, with s 2 <Ί|^(s) | | integrable at infinity

and such that

(3.9) *

Apply PM = jni?(/x; A) to both sides. Since Pμu G Z)(^ί), ί -* e~βtC(t)Pμu

is (twice) continuously differentiable and it is easy to show that the

integral equation obtained from (3.9) can be explicitly solved by means of

the formula

(3.10) e-"<>-2«)Γ(l _ 2a)Pμfβ(t) = Γ(s - t)-2a(e-^C(s)Pμu)'ds

= - (1 - 2a) Γ(s - t)1~2a{e-'3sC(s)Pμu)"ds

= -(1 - 2a)Af*(s - tγ~2ae-βsC(s)Pμuds

-2β{\ - 2a)Γ((s - ty~2ae-^yC(s)Pμuds

-β2{l - 2α)|°°(S - t)]~2ae-βsC(s)Pμuds.
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We take advantage of this equality for / = 0. Making use of (3.8) we
deduce the existence of a constant k such that

(3.11) kPμf(0) = A((β2l - A)X'a - Ba%β)pμu + Qa%pPμu

where Qaβ is a bounded operator. Letting μ -» oo and keeping in mind
that A is closed the first inclusion (3.5) follows. The second is obtained in
exactly the same way using the fact that C(t) — C(-t).

Consider next the case \ < a < 1. Here we apply Pμ to both sides of
(3.9), differentiate both sides with respect to / and express^ as in the first
step of (3.10): the result is

α - \)P f(t) = Γ(s - /)' 2a(e~βsC(s)Pu)"ds
* t

so that the argument ends just as in the case 0 < a < {. The range a > 1
is handled in a similar fashion.

That the argument fails when a — \, §,... can be traced to the fact
that the Macdonald function Kv disgorges a logarithmic term for v integer:
in fact, if a — n + { we have

r-χ/1κa_x/2(t) = t«κn{t) = cnt
2-iog t + /•„(*),

where rn is entire. We show below that the inclusion (3.4) may fail to hold
for these exceptional values of a.

REMARK 3.2. Let E — C0(-oo,oo) be the space of all continuous
functions in - o o < x < o o such that u(x) -» 0 as |JC|—> oo, C(t)u(x)
= \{u{x + 0 + u(x ~ 0} It is not difficult to show that Au — u" with
maximal domain and that (-A)X//2 is the singular integral operator

i / τ 1 r // ri v- —I— c ) — ij/( x — c I

(3.12) (-̂ 4) 7 u(x) = lim — I — -ds.

Obviously Efβ, Eλ β (β > 0) contain all continuously differentiable func-
tions in E but not all of these are in Fx/2. This shows the failure of (3.4)
for a = \. The argument can be easily extended ioa — n-\-\,n—\,2,

That the inclusions opposite to (3.4) may not hold for any a will be
shown in the next section (Remark 4.3).

4. Cosine functions (continuation). Let C( )> A be as in the previous
section. It was shown in [4] that for any complex number a, A —a1!
generates a strongly continuous cosine function Ca with

(4.1) l|Cβ(0ll ^ ce(ω+W (-00 < t < oo).
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The cosine function Cα( ) can be obtained from C( ) by means of the
perturbation series

(4.2) ca(t)u

where Cn is given by

(4.3) Cn(t)u = jC{sn)C{sn_λ) C{sλ)C(t0)udsdt (u E E)

with ds = dsx dsn9 dt = dt0 dtn__χ and the 2«-dimensional integral

is taken in the region 0<sx<tx — tQ,... ,0 < sn < ί — /„_ „ 0 < /0 < tx

< < * „ _ ! < * . Using the cosine functional equation we easily show

that

(4-4) l | C " ( 0 l | - ~ ( 2 i y ! ( Π " 1 } %

(see the details in [4, p. 94]). It is easy to see that if n > 2 each C> is twice

continuously differentiable for arbitrary w G £; in fact, we have

(4.5) c;;{t)u = fc(t - tn_x)c{tn_x - tn_2)c(sn_2)

•• C{sx)C(t0)uds'dt

where now dsf — dsx dsn_2, dt = dt0 Λ r t _! and the (2/7 — 2)-

dimensional integral is taken in the region 0 < 5, < ί, — ί0,... ,0 < 5A?_2

- *n-2 ~ tn-^ Q^to — t\—'"—tn-\—t' W e obtain from (4.5) an
estimate of the type of (4.4) for the C'n'\ precisely

11 " v m~ ( 2 / ι - 2 ) ! v - ^

Finally, it follows also from the cosine functional equation that C,M is

continuously differentiable with

(4.6) C[{t)u = ~C{t)u + lr f'c{t-2s)uds
1 I JQ

= ^C{t)u + \C C{s)uds.

It follows from (4.2) and the preceding considerations that for every

u G E, C(t)u and Ca(t)u differ by a continuously differentiable function

h with ||A||, ||AH = O(e(ω^+ε)M) for any ε > 0 so that if E^a9 E~βa

denote the spaces defined in the previous section relative to Ca( ) we have

(4-7) < „ , , = < „ , E:.β,a = Kβ ( i δ > ω + | f l | )
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at least if 0 < a < 1. Consider next the range 1 < α < 2. If u E i ? ^ then

w E isj^ so that C(-)u is continuously differentiable and it follows from

(4.5) and (4.4) that C(t)u and Ca(t)u differ by a twice continuously

differentiable function with ||λ||, ||Λ'||, ||Λ'ΊI = O(e ( ω + w + e ) | ί | ) at infinity, so

that (4.7) holds for 1 < a < 2. Similar arguments work for the spaces E~

and the full range of a. We have then proved

TRANSLATION INVARIANCE LEMMA 4.1. (4.7) holds for all a>0 and all

a complex.

Let (X, Σ, μ) be a measure space ([3, p. 126]). We assume in the next

result that

(4.8) E = L'(X,Σ9μ).

THEOREM 4.2. Let E satisfy (4.8) with 1 < p < oo. Then

for all a > 0.

Proof. In view of Lemma 4.1 we may prove Theorem 4.2 for E*β a,

E~β a with a > ω arbitrary. It was proved in [5] that if a > ω and J51 is one

of the spaces allowed in Theorem 4.2 there exists a strongly continuous

group Ua(-) such that \\Ua(t)\\ < cω,eω'H for any cor > α> + | α | and Ca

admits the decomposition

The group ί/α( ) has infinitesimal generator Aa — i(a2l — A)x/1 and can

be expressed from Ca( ) by the formula

(4.11) Ua(t)u = Ca{t)u + iAafca{s)uds

(see [5] for details). On the other hand, it follows from the results in [1]

that there is a φ > 0 such that R(λ; -(a21 - A)λ/2) exists in the sector

Σ = {λ; | a r g λ | < 7 7 / 2 + φ; λ φ 0} and satisfies ||Λ(λ; -(a2l - A)x/2)\\

< c/\ λ I in Σ; thus the operator Aa satisfies (1.1). Accordingly, if b > 0 the

fractional powers (bl — Aa)
a can be defined and D((bl — Aa)

a) does not

depend on 6; moreover, it can be proved that if a > ω we have {-Aa)
2a —

(-i)2a(a2l - A)a. The same considerations apply to -Aa = -i(a2l - A)λ/1.

Let now u be an arbitrary element of D((a2I — A)a). Then u E

4 α ) 2 α ) and we can apply formula (2.4) to both the group / -» Ua(t)
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with infinitesimal generator Aa and to the group / -» Ua{-t) with infinitesi-

mal generator -Aa; in both cases we take β > ω + \a\. Combining the

two expressions thus obtained and using (4.10) we obtain formula (3.9),

with

(4.12) fβ{t) = ie-»e-2 «(Ua(t)(βI - Aaf*u + Ua(-t)(βl + Aa)
2au).

It follows that u E E^β^ — E^β so that Fa C -fî ,/?- A similar argument
applies to the spaces E~ . Combining the results obtained with Theorem

3.1 we obtain (4.9) for a ¥= n + j , n = 1,2, Note, however, that the

arguments above apply as well to these exceptional values of a; thus we

only have to show that E2n+X^, E2n+X β C Fn+ι/2 (n = 0,1,...). This has

been done in [6] for n — 0 and the result can be easily extended to

n — 1,2,...; thus we omit the details. This ends the proof of Theorem 4.2.

REMARK 4.3. Let E be a general Banach space, C a strongly continu-

ous cosine function in E. Assume that for some a, Ca admits a decomposi-

tion of the form (4.10) where Ua is an arbitrary strongly continuous group

with infinitesimal generator Ba (this will happen if and only if

(4.13) A =Bt + a2l).

Using the methods in Theorem 4.2 we can show that D((bl — Ba)
2a) C

Eiccβi Eΐaβ (a — 0) f°Γ b a n d β sufficiently large. However, Ba need not

equal the "principal value" square root i(a2l — A)ι/2; thus D((bl — Ba)
2a)

may not coincide with F2a. One such example is the space E and the

cosine function C( ) considered in Remark 3.2; here (4.10) holds for

a — 0 with U the translation semigroup U{t)u(x) — u(x — /); hence

A = B2, B defined by Bu = uf with maximal domain, but B ¥= (-A)]/2

given by formula (3.12). In those cases where no decomposition of type

(4.10) exists ([8]), no obvious replacement for Fa suggests itself.

REMARK 4.4. A sort of weak version of the inclusions exists in the

general case; in fact, we always have

(4.14) U Fa,sQE^β,E^β

δ>0

for β > 2ω and a > 0. To see this we only have to note that if a > ω,

η > 0, υ G E and Ua(t) is the operator in (4.10) then Ua(t)(a2I - A)~8υ is

a continuous function of t growing no more than e(
ω+a+FM a t infinity ([4])

so that if u E Fa+δ the representation (3.9) holds w i t h ^ given by (4.12).
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REMARK 4.5. We note that the function fβ in (3.9) obtained in

Theorem 4.2 for u E Fa and β > 2ω dies down at infinity faster than

originally bargained for: in fact, ||/ω(OII = O(e~ηΐ) as t -* oo for any

η < β — 2co. The same observation applies to the function^ alluded to in

Remark 4.4 and, in a substantially improved version to the function in

(2.3) corresponding to the semigroup case (where ||/(OII = O(e~{β~ω)ί) as

t -» oo). Similar considerations apply to the spaces E~ .

Applications of the results to singular perturbation problems will be

treated elsewhere. There are other applications, however. One is that of

estimating the degree of approximation to initial conditions of (gener-

alized) solutions of abstract second order differential equations

(4.15) u"{t) = Au(t).

We assume that the operator A generates a cosine function C( ); this is

known to be a necessary and sufficient condition in order that the Cauchy

problem for (4.15) be well posed (strong solutions of (4.15) exist for

w(0) = u0, u'(ϋ) = w, G D(A) and depend continuously on uQ9 uλ uni-

formly on compacts of -oo < / < oo; see [4], [5] for details). For u09 ux as

above the only solution of (4.15) assuming these initial conditions is

(4.16) u(t) = C(t)u0 + Cφ)^ ds.

If w0, ux are arbitrary elements of E then the (continuous) function (4.16)

is declared to be a generalized solution of (4.15).

THEOREM 4.6. Let E be as in Theorem 4.2, u0 E Fa, uλ E Fy with

γ = max(α — i,0), u{t) the function in (4.16). Then

(a)//0 <α < 1,

(4.17) \\u(t) - κ(0)|| = O(/2«) (/->0)

(b) if I < α < 1, u{ •) is continuously differentiable and

(4.18) \\u'{t) - u'(0)\\ =

Proof. Let u E Fa. Then u E E^ β for any β > 2ω and there exists fβ

making (3.9) happen. We have

(4.19) e



346 H. O. FATTORINI

The first integral is obviously O(t2a) as t -» 0. As for the second, we use

the easily verifiable inequality (s - t)2a~x - s2a~] < ktla{s - t)~x valid

for 0 < a < Y obtaining a bound of the same form. Accordingly

(4.20) | | C ( / ) M - u\\ = 0 ( / 2 α ) (/ -> 0).

In the case | < α < 1 we differentiate both sides of (3.9) and apply the

preceding argument to (e~βtC(t)uY obtaining \\(e~βtC{t)uY\\ = O(t2a~ι)

as t -> 0. An application of the mean value theorem then yields (4.20). The

case a — 1 is obvious. The result just proved and another application of

the mean value theorem imply that if u G Fa, 0 < a < 1, then

(4.21) UΐC{s)uds

i f w G i ^ 5 0 < α < l . This relation and (4.20) are easily seen to imply the

statement of Theorem 4.6.

In case E is a general Banach space, the conclusion of Theorem 4.6

can be obtained under slightly stronger hypotheses on u, namely u0 E

Fa+8, uλ G Fy with γ = max(α + δ — ^,0) for some 8 > 0 (see Remark

4.4).

For other results on degree of approximation of initial conditions see

[2]
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