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NUMERICAL INVARIANTS OF HOMOTOPIES
INTO SPHERES

JERROLD SIEGEL AND FRANK WILLIAMS

A classical problem in the calculus of variations may be expressed:
Given two points in the same component of a Riemannian manifold A/,
what is the length of the shortest path connecting them? In this paper we
discuss parametric analogs to this problem. The width of a homotopy is
the supremum of the lengths of the paths traced by the points of X. Work
of Allan Calder and the first author on the topology of Stone- Cech
compactif ications led to the study of the question: Given a space X and
two homotopic maps f,g: X -»• M, what is the width of the shortest
homotopy between them!

In this paper we obtain bounds bq(M) that depend only on the
dimension q of X for the answer to this question in case M is a sphere or
a projective space (with the standard metric). We also introduce a related
sequence of invariants Bq(M) and compute these numbers for spheres
and projective spaces. Of particular interest is the fact that b2n-2(Sn)
detects elements of Hopf invariant one while B2n-2(S") does not.

One may regard this question as a parametric variational problem
with parameters in the space X, or, equivalently, as a brachistochrone
problem in the appropriately metrized function space Mx.

Of course in general the answer to the parametric problem may be
infinity: If X = R and M — S\ the complex numbers of unit norm, then
the exponential map exp(ί) = e2niΐ is homotopic to the constant map, but
not by a homotopy of finite width. However it was proved in [2] that Sι is
the exceptional case: If X is a finite-dimensional normal space and M is a
compact Riemannian manifold with π}(M) finite, then any two homotopic
maps f and g are connected by a homotopy of finite width.

Of more interest is the fact that these widths are bounded with respect
to the dimension of X. In the classical problem above, if M is compact
then there is a bound bo(M) such that any two points in the same
component are connected by a path of length <6 0 (M). (Simply take
bo(M) to be the greatest of the diameters of the components of M under
the Riemannian distance.) The main theorem of [3] extended this result to
homotopies: If q>§ is an integer and π^M) is finite, then there exists a
bound bq{M) such that any two homotopic maps f, g: X -» M, dim(M) < qy

are homotopic via a homotopy of width < bq(M).
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Consequently there is a sequence of invariants of M defined by letting
bq(M) = infimum of such bq{M). (Clearly this bo(M) coincides with the
one defined above.) It was also shown in [3] that if dim(Λf) > 0 then
l i m ^ ^ bq(M) = oo, so that these invariants are non-trivial.

As a first step toward understanding these numbers, we began to
calculate the bq(Sn), where Sn is the standard unit sphere, n>2. By a
simplicial approximation argument one sees that bq(Sn) — π for 0 < q < «,
and some elementary algebraic topology shows that bn(Sn) >: 2τr, [3]. In
[4] we computed all of the bq(Sn) with one exception (see Theorem 1.2
below). These numbers follow a somewhat regular pattern with exceptions
when q — n — 1 and when q = In — 2 and n = 2, 4, or 8.

In the present paper we obtain a better understanding of these
invariants by introducing a new and independently interesting sequence of
numbers Bq(M) that do follow a regular pattern. Bq(M) is the infimum of
the numbers Bq(M) such that any H: X X / -> M, dim( X) < q, can be
deformed keeping the endmaps fixed into one of width less than Bq(M).
The proof in [3] of the finiteness of bq(M) actually shows that under the
same hypotheses the numbers Bq(M) are finite. (Variants of Bq(M) have
also been considered by M. Gromov in [5].)

Clearly bq(M) < Bq(M). One would expect from the definitions that
the inequality would usually be strict, but for spheres that turns out to be
more the exception than the rule. In this paper we compute the Bq(Sn),
q>Q,n>2, then use the results of this calculation to obtain the missing
value, b]4(Ss), via the solution of a differential equation in the Cayley
bundle S15 -> Ss. Comparison of these results with those of [4] yields:

0.1. THEOREM. // n > 2, then bq(Sn) = Bq(Sn) unless q = n- 1 or
π = 2, 4, or 8 andq = 2n - 2, in which cases bq(Sn) = Bq_x(Sn) < Bq(Sn).

Since the numbers Bq(Sn) are easy to compute and describe (see
Table I below), it would be desirable to have a direct proof of this
theorem and to understand the relationship between bq(M) and Bq(M) in
general. We hope to deal with this question in the future. For the present,
we do observe that b2n-2(Sn) ^s sensitive to the presence of elements of
Hopf invariant one in π2n-\(Sn~l) a i u * ^ a t bq(Sn) = β

q(Sn) except when
the Hurewicz morphism πq(ΏSn) -> Hq(ΩSn) is a non-zero epimorphism.
We conjecture:

0.2. Conjecture. Let M be a compact Riemannian manifold with ττx{M)
finite. Then bq(M) is equal to either Bq(M) or Bq_λ(M). It is equal to the
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former except when the Hurewicz morphism π (ΩM) -» Hq(ΏM) is a non-
zero epimorphism. In these cases bq(M) = Bq_λ(M).

Further support for this conjecture comes through calculation of
Bq(Pn) and bq(Pn) for Pn a real, complex, or quaternionic projective. We
include in §4 a computation of Bq(CPn) and bq(CPn) as a further example
of our methods. The results appear in Table II.

0 <q<n- 1

q = n — 1

n <q<2n - 2

σ - 2 n - 2 ί n = 2 ' 4 ' 8
q Ln 2W2,4,8

2rc-2<g<3rt-3

(k - 1)(« - 1) < q < k(n - 1), k > 4

77

77

277

2T7

377

377

A: 77

Bq(S")

77

277

277

377

377

377

kn

TABLE I

Thus, for example, since b22(SΊ) ~ 4π = B22(SΊ) any homotopy from
a 22-dimensional complex X to SΊ may be deformed (rel XX {0,1}) into
a homotopy of width artibrarily close to 4π. Furthermore, there exists a
22-complex X and maps/, g: X -» £ 7 such that/and g are homo topic but
not by a homotopy of width less than 4π.

q

0

1

2<q<2n

2n

2(/c- l)n<q<
2kn, k

- 1

2kn, k>2
>2

bc

(2k

77/2

77/2

77

77

A: 77

+ \)π/2

Bq{CPn)

77/2

77

77

3τ7/2

kπ
(2k + l)/77/2

TABLE II

1. Definitions and statement of results. Throughout this paper the
domain space X will be a finite-dimensional polyhedron. By standard
" bridge" techniques [9] our results will also hold if X is a finite-dimen-
sional normal space.
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1.1. DEFINITIONS. Let (M, d) be a metric space.
(a) The length | σ | of a path σ: / -> M is given by the formula

taken over all partitions 0 = t0 < tλ < < tk — 1, for all k.
(b) The width \ H | of a homotopy H: X X / -> M is given by the

formula | i / | = sup{|7/J : x E X).
For maps/, g: X -* M and a homotopy // from/to g, we consider the

two extended real numbers:
(c) W(H) = i n f { | / Γ | : # ' ~ # r e l XX {0,1}}.
(d) w(/, g) = inf{|ff'I: ff£ = / , i/( = g}.
The subjects of this paper are the following sequences:
(e) Bq(M) = sup{ίF(//): H: XX 1^ M, dim(JT) < ?}.
(f) ^ ( M ) = sup{w(/, g):f~g:X-> M, dim( JT) < ?}.
Let Sw denote the unit sphere in i?"+ 1. If x, x' E 5"1, let dist(x, x') be

the length of a minimum geodesic from x to xr. For the numbers b (Sn),
n > 2, we have the following result.

1.2. THEOREM [4]. If(n,q) is a pair of integers such that n > 2, g >: 0,
and(n, q) is not (2,2), (4,6), #r (8, 14), then

TΓ, 0 <q<n - 1,

2ττ, n<q<2n-2,

[kiΓ, (k - l)(n - 1) < q < k(n - 1), k > 3.

Moreover, b2(S2) = 2ττ = &6(S4) a«^ 2τr < 614(S8) < 3ττ.

In §3 we shall show that:

1.3. THEOREM. ΓΛe i α/we ofbXΛ(S%) is 2τr.

The numbers Bq(Sn) are relatively easy to compute. The following
theorem will be proved in §2.

1.4. THEOREM. If n,q, and k are integers such that n > 2, k > 1, and
(k - 1)(Λ - 1) < 0 < Λ(/I - 1), ίAe/i ^ ( 5 Λ ) = km.
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We shall use the following kind of approximate fibration in the
sequel:

1.5. DEFINITION. Let (M, d) be a metric space. A map p: E -» M has
the approximate covering homotopy property through dimension k,
XCHP(fc), provided that if X is a normal space of dimension < k, and G:
XX I -» M and g: X -> E are such that pg(x) = G(x?0), then for any
ε > 0 there exists H: X X / -> E such that //(*, 0) = g(x) and d{pH(x, /),
G(x, /)) < ε for all (x, t) <Ξ XX I.

Let E F= {σ: /-> 5": σ is piecewise C00 with constant speed}. We
topologize £ as in [8, p. 88]. For 0 < c < oo we define Ec = (σ E £":
| σ | < c} and let/>c: £ c -» 5" X Sn be given by/>c(σ) = (σ(0), σ(l)).

1.6. THEOREM [4, 1.4]. // k > 0 w ΛΛ m^ger α«J c> km then pc:
Ec ^ SnXSn has the XCHP(k(n - 1) - 1).

2. Proof of 1.4. The following theorem will be used in this section
to obtain the upper bounds for Bg(Sn) and in §3 to compute bu(Ss).

2.1. THEOREM. Let X be a complex of dimension less than k(n — 1),
where k > 1 and n>2. Suppose H: X X I -> Sn is a homotopy and ε > 0.
Then there exists Ή: XX I -> Sn such that H~ H(τd I X { 0 , l } ) and
\H\< kπ + ε. Furthermore H may be chosen so that Hx is piecewise C°° of
constant speed for all x E X.

Proof. Choose δ, T > 0 such that p < π and 8 + 2p < ε. Define G:
XXI-*S"XS" by G(x9t) = (H(x90)9H(x9t)). Let g: X - ^ ^ + δ

be given by g(x) = C[//(x,0)], the constant path at 7f(jc,0). By 1.6
there exists G: X X / -> E^+g such that G(x, 0) = g(x) and
dist[(//(x,0), /ί(x, r)), pG(x, t)] < p. Since p < TΓ, any two points j , ^ r

E S" such that dist(7, y') < p may be joined by a unique minimal
geodesic m(y, y'). Thus we may define G: X X I X I ^ Sn by the for-
mula

G(x,t)[3s- 1],

m(

Note that for each (x9t) E I X / , ^(x,o ^s a piecewise C°° path from
, 0) to H(x, t) of length less than kπ + 8 + 2p, which is less than
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kπ + ε. Let G be G reparametrized so as to have constant speed in the s
parameter for each (x, t) E X X /.

We define H(x, s) to be G(x, 1, s). A homotopy K from H to H is
given by

{ - 0 , 0 , έ ^ r < l .

It is immediate that AT stays fixed on Jf X (0,1}. D

If we denote the dimension of X by q, we see that a consequence of
2.1 is that q < k(n - 1) implies Bq(Sn) < A TΓ.

The proof of 1.4 will be completed by showing that Bq(M) > A:ττ if
q>(k— \)(n — 1). By 1.2, unless k = 2, or « = 2,4, or 8 and A: = 3, we
have bq(Sn) > Λ π, whence /^(S"1) > £τr. Although we could dispose of
the remaining numbers on a case-by-case basis, the following theorem
gives us an easy proof of the desired inequality for all values of q and n at
once, independent of any appeal to 1.2.

2.2. THEOREM. For all n>2, fc > 1, if q>(k - l)(/i - 1), then
Bq(S")>kπ.

Proof. Let (S"~])r denote the rth James reduced product space of
Sn~\ [6], and let Eλ(p, q) be the subspace of Eλ consisting of paths from
p to q, for/?, q E 5". Let k be odd. In [4, 1.5] we noted that if λ < kπ then
Eλ(p,-p) ~(Sn~])r for some r < k - 1. Let X= (Sn~ι)k_} and let η:

(S"~ι)k_ι -> E(p,-p) be any map that is essential on homology in
dimension (k — l)(n — 1). We consider ij as a homotopy between the
constant maps of X to p and -/?, respectively. If λ = W(η) < kπ, then r/
would factor up to homotopy through Eλ(p,-p), contradicting the
fact that H(k_l)(n_l)(Eλ(p, -p)) — 0. Thus W(η) > kπ and hence
B{k_λ){n_λ){S")>k<n.

If /: is even we apply a similar argument to Eλ(p, p). D

3. The Cayley bundle. In this section we show that bl4(Ss) = 2π.
Our proof involves a detailed study of the geometry of the Hopf-Cayley
bundle. In fact our method also works for the Hopf complex and
quaternionic bundles.

3.1. Notation. Let K and R denote the Cayley numbers and the real
numbers. Let S15 and S 8 be the unit spheres in R16 = K X K and
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R9 = KX R. The Cayley bundle is given by the map h: S15 -» S8, where

We use juxtaposition to denote Cayley multiplication and "bar" to
denote conjugation of Cayley numbers. We shall also use the vector dot
product c - d.

3.2. THEOREM. Suppose F: X X / -» Ss is a piecewise C°° homotopy.
Let g: X -> S 1 5 be such that hg = Fo. There exists G: XX I -> S15 such that
Go — g, hG = F; and for each x9 Gx is piecewise C 0 0 and \ Gx \— \ \ Fx \ on
common points of smoothness. Thus

Proof. Our proof amounts to showing that h is a Riemannian submer-
sion, [10]. This would be easy if h were a principal bundle. The difficulty
arises from the non-associativity of the Cayley numbers. We represent
points of S15 as (ucosθ, i>sin0), w, v E SΊ. The points of Ss are repre-
sented as (wsinΦ,cosΦ), w G SΊ. With respect to this representation h
becomes

h(ucosθ,vsinθ) = (uϋ sin 20, cos 20).

For each point x G l w e may write

F(x, t) = (ιι(

Locally

g(jc) = (w(x,0)o(jc,

Moreover, any path covering F is locally of the form

G(x91) = (m?cos(iψ),

where t>(x, /) is a path in SΊ starting at v(x, 0). Thus to find a g(JC, /) that
satisfies the requirements of 3.2 amounts to finding a suitable υ(x, t) such
that

(3.3) |G(x,0| = i|/t^0|

Firstly F = (wψcos(ψ) + ώsin(ψ), -ψsin(ψ)). Using the fact that
u - ίi — 0 (since | u |= 1), we have
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Similarly,

|ό | 2 = i(ψ) 2 +|ιi | 2 cos 2 (ψ/2) + 2(άv) (uύ)cos2(ψ/2) +\ύ\\

By combining these last two relations, we see that 3.3 is equivalent to

(3.4) |ώ|2cos(ψ/2) + 2(ύv) (uv)cos2(φ/2) +\v\ = \ sin2(ψ).

Using the identity cos2(ψ/2) — { sin2(ψ) = cos4(ψ/2), we reduce 3.4
to I uv + ύv cos2(ψ/2) |2 = 0. Hence it suffices to find v such that

(3.5) uv + cos2(ψ/2)ώi; = 0.

Since multiplication by u is invertible as a linear operator, 3.5 may be
considered to be a differential equation of the form v + Av — 0, where A
is a continuous family of linear operators. It is a standard result that such
a system with continuous initial conditions v(x, 0) has a solution v(x,t)
that is continuous in x. (See for example [1; Theorem 3.8].)

Finally we observe that dotting 3.5 with uv yields v - v — 0 so
v(x, t) G S1, For this last observation we use the relation (a b) \c\2 =
ac - be. D

3.6. Notation. In order to define our homotopies it will be convenient
to have a radial coordinate for our standard 14-cell. To this end let S13 be
a 13-sphere and Z>14 be the cone on S13, Du = (I X Sl3)/({0] X Sn).
Write x = s A y for points of Z)14, where (s, y) G I X S13.

3.7. THEOREM. Let F: Du X / -> S 8 fo? sac/* /Aαί F\S13 X / w /wece-
wise C°° and of width less than 2π. Let ε > 0. Then there exists F:
DM X / ^ S* such that

13 X/,
(c) dist(JF(jc, Ϊ), F(x9 i)) < ε, x e Z)14, / = 0,1.

/. Since Z>14 is contractible, F|X>14 X {0} lifts to G: Du X {0} ->
S15. By 3.2 we may extend G to a lift of F\((Sn X /) U (D 1 4 X {0}))
such that \Gy\= ^ |F v |<τ7 for every j G S13. Now apply the covering
homotopy extension property to lift F to all of D14 X /.

If y G S13 then G(y,0) Φ -G(y, 1). Thus by dimensionality we may
deform G to G so that G = G on S13 X /, dist(G(jc, /), G(x, /)) < ε/4 for
all(x, /) G i) 1 4 X {0,1} and G(x9O) Φ -G(x91) for all x.

Let 0 < s0 < 1 be small enough so that
(a) dist(G(sΛy, /), G(l Λ >;, /)) < ε/4; y G S13, s0 < 5 < 1, i = 0,1,
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and
(b) dist(G(s Ay, ι), G(s/s0Λy, i)) < ε/4; y E Sχ\ 0 < J < J 0 , / =

0,1.
Define

For 5 Λ y E Z>14 and / E /, let

/
m\G(\

1 -
< 5 < 1, 0 < t <

1 -

FIGURE 1

Note that G = G on S13 X / and dist(G(x, /), G(x9 /)) < ε/2 for

x E Z)14, / = 0,1. Moreover if 0 < 5 < 50, then

, 1)) < TΓ.GsAv\ = dist(G(j Λ^,0) ,
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Finally, if s0 < s < 1, then

JsΛy m\G(l Λy,O),G\\ Λy,γ—j- 1 -s
,1

1 -s 1 - s
~ Sn

where GlAy[s]9 s2] denotes the restriction of the path G]Ay to the subin-
terval [sl9 s2].

Set F = hG. Since the dilatation of h is 2, \F\<2π and

? /), F(x9 /)) < ε, / = 0,1. By definition, F = f o n Su XI. D

3.8. THEOREM. Let X be a \4-dimensional complex, /, /': X -» 5 8 fee
homotopic maps, and ε > 0. 77z£« / and f are homotopic by a homotopy of
width less than 2π + ε. Hence b]4(Ss) < 2ττ.

Proof. LetF:XXI-+ Ss be a homotopy of / t o / ' and let 0 < ε, < ε/8.
If we let X(]3) denote the 13-skeleton of X, we may apply 3.1 to obtain F:
X{13) X / -* iS8 such that i7 is piecewise C00 of constant speed, of width
less than 2ττ + ε,, and homotopic to F(rel Jί(13) X (0,1}). We now use the
homotopy extension property to extend F to a homotopy from/to/'.

We define G: X°3) X / -> S 8 by

Observe that | G|< 2π - ε, < 2ττ and dist(G(x, 1), /r(x)) < ε/4. By a
patching process similar to that used in the proof of 3.7 we extend G to
ATX/ such that G(JC,0) = / ( * ) and dist(g(;c, 1), /'(*)) < ε/4 for all

We next apply 3.7 to G on the individual 14-cells of X, using ε/4 in
place of ε. Since 3.7 leaves G unchanged on the boundary of each 14-cell,
the resulting homotopy G: X X / -* S 8 is such that G = G o n I ( 1 3 ) X / ,
I G |< 2ττ, and dist(G(x, /)) < ε/4, for all x E X and i = 0,1.

Now dist(G(x, 0), f(x)) < ε/4 and

dist(G (JC, l)J'(x)) < dist(G (x, 1), G(JC, 1)) + dist(G(x, l)J'(x))

< ε/4 + ε/4 = ε/2.

If we compose G with the minimal geodesies on each end from/(x) to
G(JC,0) and from G(x, 1) to g(x), as in the proof of 3.1, we obtain a
homotopy G from/to/' such that | G|< 2τr + 3ε/4 < 2ττ + ε. D

Since 1.2 tells us that fe,4(S8) >: 2ττ, the proof of 1.3 is accomplished.
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4. Projective spaces. In this section we shall compute the in-
variants for complex projective spaces (with the metric induced from the
Hopf map S2n+1 -> CPn). We shall proceed as for spheres, in that we shall
calculate upper and lower bounds for Bq(CPn) and lower bounds for
bq(CPn). When these do not coincide we shall use special arguments.

The geodesic structure of CPn is well known, see e.g. [7]. Let E be the
space of piecewise C°° paths of constant speed and E -» CPn X CPn be the
projection, as in the paragraph preceding 1.6. Since ΏCPn ~ Sι X Ω*S2"+1,
it follows that for/?, q E CPn, Eλ(p, q) is homotopic to a skeleton K^m) of
K=Sι X(S2n)00. Indeed, if λ < km, then Eλ(p,p)~K(m) for some
m < 2(k — \)n. Furthermore, regarding/? as a complex line in Cw, if/?' is
an orthogonal line and λ < (2k + \)π/2, then Eλ(p, p') ~ K(m) for some
m < 2kn — 1. Thus, as in 2.2, we have:

4.1. THEOREM, (a) If q > 2(k - \)n + 1, then Bq(CPn) > km.
(b) Ifq > 2kn, then Bq{CPn) > (2k + l)ττ/2 D

Moving to upper bounds on Bq(CPn), we have from Morse theory:

4.2. (a) If \>km, then for all /?, p\ Eλ(p, p') ~ K(m) for some
m > 2kn - 1.

(b) If λ > (2k + l)τr/2, then for all/?, /?', Eλ(p, pf) - K(m) for some
m >: 2A:«.

Thus in these cases, as in [4, 1.4], Eλ -* CPn X CPn has the XCHP(m)
for the appropriate m. Hence:

4.3. THEOREM, (a) //# < 2kn - 1, ̂ ew Bq(CPn) <
(b) / / 9 < 2kn, then Bq(CPn )<(2k+ 1)^/2.

Combining 4.1 and 4.3, we obtain the values for Bq(CPn) listed in
Table II.

The lower bounds for bq(CPn) are somewhat more complicated. We
content ourselves here by referring to [4, pp. 27-289], since the method of
computation used there applies in our present situation. The results here
are somewhat simpler since for all «, the Hurewicz morphism mr(ΏCPn) ->
Hr(ΩCPn) is zero except when r — 1 or 2«. We obtain:

4.4. THEOREM. Ifq φ 1 or 2n, then bq(CPn) = Bq(CPn). D

If q = 1, the fact that mx(CPn) = 0 yields
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If q-2n, we consider the bundle Sι -> S2n+ι -» CPn. Since this

bundle is principal and S] operates by isometries, the argument of [4,

Theorem 2.3] shows that b2n(CPn) < bln{S2n+x) = π. Hence:

4.5. THEOREM. bln(CPn) = TΓ. D

We conclude by observing that the same method also yields the values

of bq and Bq for the real and quaternionic projective spaces. In all these

examples, as in the case of spheres, we are able to compute the values of

Bq since the upper and lower bounds we obtain for Bq coincide with each

other. A goal for future work is a characterization of those spaces for

which this phenomenon occurs and, if possible, to discover the relation-

ship between bψ Bq, and the topology of the space of loops on the

manifold.
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