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BERNSTEIN-LIKE POLYNOMIAL APPROXIMATION

IN HIGHER DIMENSIONS

LESTER E. DUBINS

Let C(K)be the Banach space of continuous, real-valued functions
defined on a compact, Hausorff space, K, let 9 = 9(K) be the positive
linear forms, P, defined on C(K), for which P / < sup/(A:) (k G # ) ,
/ E C( # ) , and endow ^P(^) with the weak-star topology in which it is,
of course, compact. (As is well known, 9 can be identified with the set of
countably additive probability measures defined on the Baire subsets of
K.) Let P°° be the power probability on ΛΓ°°, the product of denumerable
number of copies of K. Then, for each/ G C(#°°), the integral of/with
respect to P 0 0 is plainly continuous in P. As Theorem 2 below states,
there are no ohter continuous real-valued functions of P. The proof of
this assertion requires a generalization of Bernstein's version of the
celebrated polynomial approximation theorem of Weierstrass, which
generalization is provided by Theorem 1.

The two theorems are numbered in their logical order but stated in
the order of simplicity of formulation.

THEOREM 2. For every g G C(Φ(K))9 there is anfGC(K°°) such that,
for all P Eφ(K),

(1) JfdP">=g(P).

It is convenient to reformulate Theorem 2 in terms of an operator T
mapping C(K°°) into C(9(K)) defined, thus.

(2) (Tf)P = JfdP00, f E C(K°°), P G Φ(K).

Reformulated, Theorem 2, states that the operator Γis surjective, that
is, onto C(ty). A short digression explains the origin of this theorem.

Suppose Q is a probabilistic mixture of power probabilities,

(3) Q=fp«μ(dP)

for some probability μ on ̂ P, or, more fully,

(4) Qf = J(Tf)(P)μ(dP), fEC(K).
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As a theorem of Hewitt and Savage [2] asserts, each Q is representable in

at most one way as a mixture of power probabilities. Plainly, for the

uniqueness of μ, it is sufficient that every g E C(^P) be in the uniform

closure of functions of the form Tf for/ E C(K). It was this observation

which led me to investigate whether even the stronger assertion of Theo-

rem 2 might be true, which explains the genesis of this paper.

To Benjamin Weiss1 I am quite indebted. For it was he who, in a

private communication to me, proved Theorem 2 when K is a two-point

set. Moreover, his argument carries over to arbitrary compact sets, K,

once Bernstein's polynomial approximation theorem is generalized, as in

Theorem 1 below.

Recall that Bernstein has shown that, for each continuous function, g,

defined on the closed unit interval, the polynomials gn converge uniformly

to g where

(5) gH(p)= Σ

To state the generalization of Bernstein's theorem, introduce the usual

notation, 8k, for the probability supported by the singleton {&}, that is,

δkEi9(K) is the evaluation map: φ ^ φ(k), for φ E C(K). Letting

co = (A:(l), k(2),...) be a generic point of K°°, introduce Dn(ω), its empiri-

cal distribution of order n,

(6) A,(*(D,*(2),...) = ̂ Σ W
i = 1

Of course, Dn\ K™ —> *5P is continuous. Therefore, its composition with a

g E C(^P), g ° Dn, also to be designated by Sng, is a continuous, real-val-

ued mapping with domain K°° which has an expectation under any

probability on K°°, in particular, under any power probability P°°. Re-

capitulating, Sn: Ci6?)^ C{K°°) and TSn: Q 6 ? ) -> C(Φ) where T is

defined as in (2). In fuller detail,

(7) (TSng)P = JsngdP"> = fgo DndP">,

for gE C(Φ\P E^.

THEOREM 1. TSn converges in the strong operator topology to the identity

on C{^), that is, for each g E C(^?), (7) converges to g(P) uniformly in P.

'Rather than being a coauthor, Weiss invited me to use the ideas and the argument
contained in his communication.



MULTIDIMENSIONAL BERNSTEIN POLYNOMIALS 307

Of course, if Kis a two-point set {a, b}, ^ is identified with the closed

unit interval via the correspondence P <=> p if, and only if, P(b) = /?, and,

in this case, TSng is the Bernstein polynomial gn of (5). If K is a finite set,

^ is a simplex and one obtains from Theorem 1 similar polynomial

approximation to g. For instance, if K is a three-point set, Δ is the triangle

of all triplets (/?, q, r) of nonnegative numbers whose sum is 1, g E C(Δ).

where the sum is over all triplets of nonnegative integers whose sum is n,

and where the familiar multinomial notation is being used; and gn

converges to g uniformly on Δ.

It is an immediate corollary of Theorem 1 that the range of T is dense

in C(^P) which, of course, yields another proof of the Hewitt and Savage

[2] result which asserts the uniqueness of the representation of an ex-

changeable probability as a mixture of power probabilities.

2. Quadratic functions. If Y is a topological linear space, later to be

specialized to be the dual of C(K) in the usual weak-star topology, a

finite linear combination of functions, each of which is either a constant, a

continuous linear functional defined on Y, or the square of such a linear

function, is a, finite-rank quadratic function. The restriction of a quadratic

function to a subset of Y is called a quadratic function on that subset.

Throughout this note, Y is endowed with the weakest topology which

permits each element x of a linear space X of linear functional on Y to be

continuous.

LEMMA 1. Let y G F C 7 , where V is a neighborhood of y, and let b and

c be real numbers. Then there is a finite-rank quadratic function q: Y -» R

such that q(y) = b, q > b everywhere, and q > c on the complement of V.

Proof of Lemma 1. Since the space of finite-rank quadratic functions

is invariant under translations of Y, as well as under positive affine

transformations of R, it suffices to treat the case where y is the origin of

y, b = 0, and c — \. Since Y has the weak topology induced by X9 there

exist xt E X, 1 < / < n, such that \(xn z)\ < 1 for all / implies z E V.

Plainly, for q(z) = Σ(xiy z) 2 , #(0) = 0, q > 0 everywhere, and q > 1 on

the complement of V. •



3 0 8 LESTER E. DUBINS

LEMMA 2. Let g be a bounded function defined on a subset L ofY which,

at a point y E L, is continuous (or even semicontinuous). Then, for every

ε > 0, there is a finite-rank quadratic function q on L which majorizes g and

which, at y, is g(y) + ε.

Proof. Let V be a neighborhood of y such that, on V, g is nowhere

greater than g(y) + ε. The preceding lemma applies with b — g(y) + ε

and c equal to any upper bound for g. D

Let / be the set of finite-rank quadratic functions on L.

LEMMA 3. Let g E C(L) where L is a compact subset of Y. Then

0)
and

(2) }

Proof. From Lemma 2, (1) is immediate, and (2) follows by applying

(l)to-g. D

PROPOSITION 1. Let L be a compact subset of Y, and let Tx, T2,... be a

sequence of order-preserving (not necessarily linear) mappings of C(L) into

itself such that Tnq converges to q whenever q is a finite-rank quadratic

function. Then Tn converges in the strong operator topology to the identity

operator, that is, for each g E C(L), Tng converges to g uniformly on L.

Proof. Let g E C(L). Then as Lemma 3 asserts, g satisfies (1) and (2).

And, as shown by Bauer [1, Proposition 1] which in turn was inspired by

results of Korovkin [3], for every g which satisfies (1) and (2), Tng -> g

uniformly on L. This completes the proof, but for the convenience of the

reader, here is a sketch of the argument that Tng -> g. First, use (1) and

(2), and the compactness of L to verify that, for every ε > 0, there exist

^. G /, 1 < / < m, each of which majorizes g, but whose infimum is

majorized by g + ε. By hypothesis, 3N such that Tnqt < qt + ε for n > N

and all /. Since Tn is order-preserving, one obtains

(3) Tng < inf, TAi < inf, q, + ε < g + 2ε.

A similar calculation shows that, for n > N', Tng exceeds g — 2ε. D
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3. Proof of Theorem 1. Fix φ G C( K) and let

(1) f [ j }
which is often called the variance of φ with respect to P, and let

(2) ( / )

LEMMA 1. TSnqφ = qφ + lVφ.

The following straightforward calculation comprises the proof of

Lemma 1.

(3) (TSnqφ)P= JqφoDndP°°

= f (l

(Incidentally, with the exception of the last equality, all equalities

obtain if P°° were any exchangeable probability or, more generally, any

second-order exchangeable probability.)

Let Y be the dual of C(K) and endow Y with the weak-star topology.

As is well known, functions of the form P -> / φdP for some φ (Ξ C(K)

are the only continuous linear functional on Y. As is verified without

difficulty, if g is such a function, or is constant, then TSng = g for all n.

This, together with Lemma 1, implies that TSng -> g uniformly on ίP

whenever g is a finite-rank quadratic function. Now Proposition 1 of the

preceding section applies. D

4. Proof of Theorem 2.

LEMMA 1. Let T be a bounded linear transformation of a Banach space

X into a normed linear space Z. Then, for T to be surjective (onto Z), it

suffices that there exist a mapping S, not necessarily linear or continuous, of
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Z into X and positive numbers a and β, a < 1, such that, for all g E Z,

(1) | |g-ΓSg| |<« | |g | | ,

and

(2) \\Sg\\^β\\g\\.

Proof of Lemma 1. Fix a g E Z and define a mapping U — Ug of X

into Xy thus.

(3) Ux = x + S(g- Tx).

Since Un+λx = t/wx + S(g - ΓE/"*) and, since Γis linear,

(4) \\g - TU"+ιx\\ =\\g - TU"x - TS(g - TUnx)\\

<a\\g-TUnx\\<an+λ\\g-Txl

where (1) and an induction have been used. Consequently, for all x9

(5) lim TUnx = g.

Next, use (3) and (2) to obtain

(6) \\Uχ-χ\\=\\S(g-Tx)\\<β\\g-Tx\\.

Now use (6) and (4) to get

(7) || t/" + ιx - U"x\\ < β\\g - TU"x\\ < βan\\g - Tx\\.

Therefore, lim Unx exists and

(8) Γ(lim Unx) = lim TUnx = g

where the continuity of T and (5) have been used. D

Define a mapping S of C(^) into C(K°°) by letting S(g) be Sng =

g{Dn) when « = n(g) is minimal with the property

(9) \\g-TSng\\<{\\g\l

That S is well defined is implied by Theorem 1. Plainly, for each

co E K°°, (Sng)(ω) = g(Dn(ω))9 so the range of Sng is a subset of the

range of g which implies that

(10) foil =%||

Since (9) and (10) plainly hold with Sn replaced by S, the condition of

Lemma 1 obtains with X = C(K°°), Z = C(<3>), a = \ and β = 1. D
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