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ENDOSCOPIC GROUPS AND BASE CHANGE C/R

D. SHELSTAD

We consider a real reductive group G with complex points G(Q,
Galois automorphism σ, and real points C7(R) = {gG G(C): σ(g) = g}.
In general, an irreducible admissible representation Π of G(C) equiva-
lent to its Galois conjugate Π ° σ need not be a lift from G(R), even if G
is quasi-split over R. Following the results of L-indistinguishability we
might expect this phenomenon to be related to the fact that σ-twisted
conjugacy on <7(Q need not be "stable", and therefore attempt to match
the various "unstable" combinations of σ-twisted orbital integrals on
G(Q with stable orbital integrals on certain groups H(R). The principle
of functoriality in the L-group would then suggest, with reservations in
the nontempered case, a relation between the σ-twisted characters of
representations of G(C) fixed up to equivalence by σ and the "dual lifts"
to G(C) of stable characters on the groups H(R).

In this paper we define the relevant groups H... they turn out to be
the endoscopic groups from L-indistinguishability... and prove a match-
ing theorem for orbital integrals. As a preliminary to the proposed dual
liftings of characters we also study the "factoring" of Galois-invariant
Langlands parameters for <7(C).

1. Introduction. We begin with two simple examples. Let G(C) =
Cx and σ(z) = z~\ z G C\ so that G(R) = {g G G(C): σ(g) ~g) is the
unit circle in Cx. A quasicharacter on Cx fixed by σ, i.e., trivial on the
positive reals, need not be of the form z -> χ(zσ(z)) = χ(z/z), with χ a
character on the unit circle. At the same time z G Cx is stably σ-conjugate
to - z , but not σ-conjugate (see [Sh6] for definitions). Let / G Q°(C*)
and write/(r, θ) for f(reiθ). Set Hx = H2 = G, so that #,(R) = S]. Let

/,(*") = j Jo (/(r, θ/2) +/(/•, θ/2 + «)) <fr/r

and

/ 2 (e") = je'"2Γ(f(r, 0/2) - / ( r , 0/2 + TΓ)) dr/r

for ~τr < θ < 7r. Then both /, and /2 extend smoothly to S1. If x is a
character on Sι then /-> /^w χ(eiθ)fλ(eiθ) dθ is a distribution on C x

representing the usual lift of χ to G(C), i.e., representing the quasichar-
acter z -» χ(zσ(z)). On the other hand, / -» /l f f χ(eiθ)f2(eiθ) dθ lifts χ to
the quasicharacter z = re1'* -»χ(zσ(z))e7^. We have therefore recovered
the remaining Galois-invariant quasicharacters on C*.
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For a general group, however, there are difficulties more akin to those
for L-indistinguishability. Consider G = SL2. Let

Note that if θ ^ 0 (mod π) then r(θ) and r(θ + π) are stably σ-conjugate
in G(C) but not σ-conjugate (see [Sh6, Lemma 2.5.2]). For/ G CC°°(SL2(C)),
define

fH(r(θ)) =

for — 77 < 0 < 77, where

/ ( ) §
JG(C)/H(R) a υ

dg denoting a Haar measure on G(C) = SL2(C). It can be shown that fH

extends to a C00 function on H(R). Then/-* / ^ ^ χ/^ is a distribution on
SL2(C) (see [Sh6, §5.4] for an explicit formula). L. Clozel has shown that
this distribution is, up to a constant, the twisted character of a Galois-fixed
equivalence class of representations of SL2(C). It is easily verified that all
such classes of (irreducible, admissible) representations of SL2(C) which
are not lifts from SL2(R) are lifts in this way.

Returning to the general problem, we find it convenient to consider
G(C) as the group of real points on a group G, and σ as the restriction to
G(R) of an algebraic automorphism a of G (cf. §2). Also, since (G, a) is
our starting point, rather than G itself, we may as well assume that G is
quasi-split over R.

In this paper we will be concerned with the matchings for α-twisted
orbital integrals on G(R); this includes the problem of determining what it
is they should match. Theorem 7.1 is our main result, and §§2 to 6 are
preparation for it. Also, as both a check on our definitions and a
preliminary to the proposed dual liftings, we will consider the question of
"factoring" Galois-invariant Langlands parameters for G(C) or, equiva-
lently [LI] α-invariant parameters for G(R). Theorem 8.1 is the main
result.

In [Sh6] we started a study of the matching problem for α-twisted
orbital integrals. We found that, despite various "technical" difficulties,
the jump formulas for twisted orbital integrals on G(R) are closed related
to those for ordinary orbital integrals on G(R). Making convenient
technical assumptions, we then put together a matching theorem involving
the endoscopic groups from L-indistinguishability. In this paper we start
afresh, making none of the technical assumptions of [Sh6]. We first define
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the notion of endoscopic group for (G, α). This turns out to be the same as
the notion of endoscopic group in L-indistinguishability [L3], [Sh4].
However, there is new information in the data for an endoscopic group H
for (G, a) and it is this information which allows us to formulate a
matching theorem without the assumption (4.3.2) of [Sh6]. Moreover in
relating the embeddings LH ~>LG relevant to our present problem to the
embeddings LH ^LG from L-indistinguishability we find a remarkable
quasicharacter on H(R) ^ H(C) which allows us to dispense with the
"cross-section for the norm" in [Sh6] (cf. Lemma 6.4).

As always, the twisted orbital integrals must be normalized. The
normalization factors will be written in a form suitable for global applica-
tions [L3] and, more specifically, in a form to reflect the connection with
L-indistinguishability for real groups. The proof of Theorem 7.1 itself
relies heavily on the proof of the matching theorem for L-indistinguisha-
bility (see [Sh5] for an outline of the latter proof).

We will follow the notation of [Shl]-[Sh7] as closely as possible,
especially with respect to L-group data. However, we now write G(C) and
G(R) in place of G and G. The definitions in this paper may be presented
in greater generality (cf. [Sh7]); in the general case there is no such
intimate tie with L-indistinguishability.

2. The groups G, G and the automorphism α. Let G be a connected
reductive linear algebraic group defined over R. Assume that G is quasi-
split over R. In fixing the usual L-group data, we take G itself for G*, a
quasi-split inner form of G, and the identity map for ψ, an inner twist
from G to G*. Then B* will be a Borel subgroup over R in G, and Γ* a
maximal torus over R in B*. We form the dual (LG°, LB°, LΓ°, {Xr}) with
r E Σ(LB°, LΓ°), the set of simple roots of LT° in LB°. In fact it will be
convenient to have fixed a root vector Xr, for any root r of LT° in LG°.
We therefore fix a Chevalley basis and take for {Xr, r E Σ(LB°, LT0)} the
vectors so provided. Then LG —LG° X W, with σG denoting the action of
1 X σ E W on LG°. See [Sh 3, 4, or 5] for further explanation of the
notation.

Let G be the group obtained from G by restriction of scalars from C
to R. We realize G as G X G with Galois automorphism σ<f. (x, y) ->
(°c(y)> σc(χ)) τ h e n B* = B* X B* will be the distinguished Borel sub-
group defined over R and f* = T*X Γ*. We realize the L-group LG of G
as follows. Set LG°=LG0XLG°, LB°=LB°XLB°, Lf ° =LT° XLΓ°,
Xiry) = (Xr9 Xr>) for all roots r, r' of LT° in LG°, and define σG~:
LGh -LG°byσG~(g, h) - (σσ(A), σG(g)),g, h ELG°. Then LG =LG° X W,
with C ' X l acting trivially and 1 X σ by σj.
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Let a: G -> G be the automorphism (x, y) -> (y9 x). We take the

standard dual automoφhism (cf. [Sh7]) of α, and denote it by a also.

Thus:

α((g, h)Xw) = (A, g) X M>, g, Λ G L G°, w E W.

3. Endoscopic groups for (G, a). The following is a special case of

the definitions in [Sh7]. Let s EL(?°. Then we set N(s) = sa(s),

Cent(#(s), L G°) = { g E L G ° : g~ιN(s)g = N(s)} and Centα(s,LG°) =

{g GLG°: g~^α(g) = s}. Call 5 a-semisimple if Centα(s,LG°) is reduc-

tive. In §4 we will observe that s is α-semisimple if and only if N(s) is

semisimple (cf. Lemma 4.2). Let Zw be the group of W-invariants in the

center of LG°. Thus Zw=LG° Π Center(LG) = {(g, σG(g)) X 1 X 1: g E

Center(LG°)}.Also

φ ) α (5, L G°), s <ΞLG°, z E Z ^ .

We will now use s to denote a coset of Zw in LG° and Centa(s,LG°) to

denote Centα(α, LG°) for a in the coset s. Following [Sh7], we consider

tuples

{s,LH?,LB?t

LT°,{Y),p,)

where

(i) s ELG° is a coset of Zw consisting of α-semisimple elements,

(iii) LB* is a Borel subgroup of Lif5°,

(iv) LTS° CLB° is a maximal torus in LH°,

(v) {Y} is a set of root vectors for the simple roots of LTS° in LB®,

(vi) ps: W->Aut(LH^LB?,LTs°,{Y}) is a homomoφhism which

factors through Gal(C/R) and is "realized in Centα(j , L G ) " , i.e. ps(w) =

ad n(w) \LHO , w E W, for some Λ(W) ELG° X w such that

n(w)"~ιflα(Λ(w)) = α for each α in the coset s.

Let LHS =LH? X MK, the action of W on ̂  being that defined by

ρs. Often we will write σs for the automorphism ps(l X σ), and abbreviate

Two tuples

(s9

LH?9

LB?9

LTs°9{Y}9ps) and ( 5 ' , ^ , ^ ^ ? , {r}, p,,)

are equivalent if there exists g <ΞLG° such that L/ί^ = g~lLH?g, LB°, =

g-χLB?g9 _LT° =g-χLTs°g, {T} = {Ad g~\Y)} and if Λ(w) E

Centα(5 , ZG) realizes ρ5(w) then g~xn(w)g lies in Cent^Λ ', L G) and real-

izes p5(w>), w E. W. The set of all equivalence classes will be denoted
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@(G, a). Using the results of the next section and Lemma 2.3.3 of [Sh4],

we may show that @(G, a) is a finite set. Since this fact will not be needed

we omit the proof.

Finally, we call a quasi-split group H over R an endoscopic group for

(G, a) if some LHS as above is an L-group for H.

4. The relation between endoscopic groups for (G, a) and endoscopic
groups for G. By the endoscopic groups for G we mean the groups " / / "

of [Sh4], i.e. essentially the groups of [LI]. The set @(G), or @(G, 1) in the

more general notation of [Sh7], and the tuples used in its definition will be

taken from [Sh4] (. . . there is a small difference in the definitions of [L3]).

We embed LG "diagonally" in L G, i.e. by the map g X w ^ ( g , g ) X w ,

g E L G°, w G W, and will frequently identify LG with its image in LG. As

in [Sh4], Zw will denote the set of W-invariants in the center of LG°.

By an α-conjugacy class in LG°, we will mean a set {g~xaa{g)\

g G L G 0 } , where α E L G ° .

LEMMA 4.1.

(i) Each a-conjugacy class in LG° contains an element of the form

(JC, 1 ) , J C G L G ° .

(ii) For x ELG°, Centα((jc, 1), LG°) = Cent(x, LG°).

Here, of course, Cent(x, LG°) has been identified with its image in LG

under the diagonal map.

Proof. Let a - (g,, g2) G L G°, g = (1, g 2). Then g-]aa(g) =

(U gΐλ)(g\, giKgn 1) = (gig2>
 ι)> s o t h a t ( ί ) i s proved, (ii) is also a simple

calculation.

LEMMA 4.2. α ξΞLG° is a-semisimple if and only if N(a) = aa{a) is

semisimple.

Proof. Let a E:LG°. Choose g E L G° such that g~ιaa(g) = (x, 1), for

suitable JC GLG°. Then

fl/G°) = gCentα((x, 1), ^ J g " 1

On the other hand, N(a) = g(x, x)g~ ], so that

Cent(7V(α),LG°) = g(Cent(x,LG°) X Cent(x, L G°))g- 1 .

The lemma then follows from standard facts.



402 D. SHELSTAD

LEMMA 4.3. Let s be a coset of Zw in LG° consisting of a-semisimple

elements. Then there exists g ξΞLG° such that s' = g~ιsa(g) has the prop-

erty that {aa(a): a E s'} is contained in LG°. Then {aa(a): a E s'} is

contained in a unique coset of Zw in LG°. This coset, to be denoted N(s%

consists of semisimple elements.

Proof. Let flEs. Choose g ELLG° such that g~λaa(g) — (x, 1), where

x <ΞLG° is semisimple. Let s' = (x, \)ZW. Then if b E s', ba(b) =

(x, x)(zσG(z), zσG(z)), for some z E Cent(LG°). Thus, with our identifi-

cations, ba(b) E xZw, a coset of Zw in LG° consisting of semisimple

elements. The rest is clear.

LEMMA 4.4. Each element of@(G9 a) has a representative (s, LHS) such

that (N(s),LHs) is a representative for an element of @(G) i.e. such that

{aa(a)\ a E s) is contained in LG° (...so that N(s) is defined), LH®

coincides with (Cent(iV(j), LG°))°, and ps is "realized in Cent(N(s), L G ) . "

Proof. We may take s = (x, X)ZW, some x E L Γ 0 . Then N(s) = xZw

and Cent α O, L G°) = Cent(Λ^(5),LG°). We may also assume that LTS° =
L Γ°, LB? =LB° ΠLH?(...LT° and LB° being identified with their images

in LG°) and that {Y} = {Xr: r GΣ(LB° ΠLH^LT0)}. Then ps is a

homomorphism of W into Aut(LH^LB° DLH?,LT°, {Y}). Suppose

that p5(w) = ad n(w) \Lfίo , where n(w) GLG° X w satisfies

n(w)~\x9 \)<x(n(w)) = (JC, l)'(cf. (vi) in §3). Then / l ί w ) " 1 ^ , JC)/I(W) =

(x, x). Also, if n(w) = (n}(w), n2(w)) X w then calculation shows that

for w E C x X 1 we have w^w) = n2(w) lies in the center of LH® and for

w = 1 X σ we have nx(w) — xn2(w). Thus for all w 6 ( f , Pj(w) =

ad m(w) \LHO where m(w) = (nλ(w), nx(w)) X w £LG. Also, w(w) central-

izes (x, x). Thus p5 is "realized in Cent(iV(s), L G ) " and the lemma is

proved.

LEMMA 4.5. The correspondence in Lemma 4.4 induces a map

91: @(G,α) ->@(G).

Proo/. We have to show that if (s, LHS) and (s\ LHS>) are as in Lemma

4.4, representing the same element of @(G, α), then the 5-tuples defining
LHS and LHS, are conjugate under LG°. They are conjugate under LG°, by

definition. It is easily checked that this conjugation may be replaced by

one from LG°.
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The map % need not be injective, as the example that G is a compact

torus shows. However 91 does have finite fibers (which implies that

©((/, a) is finite, as asserted in the last section). Reversing the construc-

tion in the proof of Lemma 4.4 shows that 91 is surjective.

5. Allowed embeddings of LHS in LG. Fix an element of @(G, α),

with representative (s,LHs) chosen as in the proof of Lemma 4.4. In

particular, s = (*, \)ZW, x G L Γ ° , and LHS° = (Centβ(j, LG°))° =

(Cent(N(s),LG°))°. We may further assume that LH° is in standard

position (cf. [Sh3, §2.2, Ex. 4.3.1]).

Suppose that ξ: LHS ~*LG is an admissible embedding, as in L-indis-

tinguishability [LI], [Sh3]. Here we regard LH® as a subgroup of LG° yet

to be embedded diagonally in LG°, and assume that $\LHO is the inclusion

map. The "diagonal" embedding of LG in LG then yields an embedding of
LHS in L G, again denoted ξ. Explicitly, £ is of the form:

ξ(h X 1 X 1) = (A, h) X 1 X 1, h GL//,°,

{(1 X z X 1) = (£ 0 (z), i o (z)) X z X 1, z E C ,

where ξ0: C^ -> Cent(L//5°) is a homomorphism satisfying ξo(z) =

| ( 1 X 1 X σ ) = ( r t o , r t o ) X 1 X σ ,

where n0 <ΞLG° normalizes L Γ°, noσG(no) = ξo(~l) and n0 X 1 X σ <ΞLG

acts on L^5° as σs — ps(l X σ). It follows immediately that ξ(LHs) C

Cent(7V(s), L G). However, our present problem dictates (cf. §8) that we

consider embeddings for which the image of LHS is contained in

Centα(s, LG). That this is a quite different condition is indicated even by

the example that G is a compact torus.

DEFINITION 5.1. Let (sy

LHs) be a representative for an element of

@ ( ( J , a). Then £: LHS

 <=*LG is an allowed embedding if:

(i) I is an admissible homomorphism, i.e. I is a homomorphism such

that l(LH? X w) CLG° X w, w E H ,̂

(ii) on L ^° , I is the inclusion mapping, and

We return to our choice s = (x, 1)2^, etc. Once again it is more

convenient to regard LH® as a subgroup of LG° yet to be embedded
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diagonally in LG°. Then an allowed embedding ξ: LHS =*LG is of the form:

l{h X 1 X 1) = (A, A) X 1 X 1, A GL/^°,

| ( i x z x l) = ( | 0 ( z ) , | 0 ( z ) ) x z x i , z e e ,

where | 0 satisfies the same conditions as ξ0 earlier, and

| ( 1 X 1 X σ ) = (xm0, mQ) X 1 X σ

where m 0 GLG° normalizes L Γ°, xm0oG(m0) = lo( — \), and m 0 X 1 X σ

ELG acts on ^7/° as σs ( . . . then also xm0 X 1 X σ acts on LH® as σ5, as

we have already used in the proof of Lemma 4.2).

Let LH^ = LH* XL/f5°. We of course regard LH* as a subgroup of
LG°. Define an action of W on L7/° by requiring Cx X 1 to act trivially

and 1 X σ to act by the automorphism (A,, A2) -* (σ5(Λ2), σ^A,)). If LHS

is the L-group of H then L i/ 5 is the L-group of H = Res£ /f.

LEMMA 5.2. Ler | fee απ allowed embedding of LHS in LG and ξ be an

admissible embedding ofLHs in LG CLG. Then

l(h X w) = a(w)ξ(hX w)9 h ELHs°,w G W,

where a(w) is a \-cocycle of W in L ^

Proof. This follows easily from our explicit description of ξ and ξ. The

details are omitted.

Suppose that | , | ' are both allowed embeddings of LHS in L G. Then

ξ'(w) = fe(w)|(w), w G W, where w -> 6(w) is a 1-cocycle of W in the

center of LH® embedded diagonally in LG°. We conclude then that the

image of LHS under an allowed embedding is independent of the choice of

embedding; we write thus simply "Image LHS" Suppose next that (s, LHS)

and (s\LHs,) are equivalent in the sense of §3. Fix g SLG° as in the

definition. Suppose that £ is an allowed embedding of LHS in LG. Then

ad g and I determine an allowed embedding of LHS, in LG. We conclude

then that there is an allowed embedding of LHS in LG if and only if there is

such an embedding of LHS,. Moreover, when embeddings exist we have

g"'(Image LJΪ,)g = Image LH9..

We defer a study of the existence of allowed embeddings. Recall,

however, that if the center of LG° is connected then LHS embeds admissi-

bly in LG [LI]. The proof of this result can be used to show also that there

is an allowed embedding of LHS in LG.

6. Ingredients for the matching theorem. Fix an element of @(G, α)

with representative (s,LHs) satisfying s — (x,\)Zw, etc., as in the last

section. We assume that ξ: LHS ^LG is an allowed embedding. The main
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purpose of this section is to attach to ξ normalizing factors to appear in
the matching theorem of the next section. We will assume also that there
is an admissible embedding of LHS in LG, say £. The choice of £ will not
affect the normalization factors (cf. Lemma 6.2), but we write individual
terms in the factors in a way that involves £, in order to make clear the
relation with the factors from L-indistinguishability.

Let H be an endoscopic group for (G, a) with L-group LHS. We fix a
Borel subgroup BH over R containing the maximal torus TH over R, and
assume that X*(TH) = X*(LT°) = Z*(Γ*) and that Σ(BH, TH) is the dual
of Σ(LB^LT°). The group H= Res£ # will also play a role. We set
BH — BHX BH and fH— THX TH\ LHS, which appeared in the last
section, is an L-group for H.

Since H is also an endoscopic group for G we may invoke many of the
definitions from L-indistinguishability (cf. [LI], [Sh4]). Let T be a maxi-
mal torus over R in G. A pseudodiagonalization (p.d.) η of T is a map
from T to Γ* of the form T*^TQ*-? T*, where x E 3l(Γ) [LI], To =
xTx~λ is standard (i.e. the maximal i?-split torus in To lies in 7"*) and m
belongs to the Levi group attached to To. Then σ(T η) denotes the transfer,
by 77, of the Galois action on T to Γ*, and to X*(Γ*) = X*(LT°),
X*(T*) = X*(LT°) and LT° = X*(LT°) ® C\

The set %(G) = {(Γ, η): σ{T%η) E Ω(L^°, LΓ°)σ,}, where Ω(Li/5°,
LΓ°)

denotes the Weyl group of (L//5°,
 LΓ°), is the starting point for the

definitions of [Sh4, §2.4]. We will use it again. First, because G is
quasi-split over R, for each maximal torus T' over R in H there exists
h E H(C) and (Γ, η) E ^ ( G ) such that hTh~x = TH and

^ x*(τH) = ^*(r*)η->

lifts to an isomorphism /(Λ, η): T -* T over R. We say that γ' E
originates from γ E G(R) ϋ/β (Γ, η) if γ' is the preimage of γ under some
such map /(ft, η).

Recall that s — {x,\)Zw. Any element of this coset is of the form
a = (xz, σG(z)), where z is in the center of LG°. But tfα(α) =
(xzσG(z), xzσG(z))9 an element of LT° = Ylom(X*(LT0)Xx). Also σ̂ (jc)
= x. Thus (flα(fl): ΰ E 5} defines a family of quasicharacters o n l ψ T 0 ) ,
each invariant under σ ( Γ η ), for any (Γ, η) E %(G). Fix (Γ, η) E $H(G).
Then, on transfer to T via Ί], we get a family of quasicharacters on X*(T),
each invariant under σΓ. On X^(TSC), the span of the coroots of T in G,
these quasicharacters all coincide and so we have defined a single qua-
sicharacter of the type used in L-indistinguishability (cf. [LI], also [Sh4,
§2.4]). Moreover on ( λ v E XJJ): σ Γ λ v = - λ v } , the quasicharacters
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coincide again. We therefore obtain a single character on

{λ v

and thence by Tate-Nakayama duality, a character on H\T) —
//ι(Gal(C/R), Γ(Q). Unless otherwise indicated, K will denote both the
quasicharacter on X*(TSC) and the character on H](T) attached to s and the
pair(T,η)ϊΞ%(G).

With G embedded diagonally in G, we have f — Res£ T naturally
embedded in G as Cent(Γ, G) — T X Γ, for any maximal torus T over R
in G. The norm from f to T is obtained from the map Γ(R) -» Γ(R)
defined by δ = (/, σc(t)) -> δα(δ) = (ίσG(/), ^ G (/)). As in [Sh6] we re-
gard the norm from G to G (... or from f to Γ) as an (injective) map from
the set of stable regular α-semisimple twisted conjugacy classes in G(R)
(.. .or in f(R)) to the set of stable regular semisimple conjugacy classes in
G(R) (.. .or to Γ(R)). by Lemma 2.4.3(ii) of [Sh6] this norm from G to G
can be recovered from the norms from f to T9 as T ranges over the
maximal tori over R in G.

Note that if TJ: T -> Γ* is a p.d., then so is η X η: f -» f *. Thus we
can use η to transfer data from f to Γ* or from Γ* to Γ.

We come then to the normalizing factors. The admissible embedding
£: LHS ~>LG has been fixed, and LHS chosen to satisfy the conditions of
[Sh3, Sh4]. We may therefore write ξ = ξ(μ*9 λ*), for suitable μ*, λ* G
X*(LT°) ® C, and define the attached correction (quasi) characters Λ(Γ7?)

on Γ(R), for (Γ, η) G S^(G). Although the notation does not reflect it,
Λ ( Γ η) depends on the choice of ξ.

Since | : L/f5 ^ L G has also been fixed, we have the 1-cocycle a(w) of
Win Centev(LH®) from Lemma 5.2. A procedure in [L2] attaches to a(w)
a quasicharacter on H(R). This quasicharacter determines a pair (μ0, λ 0)
of elements from X*(fH) ® C = J Γ ^ f °) ® C. We may also recover
(μ0, λ 0) directly from the 1-cocycle a( w). Thus define μ0, λ 0 by

λv(a(z X 1)) = z<βo^)z<°sβoΛv)y z G c*,

for λ v G AΓ*(LΓ°). Then μ0 is uniquely determined and λ 0 is uniquely
determined modulo

X*(Lf°) + {λ - σ5λ: λ G X*{Lf°) ® C}.

Also

μ0 - σ5μ0 G ̂ ( L f ° ) , l/2(μ0 - σ5μ0) = λ 0 + σ5λ0 mod X+(Lf°)9
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and

( μ o , λ v ) = O , ( λ o , λ v ) G Z

whenever λ v lies in the span of the roots of Lf° in LH° (cf. §9.1 of [Sh3]).
Here we have used δs to denote the action of 1 X 1 X σ ELi/5.

Let (Γ, η) G $H(G). Then on transferring (μ0, λ 0) to f using η we
obtain the data also denoted (μ0, λ 0) for a quasicharacter on Γ(R) (cf.
[Sh3, §4.1]). This quasicharacter will be denoted a(Tη).

LEMMA 6.1.

a(T η) is a-inυariant.

Proof. We describe a{Ty)) explicitly. Let δ = (/, oτ{t)) G f(R). Write t
as exp I J G Lie(Γ(C)) = X*(T)® C. Then στ(t) = exp στ(X)9 where
if X = Σ?=ι λf

v ® z. then σΓ(ΛΓ) - Σ?=1 σ r(λ f

v ) ® zz. Because α(Cx X 1)
lies in the diagonal subgroup of Center^i/f), as is evident from the form
of the embeddings £ and | (cf. last section), we must have μ0 lying in the
diagonal subspace of X*(Lf°) ®C = (X*(LT°) ® C) X (X*(LT°) ® C).
Thus we write μ0 as (μ0, μ0), μ0 G ̂ ( ^ Γ 0 ) ® C. As usual, we transfer μ0

to X*(T) ® C via η without change in notation. Then

a(τjδ) = ****+•*<*>>.

Since a(δ) — (exp στ(X), exp Z) it is now clear that a(Tη)(a(8)) —
a(Tη)(δ), and the lemma is proved.

Note that a,Tη) is uniquely determined by the class of a(w) in
H\W, Center(L//5

0)), but is affected by a change in ξ or | . The depen-
dence on ξ of our normalization factors is to be expected; the dependence
on ξ is not.

LEMMA 6.2. Fix (Γ, η) G ^ ( G ) αwd δ G f(R).

α ( Γ η )(δ)Λ ( Γ η )(δα(δ)) depends on I alone.

Proof. The embedding £ may be replaced only by h X w> ->
αo(w)£(A X H;)> where αo(w) is a 1-cocycle of W in the center of LH®
embedded diagonally in the center of LH®. Then a(w) is replaced by
ao(w)~ιa(w). The cocycle ao(w) defines first a quasicharacter x on H(R)
and second a quasicharacter χ on ^(R). As before, we use η to transfer
data and define quasicharacters χ ( 7 ,η) on Γ(R) and χ(Γ>r?) on f(R). Since
Λ ( r ,η) i s replaced by χ ( Γ,η )Λ ( Γ η ) and a{T } by χ ^ η ) α ( Γ η ), we have only to
show that χ ( 7 > ) ( δ ) = χ σ η ) (δα(δ)) . Define parameters μ1? λx G ^ί 1-?"0)
® C for x as usual; use the same symbols for their transfer to X*(T) ® C
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via η. For χ we can use parameters μx — (μu μ,), λ, = (λ^ λ,) in
XJiLf °) ® C (.. .or X*(f) ® C, after transfer). Since χ is clearly α-in-
variant (see the last proof), we may take δ = (exp X, exp X)9 X E
Lie(Γ(R)). Then χ(δ) = e<2»»x> and χ(δa(δ)) = χ(82) = e^2X\ so that
the lemma is proved.

The next lemma is simple but very useful (cf. proof of Lemma 6.4).
Each element of HX(T) can be represented by a cocycle σ -* exp iπλv ,
where λ v E X*(T) and σ Γ λ v = - λ v . We will use exp/Vλv to denote
this cocycle and its class in H\T)\ of course, exp/ττλv also denotes an
element of Γ(R) C f(R). Recall that to (Γ, η) E %(G) and our funda-
mental datum s = ( t, 1)2^ we have attached a character K on H\T).

LEMMA 6.3.

α ( r τ ) )(exp/τrλ v) = κ(exp/77λv)

for all λ v E XΦ(T) such that στλ
w = - λ v .

Note that the left side alone appears to depend on the choice of £ and
| . However a quasicharacter χ as in the last proof annihilates exp iπλ v , if
λ v E X*(T) and σ r λ

v = - λ v . Indeed we then have /ττλv e Lie(Γ(R)),
so that χ(exp/Vλv) = e

2πι<^λVy>= I, since \{μx - ar/x,) = (λ, + σ rλ,)
mod X*(T) implies that (£(μ, - σΓμ,), λ v ) = (μί9 λ v ) lies in Z. It then
follows that neither side of the formula depends on £ or ξ.

Proof of Lemma 6.3. First we evaluate the right side. The cocycle
σ -> exp iπλ v corresponds under the Tate-Nakayama isomorphism to the
coset of λ v in

Thus κ(exp iτrλ v) = λ v ( x ) , where s = (x, 1)2^ was used to define K.
Note that we have transferred λ v to LT° via η.

For the left side, we write a(z X 1) = (ao(z), ao(z))> z E C*, and
a(\ X σ) = (x60, 60), where ΛO(Z), t>0 lie in the center of LH? Since
ίτrλv E Lie(Γ(R)), we have a(Tη)(exp iπλv) = β2irι<μo,λv>= λ v ( α 0 ( - 1 ) ) ,
where again we have transferred λ v to LT° without change in notation (cf.
proof of Lemma 6.1). On the other hand, a(\ X σ)σs(a(\ X σ)) = a(— 1)
implies that ao(-\) = xb0os{b0) = xboa{Trί)(bo). Since σ ( Γ η ) λ

v = - λ v ,
we have that λ v ( α 0 ( — 1)) = λ v ( x ) , and the lemma is proved.
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We continue with (Γ, η) E ^H{G) and associated character K on
H\T). Fix a set {u = exp /ττλv : λ v E X*(T)9 σ Γ λ v = ~ λ v } such that
the cocycles σ -» expzπλv form a complete set of (noncohomologous)
representatives for the elements of H\T).

For / E CC°°(G(R)), and Haar measures Λ on Γ(R), </g on G(R) form
(cf. [Sh6]):

«>(δ, A, dg) = Σ-c(iι)/ /(α(g)tzδg-1) f ,

for δ E f(R) such that δα(δ) is regular. Note that for all δ E f(R), δα(δ)
lies in Γ(R)°, the identity component of Γ(R).

LEMMA 6.4.

1/ δα(δ) = γ, γ E Γ(R)?eg = Γ(R)° Π Greg, ώ α well-defined function on

Proof. By Lemma 6.3,

α(Γ,η)(δ)Φf-«>(δ, Λ, dg) = Σa(TJuδ)f f(a(g)u8g'}) f
11 JG(R)/T(R) a t

which we will write as Φ(δ). If δa(8) = δ'αίδ7) then δr = vδ, where
ϋα(i)) = 1, i) E ^(R) Then it is easily seen that v = / " ^ ( ^ M for some
t E 7\R) and u as in the summation. Since a,τ ^ is α-invariant we then
have Φ(δ') = Φ(t δ) = Φ(uδ) which clearly coincides with Φ(δ). Thus the
lemma is proved.

Finally, suppose that (Γ, TJ) E %(G) and that i(h,η): T -+ T is
defined over R. Then the Haar measure dt on Γ(R) is transported via
/(A, η) to a Haar measure dtf on Γ'(R); Λ' is independent of the choice of
h. Also, we say that γ' E Γ'(R)reg w «6>/ a norm if it is not in the image of
the norm map from V = Res£ V to T\ i.e. γ7 does not lie in the identity
component of Γ'(R). Then if γ' originates from γ E Γ(R)reg via (Γ, 77), γ is
not in the image of the norm from f to T(and conversely...).

We have not assumed that £ or ξ is of "unitary type" [Sh3]. It is eas-
ily checked that there is a quasicharacter χ on #(R) such that
lx(YθΛ ( 7 > )(γ)α ( Γ i η )(δ)|= 1 if γ/ originates from γ - δα(δ) via (Γ, η).
We then define &ζ(H(R)) to be the set of functions/on H(R) such that/χ
belongs to β(//(R)), the Schwartz space of H(R). As the notation indi-
cates, this space does not depend on the choice of χ. For/ E β^(H(R)) the
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stable orbital integrals Φ ) r i ) ( γ r , dt\ dh\ γ' E Γ'(R) Π ifreg (cf. [Sh4] etc.)
are well-defined.

It remains now to recall the factor Δ ( Γ γ ? ) from L-indistinguishability.
Thus

where q(G, H) is an integer, (— \)q(GyH) being inserted only for conveni-
ence, ε(Γ, η) = ± 1 is defined implicitly, Λ ( Γ η ) is as earlier in this section
and '\τ,η) *s a discriminant function (see [Sh4, §3] for further details).

7. The matching theorem.

THEOREM 7.1. Let H be an endoscopic group for (G, α), with L-group
LHS chosen as earlier. Suppose that | : LHS

 t=*LG is an allowed embedding
and that ξ: LHS~>LG is admissible {for L-indistinguishability). Then for
each f' E CC°°(G(R)) there exists fH G e^(i/(R)) such that:

ifyr originates from y — δα(δ)

via (T, η) E ^H(G),

0 if y is not a norm.

Here it is assumed that y' originates from regular elements in G(R).
Then γ' is regular in H(R) [Sh2]; T is the maximal torus containing yr.
Recall that Δ ( Γ η) depends on ξ alone, that cι{Tη) depends on both ξ and | ,
and that Δ ( Γ η ) (γ)α ( Γ τ ? ) (δ) depends on £ alone... as long as (Γ, η) and δ
are fixed.

REMARK. We have used CC°°(G(R)) instead of the more natural β(G(R))
since the necessary analysis of "twisted Ff" (cf. [Sh6]), for/a Schwartz
function, has not been carried out. Work of L. Clozel now in progress
should settle this matter and allow us to replace CC°°(G(R)) by β(G(R)).

Proof of the theorem. Let γ' E H(R). Suppose that γ' originates from
γ E Greg via (Γ, η) and from γ via (T, η). Choose δ so that δα(δ) = γ.
Write γ as yyy~ι and η as ωH © η o ad y~\ where ωH E Ω(i/, TH) C
Ω(G, T*) Sindy E 9ί(Γ) (cf. [Sh4, §3]). Then for δ such that δα(δ) = γ we
may take yδy~\ where j/EG has been identified with its image in G
under the diagonal embedding. With this choice of δ̂ we have a^-^δ) —
a{τ η>(̂ ) The relation between Δ(f ^(γ) and Δ ( Γ η )(γ) is described in [Sh4,
§3]!
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For fixed (Γ, η) G %(G) the function

if γ ' originates from γ = δa(δ) via (Γ, 17), is well-defined and invariant

under 2ί(Γ') To prove this we invoke [Sh4, Propositions 2.4.5 and 3.1.2]

and [Sh6, Lemma 4.3.2]. These results show that we have only to check

that a(Tη)(δω) = a(Tη)(δ) for ω an element of the Weyl group Ω(G, T) of

(G, T) which commutes with the Galois action on T and "comes from H "

(i.e. ω G Ω0(G, T) Π Ω(fC)(G, Γ) as in [Sh4, Proposition 2.4.5]). But this

invariance of a(Tη) follows easily from the fact that ( μ 0 , λ v ) = 0 for λ v

in the span of the roots of Lf° in LH® (see the proof of Lemma 6.1).

Suppose now that we fix a "framework of Cartan subgroups [Sh3],

[Sh4, §3.2]. Thus we have specified certain pairs (Tn,ηn) G ^H{G) and

embeddings in = i(hn, ηn): Tn-+ Tn over R; the set {Γ;(R)} provides a

complete family of representatives, without redundancy, for the conjugacy

classes of Cartan subgroups of H(R). Given γ r G 7^(R), set γ = in(y')9

and choose any δ such that δa(δ) = γ. Call γ ' G-regular if γ is regular.

Then for each n we may consider the function on the G-regular elements

of 7;r(R) given by

( ; ^ ) ( ; ? Ϊ M ) / ' « ^ ( γ , ώ, dg)

i f γ ' G T '(R)0,

0 i f γ ^ 0

where εn = ± 1 (to be chosen), Δ ( Γ ? ) = ε(Tn, ηn)Δ(τn,ηn) (i e. Δ ( 7 > ) is V . n)

with the ε(Γ, TJ) removed), and κn is the "K" associated to (Tn, ηn). Note

that {κn \χ^(τn)sc)} is exactly the set {κn} from [Sh2, §7] and [Sh3, §2].

Suppose that we are able to show that there exists/^ G Q^(H(R)) such

that

\{y\dt\dh)

0 i f γ ' g :

for all G-regular γ ' in r^(R) and for all n provided εmen = ε(m, n)

whenever 7^(R) and Γn'(R) are adjacent Cartan subgroups. Here ε(m, n) is

as defined in [Sh4, §3.5] (cf. [Sh2]). Then we shall take εn = ε(Tn, ηn)9 so

that by the results of L-indistinguishability (exp. [Sh4, §3.5]) there does

exist fH satisfying (*). It is then routine to verify that fH satisfies the

statement of our theorem (see the first paragraph of this proof; similar

arguments for L-indistinguishability are given in [Sh4, §3]).
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Returning to the condition on the existence of fH, we have only to
show that our family {Φn{ , , )} behaves like the family {Φn} of [Sh2, §9]
(cf. [Sh4, §3.2]). The invariance and growth requirements being satisfied
(clearly), only the "jump conditions" remain. Thus we need the jump
formulas for the functions

Γa{T^(δ)LiTJy)Φ<τ'*-<>(B9 A, dg) if γ E Γ(R)?eg,

0 i f γ G Γ ( R ) r e g - Γ ( R ) ° .

These are contained essentially in the analysis of §§4 and 5 of [Sh6]. To be
more precise, we seek analogues of Lemmas 5.2.2 and 5.2.5 of [Sh6], when
" 'Δ Γ Φ T " is replaced by the function above (with the necessary adjustment
in the choice of positive system for the imaginary roots of T used to define
the factor Δ ( Γ η ) ) . The proof of the analogue of Lemma 5.2.2 is straightfor-
ward; because of notational complications we omit further details. Note
that the "ic-signature" [Sh2] which appears depends only on κ\x (T )? i.e.
the jump is indeed like that from L-indistinguishability. The analogue of
Lemma 5.2.5 will be stronger than the original statement, because we no
longer need the assumption "κ(av) = 1 if (5.2.3) holds." We now have
the exact analogue of [Sh2, Proposition 9.1] from L-indistinguishability.
Indeed, let γ0 be a semiregular element in Γ(R) such that λ(γ0) = 1, where
λ is an imaginary root such that /c(λv) = —1. We wish to show that
Ψ ( Γ η ) is smooth on some neighborhood of γ0. We may assume that
γ0 E Γ(R)°. Fix δ0 E Γ(R)° such that δ0

2 = γ. For γ close to γ0 choose δ
close to δ0 such that δ 2 = γ. It will be sufficient to show that δ -» Ψ ( Γ η )(δ 2)
is smooth near δ0. This follows immediately from Lemma 4.3.3 of [Sh6].
Note that this type of argument could not be used in the proof of Lemma
5.2.5 of [Sh6] because the "cross-section for the norm" was not smooth
nearγ0.

We now complete the proof of Theorem 7.1 by the arguments already
indicated.

8. The dual lifting. Again we fix an element of @(G, α) and choose
a convenient representative (s,LHs) for this element, as in §5. Let Hs be
the corresponding endoscopic group. Since Hs is, by definition, quasi-split
over R, the set Φ{HS) [L2] consists of all equivalence classes of admissible
homomorphisms φ: W-*LHS. Suppose that £: LH'S^

LG is an allowed
embedding. Then ξ induces a map, also to be denoted | , from Φ(HS) to
Φ(G); the image of the class of φ: W ^>LHS is the class of φ = ξ ° φ:
W -+LG. It is easily checked that the image of Φ{HS) in Φ(G) is indepen-
dent of the choice for ξ. By the remarks at the end of §5 it is also
independent of the choice for (j, LH ).
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On the other hand, the automorphism a of G has a standard dual

[Sh7], again denoted a:

« ( ( * , h)Xw) = (A, g) X w, h9g G L G ° , w G W.

If φ: W -> L G is admissible then so is α © φ: H^ -> L G. We write {φ} for the

class of φ and {φ}α for the class of a o φ. Then Φ(G)α = {{φ} G Φ(G):

For each element of (&(G,a) we fix a representative (s,LHs) as

before, and assume that eβcλ LHS has an allowed embedding £ in L G. Also,

we will use U ^ to denote a union over the corresponding endoscopic

groups.

THEOREM 8.1.

Φ(G)a= U
n,

Proof. Let φ: JF ~*LHS b^ admissible. Set φ = | o φ. We may assume

that φ(Cx X 1) CLT° XCX X 1. Then clearly φ and α ° φ coincide on

C* X 1. We write φ(l X α ) a s ^ X l X σ (ΞLHS, and | ( 1 X 1 X σ) as

(xm 0 , m0) X 1 X σ (cf. §5). Then φ(l X σ) = (xnHm0, nffm0) X 1 X σ

and

(a o φ)(l X σ) = (nHm0, xnHm0) X 1 X σ

where g = (x, 1). Then clearly a © φ = ad g~ ι o φ? and so

Suppose now that φ: W ̂ >LG is admissible and that (φ}α = {φ}.

Then it is sufficient to show that φ factors through some LHS (not

necessarily among our fixed representatives) embedded (via an allowed

embedding) in LG.

Let Sξ = {a <ΞLG°: aφ(w)a~ι = (a o φ)(w), >v G W}. Then 51 is

nonempty. If α 0 lies in S | then so does aoz, for z G Z ^ . In fact, then

S$ — Λ O ^Φ' where S$ is the centralizer of φ(W) in L G°. . . recall that the

results of [Sh4], with a little extra argument for the case φ unbounded,

show that Sψ = S$ZW, Sξ denoting the identity component in Sj. Choose

s ~ a0Z
w contained in Sξ. Assume that s consists of α-semisimple ele-

ments (. . . we will prove below that such an s exists). Then set LH^ =

(Cent e(j,£G°))°, and select LB^ LTS° and {Y} as in §3. To define a

suitable action of W on LH® we have just to give a homomorphism of
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Gal(C/R) into Aui(LH^LB^LTs°,{Y}) such that σ5, the image of σ, is
"realized in Centα(s, LG) = Centα(α0,

 LOγ\ But

Thus φ ( l X α ) normalizes LH®. We may write adφ(l X O)\LHQ as ωσs,
where ω is an inner automorphism of LH® and σs G
Aut(L#°, LB?, LTS°, {Y}). Note that σs

2 =1 and is "realized in
Centα(s, Lόy\ Using the associated W-action we form LHS and so obtain
a representative (s,LHs) for an element of ©((/, α). We claim that φ
factors through LHS. Thus, suppose that | : LHS^

LG is an allowed
embedding. Then for each w G W, φ(w) lies in Centα(s, LG) and acts on
LH* = (Centβ(j, LG°))° as an element n{w) X w of the image of LHS in
LG. By definition, n(w) X w G Centα(s,LG). Thus φ(w) = α(w)(/i(w) X
w), where α( w) G Centα(5, LG°) centralizes LH?. But then α(w) lies in the
center of Li/5°. Hence φ factors through LHS.

It remains now to show that S$ contains an α-semisimple element. If
we replace <j> by ad g o φ9 g GLG°, then we must replace 5 | by a(g)Sξg"1.
Therefore we may assume that S$ contains an element (x~\ 1), x GLG°
(cf. Lemma 4.1). Then we write Φ(w) as (Φx(w), Φ2(

w)) x w a n d obtain
from (x"1, \)φ(w)(x, 1) = α(φ(w)), w G W, that φ,(z X 1) = φ2(z X 1),
z G C*, and φx(\ X σ) = xφ2(l X σ); also, x lies in the centralizer So of
the image of the homomorphism φ,: w -> Φι(w) X w of fFinto LG. Write
x = xux s, where xM G *S0 is unipotent and xs G 50 is semisimple. Then
with the same φx and with xs in place of x we can use the formulas above
for φ to define φ0: W -^LG such that S^ contains (X71,1) But φ0 is easily
seen to be equivalent to φ because x~\ being unipotent and fixed by
Φλ(W\ can be written as t;(φ,(l X o)υ)~\ υ G Cent(φ,(Cx X 1), LG°).
Since (x~\ 1) is α-semisimple our proof of Theorem 8.1 is complete.

According to Langlands' functoriality principle this factoring of the
α-fixed parameters {φ} should be reflected in character theory. Let
φ G Φ(G) be α-fixed (we now drop the { } from the notation for
parameters). Then the L-packet Πj consists of a single infinitesimal
equivalence class of irreducible admissible representations fixed by the
automorphism α: G(R) -» G(R) (... this is easily checked, see also [Cl]).
Thus the twisted character χ | of Πj is well-defined up to sign (see [Cl] for
a detailed discussion, especially concerning the question of signs). Assume
that φ is bounded, i.e. if φ(w) = Φ0(w) X w, w G W, then φo(W) is
bounded. Then χ | is tempered [Cl, Theorem 5.12]. On the other hand,
suppose that φ is the lift of φ G Φ(H), in the sense afforded by Theorem
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8.1. Then φ is essentially bounded, so that the L-packet Π φ consists of
essentially tempered (equivalence classes of) representations. Thus χφ =
Σ^eπ Xτr> XTΓ denoting the ordinary character of π, is a stable essentially
tempered distribution on H(R) [Shi, Lemma 5.2].

Theorem 7.1 provides a correspondence (/, fH) between CC°°(G(R))
and 6|(7f(R)). As mentioned already, an adequate analysis of the "twisted
Ff transform" would provide a correspondence between β(G(R)) and
6|(//(R)); it would also give a dual lifting of stable tempered distributions
on H(R) to twisted-invariant tempered distributions on G(R), with eigen-
distributiόns mapping to eigendistributions (see [Sh4, §4] for the analo-
gous arguments in the case of L-indistinguishability). Nevertheless, with
the correspondence of Theorem 7.1 we can define (Lift χφ)(f) = χφ(fH),
/ ε ς ° ( C ( R ) ) . Writing χφ(fH) as JH(R)fH(h)χφ(h) dh, and applying the
Weyl Integration Formula, the matching theorem and the twisted ana-
logue of the Weyl Integration Formula, we find that Lift χψ is a twisted-
invariant distribution on G(R) represented by a function explicitly com-
puted in terms of χφ. Moreover, this function transforms under the center
of the universal enveloping algebra of G(C) according to the infinitesimal
character of χ | . We may therefore ask if Lift χφ coincides with χ | up to a
constant (depending only on G and H, once the sign for χ | has been
suitably fixed). According to [Cl] with some minor additional arguments,
this is true if H = G; recall that we are assuming that φ is bounded, so
that φ is an essentially bounded parameter. Work of L. Clozel now in
progress should provide the answer to our question for the case H φ G.
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