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CAUCHY SPACES WITH REGULAR COMPLETIONS

D. C. KENT AND G. D. RICHARDSON

A T3 Cauchy space which has a regular completion is shown to have
a T3 completion, but an example shows that such Cauchy spaces need not
have strict T3 completions. Various conditions are found for the ex-
istence of T3 completions and strict T3 completions; for instance, every
Cauchy-separated, locally compact, T3 Cauchy space has a T3 completion.
Convergence spaces and topological spaces which have a coarsest com-
patible Cauchy structure with a strict T3 completion are characterized, as
are those spaces for which every compatible T3 Cauchy structure has a T3

completion.

Introduction. Cauchy spaces were first defined in their present form
by H. Keller [3] in 1968. Most subsequent work in this area has dealt with
Cauchy space completions; the study of regular completions was initiated
by J. Ramaley and O. Wyler [9] in 1970. Cauchy spaces are finding
applications in various areas; they were applied in the study of C*-alge-
bras by K. McKennon [8], and recently some very nice results on Cauchy
completions of lattice ordered groups were obtained by R. Ball [1].

At the present time, the two most important unsolved problems in the
study of Cauchy spaces are:

(1) Find a completion functor for Cauchy groups (or prove that none
exists).

(2) Find internal (and usable) characterizations of Cauchy spaces
which have regular completions.

This paper attacks the second problem by expanding on ideas intro-
duced in [5] and [7].

The first section is concerned with "C3 Cauchy spaces," which is the
name we give to Cauchy spaces that have T3 completions. An early result
is that a T3 Cauchy space which has a regular (non-Γ2) completion also
has a T3 completion. This result is surprising in view of the very different
behavior of regular and T3 compactifications studied in [6]. We also obtain
useful criteria for locally compact Cauchy spaces to be C3.

In the second section, we give an example of a C3 Cauchy space which
has no strict T3 completion. Thus Problem (2) splits into two problems,
the second being to characterize those Cauchy spaces which have strict T3

completions (we call these SC3 Cauchy spaces). The solution which we
give to the latter problem (see Proposition 2.3) is useful, but not entirely
satisfying.
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In §3 we shift our attention to T3 convergence spaces and pose two
questions:

(1) When does a T3 convergence space have a coarsest compatible C3

(or SC3) Cauchy structure?
(2) When are all compatible T3 Cauchy structures C3 (or SC3) Cauchy

structures?
In answering these questions we introduce two new convergence space

notions which we call "r-boundedness" and "s-boundedness." The former
is closely related to local compactness, the latter bears some resemblance
to countable compactness. The r-bounded convergence spaces provide the
answer to Question (1); spaces which have both properties (we call these
Λs -bounded spaces) are the answer to Question (2).

1. C3 Cauchy spaces. For basic definitions and terminology per-
taining to Cauchy spaces and convergence spaces, the reader is asked to
refer to [5]. A few changes in the notation of [5] will be made; most
notably, we will use "cl^" instead of "Γq" for the closure operator of a
convergence space (X, q), and we shall denote the set of Cauchy equiva-
lence classes of a Cauchy space (X, β) by X*. The set of all filters on a set
X will be denoted by F( X).

A convergence space (X, q) is said to be T2 if each filter converges to
at most one point; (X, q) is regular if C I ^ - ^ J C whenever ®j-+x. A
regular T2 convergence space is said to be T3. A regular convergence space
is defined to be symmetric if <3r-» x whenever ξF-* y and y -> x; T3 spaces
are obviously symmetric. A convergence space is locally compact if every
convergent filter contains a compact set.

A Cauchy space (X, 6) is defined to be T2 or locally compact if the
induced convergence structure qe has the same property. On the other
hand, a Cauchy space (X, β) is regular if cl^ W E β whenever f G β ; if
(X, 6) is regular then so is (X, qe), but the converse is false. Like a
convergence space, a Cauchy space is said to be T3 if it is both regular and
T2. This paper is devoted to the study of Cauchy spaces which have T3

completions; we shall call these C3 Cauchy spaces.

PROPOSITION l.l.If(X,Q)isa regular Cauchy space, then the induced
convergence space (X, qe) is symmetric.

Let (X, Q) be a T2 Cauchy space. If ^ E Q let
E β} denote the Cauchy equivalence class containing S\ Let X* =
^ E β}, and lety: X-+ X* be the natural injection j(x) = [x]9 all x E X.
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A completion of (X, β) which has X* as its underlying set and j as its
embedding map such that j % - * [&] for each 5 Έ β is said to be in
standard form. Reed [10] has shown that every T2 completion of (X, β) is
equivalent to one in standard form.

A complete Cauchy structure 6* on X* is given by: β* = {(£ E F( X*):
& >j{<3) Π [#], for some f G 6}. If (X, β) is Γ2, then (X*, β*) is also
Γ2, and ((**, β*), y) is called Wyler's completion of (X, β). It is easy to
see that if ((X*9 Φ), y) is any other T2 completion of (X, 6) in standard
form, then 6* C Φ; in other words, Wyler's completion is (up to equiva-
lence) the finest completion of any T2 Cauchy space.

For any Cauchy space (X9S) let Gr be the finest regular Cauchy
structure coarser than β. It is easy to verify that Qr is complete whenever Q
is complete. If q = qe is the convergence structure induced by β, then it
follows easily from Proposition 1.1 that the convergence structure on X
induced by Qr is oq, the finest symmetric convergence structure coarser
than q. In what follows we shall denote by q* (respectively, σq*) the
convergence structure on X* induced by β* (respectively, S*).

PROPOSITION 1.2. // a T2 Cauchy space (X, 6) has a regular comple-
tion, then ((X*, βr*), j) is a regular completion of (X,Q). Furthermore, in
this case, ((X*, G*), j) is a T3 completion of(X, 6).

Proof. Let ((X*, Θ), j) be a regular completion of (X, β) in standard
form. Then <φ < β* < β*, and it follows immediately that j : (X, 6) ->
(X*, β*) is a Cauchy embedding, which proves the first assertion. To
prove the second, note that [&] Π [§] e βr* implies (clσ<?*y9r)V
( c l σ ^ y S ) ^ 0,so

(d^yy) n (cl^yg) - dσ,.y(yn β) e e;.

Hence, f Π g E β , and [<$] = [g]. It follows that (Z*, βr*) is Γ2 and,
hence, T3. Π

COROLLARY 1.3. The following statements about a T3 Cauchy space are
equivalent.

(\)(X,e)isC3.
(2) (X,Q) has a regular completion.
(3) ((**, β*), j) is a T3 completion of {X, β).

When one compares regular versus T3 compactifications of T3 conver-
gence spaces, the results differ significantly from those obtained for



108 D. C. KENT AND G. D. RICHARDSON

Cauchy completions in Corollary 1.3. In a recent paper [6], we showed
that the T3 spaces having regular compactifications are precisely the
ω-regular convergence spaces, whereas those having T3 compactifications
constitute the proper subclass of completely regular spaces. The apparent
discrepancy is due to the fact that regular compactifications, unlike
regular Cauchy completions, need not be symmetric. Convergence spaces
which are ω-regular, but not completely regular, have non-symmetric
regular compactifications which cannot be constructed via Cauchy com-
pletions.

LEMMA 1.4. If (X, 6) is locally compact and Γ3, (X*, β*) is Γ2, and
A C X\ thenj-\c\σq*A) = άqj~\A).

Proof, Let q = qe be the convergence structure induced by β. The
continuity of j implies cl^y" 1^) Qj~\clσq*A). If x Ej~\clσq*A), then

σq*A). If x Ej\clσq*
there is a filter &-* [x] in (X*,σq*) such that A G &. It follows that
& > cln

aq.(j(%) n [^D for some n G N and f G β. Since (X*, β*) is Γ2,
[SΊ = [JC], so &>dn

σq.j(Φn jfc), where f Π i 6 β . Since (JT, 6) is lo-
cally compact and Γ3, cl^(f Π x) has a base of compact sets. Using the
fact that (**, er*) is also Γ3, it follows that cln

σq* j(<»n x) =j'(clq(^Π JC)),
so β>7(cl^(f Π x)). The filter cl^(^n JC) thus has a trace 3 o n y " 1 ^ )
which ήr-converges to x, and we conclude that JC G cl^ j~ι(A). D

THEOREM 1.5. A locally compact, T3 Cauchy space (X,Q) is C3 iff

Proof. It is obvious that j : (X9G>) -> (̂ SΓ*, 6*) is Cauchy-continuous
and one-to-one. If (X*9β?) is Γ2, then, by the preceding lemma,
j~\cln

σq.(β)) = cl^g for all π G ΛΓ and β G β; this is precisely what is
needed to show thaty"1: (jX9 &* \jX) -*(X9Q) is Cauchy-continuous, and
it follows that (X*9 6*) is a Γ3 completion of (X, 6). The converse follows
immediately from Proposition 1.2. D

Given a Γ2 Cauchy space (X,G>), let (?(X, β) be the set of all
Cauchy-continuous functions from (X9Q) into the set R of real numbers
with the usual (complete) Cauchy structure. A T2 Cauchy space (X, β) is
said to be Cauchy separated if the set (X9Q) separates Cauchy equivalence
classes; i.e., if 3% § G 6 and f Π § £ β implies there is / G (?(X, β) such
that/(^) and/(β) converge to distinct points in R.

LEMMA 1.6. If(X, β) ώ Cauchy-separated, then (X*, β*) w Γ2.
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Proof. If [φ]9 [§] are distinct elements of X*, then f Π § ί S , so
there is / E &{X, β) such that lim f(§) φ lim /(g) in R. By Proposition
2.1, [2], / has a continuous extension /: (X*,Q*) -+ R9 and, since R is
regular, /: (X*, β*) -> i? is also continuous. But /([f ]) = l im/(f) ^
lim f(S) = /([§]), and the conclusion is established. D

An immediate consequence of Lemma 1.6 and Theorem 1.5 is the
following.

THEOREM 1.7. A regular, Cauchy separated, locally compact Cauchy
space is C3.

THEOREM 1.8. A totally bounded T3 Cauchy space (X,6) is C3 iff
(X,β) is Cauchy separated.

Proof. If (X, β) is C3, then (X*, β*) is a T3 compactification of X,
which means that (X*,&*) has the same ultrafilter convergence as a
Tychonoff topological space. Since each continuous real-valued function
on (Jf*, βr*), when restricted to the image of (X9 β), is Cauchy-continu-
ous, it follows that (X, β) is Cauchy-separated. The converse follows from
Theorem 2.2 [5]. D

Can the assumptions made in the above theorems be weakened? We
have an example (omitted for the sake of brevity) of a T3 Cauchy space
(X9 β) such that (X*, Q*) is T2 but is not a completion of (X, β); thus the
assumption of local compactness in Theorem 1.5 cannot be entirely
dispensed with. We also have an example of a locally compact, T3 Cauchy
space which is not C3, so "Cauchy separated" cannot be replaced by "Γ 2 "
in Theorem 1.7. On the other hand, a locally compact C3 Cauchy space
need not be Cauchy-separated. For it should be noted that any T3

convergence space is a (complete) C3 Cauchy space. In Example 2.10, [4],
a locally compact, T3 convergence space is constructed whose topological
modification is not T2; this space, when regarded as a complete Cauchy
space, is clearly not Cauchy separated.

2. SC3 Cauchy spaces. A completion ((7, ^ ) , h) of a Cauchy space
(X, β) is defined to be strict if, whenever & G 6D, there is 5" G β such that
β>cl^Λ(S r ) . This terminology was introduced in [5], where it was
shown that every T2 Cauchy space has a coarsest strict (not necessarily
regular or T2) completion in standard form.
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Topological completions are necessarily strict; also, if (X, β ) is a T2

Cauchy space such that X* —j(X) is finite, then any completion of

(X, β ) is strict. On the other hand, T3 completions need not be strict.

When they exist, however, strict T3 completions are unique up to equiva-

lence (see [5]). One of the main results of this section is an example of a

locally compact Cauchy space which has a T3 completion but no strict T3

completion. Thus the Cauchy spaces having strict T3 completions form a

proper subclass of the C3 Cauchy spaces; a member of the former class

will be called an SC3 Cauchy space.

To facilitate our study of SC3 Cauchy spaces, we shall make use of the

" Σ operator" defined in [5] for a T2 Cauchy space (X>&) as follows. If

A c X, let ΣA = {[%] EX*:AE§ for some S e [φ]}. If ¥ E F(X), let

Σ^be the filter on X* generated by {ΣF: F E f } . Let 6* be the Cauchy
structure on X* generated by {Σψ\ § E β}, and let qf be the induced
convergence structure. (In [5] qf was denoted by p and β* by &p.) From
the construction, it is clear that Q* < βf < β*.

PROPOSITION 2.1. Let (X, 6 ) be a T3 Cauchy space. Then (X,β) is SC3

Proof. Corollary 1.6, [5], asserts that (ΛΓ*, Gf) is the only possible

strict T3 completion of (AT, β) in standard form. If (X, G) is SC3, then

g* =r e*. Conversely, if βf = βr*, then ((X*, β*), y) is a strict completion

of (X, β) by the results of [5]; it then follows from Proposition 1.2 that

((X*, β*), j) is a strict T3 completion of (X, β). D

Theorem 1.5 shows that every locally compact T3 Cauchy space for

which (X*9 &*) is T2 is a C3 Cauchy space. The next example shows that

such spaces need not be SC3.

EXAMPLE 2.2. Let X be an infinite set partitioned into infinite subsets

{ Xn: n — 0,1,2,...}. Let ̂ b e a free filter on X which contains Xo and has

a nested filter base {Fn: n EN} such that Fn — Fn+ι is an infinite set for

n > 1. Furthermore, let each set Fn — Fn+X be partitioned into infinite

subsets {Hnk:kEN}, and let %n k be a free filter on X which contains

Hnkίoxdλ\n,k EN.
Next, for each n E N, let §n be a free filter on X which contains Xn

and which has a nested base {Gn k: k > 1} such that GΛ)ife C JίΛ and

Gn k — Gn k_λ is an infinite set for all n > 1. Furthermore, for all «,

k E N, let £w ̂  be a free filter on Xwhich contains Gn^k — Gntk+V
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Let 6 = {x, 9, §„, %nΛ: x E X, %nΛ > %Λfk Π tn^ nGN,k<EN}.
Then qe is discrete, and it follows easily that (X, β) is locally compact and
T3. One can also show that (X*, β*) is Γ2, so by Theorem 1.5 (X, β) is a
C3 Cauchy space. To show that (X9Q) has no strict T3 completion it is
sufficient, by Proposition 2.1, to show that βf Φ βr*. This can be accom-
plished by showing that clq*j(Φ) Φ clσq*j((S:). Indeed, each member of
the latter filter contains elements of the form [βj, and this is not true of
the former. D

In order to characterize SC3 Cauchy spaces, we shall extend the Σ
operator. Given a T2 Cauchy space (X, β) and A c X, define Σ2A = {[9]
E X*: there is § E [9] such that (ΣG) Π (Σ^ί) Φ 0 for all G E §}. If
9 E F(X), define 2 2 ^ t o be the filter on X* generated by {Σ2F: F E f ) .

PROPOSITION 2.3. Let (X, β)beaT2 Cauchy space. Then (X,G) is SC3

iff both of the following conditions are satisfied: (1) If *$, §E(2 and
V (ΣQ) ^ 0, /Ae/i [^] = [g]; (2) / / Ϊ G β , /Λere M S E βsuch that

Proof. Assume the two conditions. The first guarantees that the space
(X*, βf) is Γ2. Since Σ is the closure operator for the convergence
structure qf9 the second condition guarantees that (X*, βf) is regular.
Thus βf = G*, and (X, β) is SC3 by Proposition 2.1. Conversely, the two
conditions follow directly from the assumption that βf is T3. D

Although we have seen that locally compact C3 Cauchy spaces are not
necessarily SC3 spaces, one can obtain the following partial result.

PROPOSITION 2.4. If(X9&) is a locally compact C3 Cauchy space, and
&-^ [x] in (X*, 6*), where x E X, then there is f e β such that &>

Proof. This result is implicit in the proof of Lemma 1.4. D

The preceding proposition asserts that for locally compact C3 spaces,
"strictness" can fail only at "new" points which are added in the
completion process.

We conclude this section by mentioning a class of locally compact T3

Cauchy spaces which are a subclass of the SC3 Cauchy spaces. A Cauchy
space (X9Q) is called a sequential Cauchy space if every Cauchy filter
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contains a Cauchy filter which is generated by a sequence. A T2 sequential

Cauchy space is locally compact and T3\ furthermore, it is easy to verify

that Wyler's completion preserves both of these properties. Thus if (X, β )

is a T2 sequential Cauchy space, then (X*9 β*) = (X*, β*) = (X*9 β*);

the next proposition is an immediate consequence.

PROPOSITION 2.5. A T2 sequential Cauchy space is SC3.

3. Coarse C3 Cauchy spaces. Let (X, q) be a T3 convergence space,

and let [ςr] denote the set of all Cauchy structures on X compatible with q.

It is shown in [7] that [q] always contains a finest T3 member, denoted by

βq

9 and a coarsest T3 member, denoted by 6ύq. Qq is complete, and is

therefore the finest C3 member of [q]. On the other hand, 6ύq is not C3 in

general; necessary and sufficient conditions for the existence of a coarsest

C3 member of[q] are obtained below. We also characterize those T3 spaces

(X, q) such that each T3 member of [q] is C3.

Starting with a T3 convergence space (X, q) let Qq be the set of all

^-convergent filters on X. Let Δ^ = {^ E F(X): § V (c\n

q φ) = 0 for all

§<Ξ6q and n(ΞN}. Let tyq = &q U Δ,, and let 91L̂  = ΓΊΔ^. A Γ3

convergence space (X, q) is defined to be r-bounded if, for each f G 6 9 ,

SΓV9IL^= 0 .

LEMMA 3.1. If (X, 6D )̂ Λαs α Γ3 completion, then (X,q) is r-bounded.

Proof. Let (X, q) be a Γ3 space which is not r-bounded. First note that

Δ^ consists of a single Cauchy equivalence class of non-convergent filters;

thus any completion of (X, φ ) is necessarily a one-point completion. If

((X*9 p)9 j) is such a completion in standard form, let a = [φ]9 where

^ E Δ ^ then ΛΓ* = {[*]: x <Ξ X] U {α}, and if % E Δ^ thenj(g) -> a in

(X*, ^ ) . Since (Jf, q) is not r-bounded, there is <$ ^> x in (X, q) such that

3F V <9tq Φ 0 this implies that each F E ^belongs to some ultrafilter §F

in Δq. Consequently, ά>c\pj{§). Since j(φ) -> [ i ] in (X*9 p)9 the

assumption that (A*, />) is Γ3 is contradicted. D

THEOREM 3.2. Γλe following statements about a T3 convergence space

(X9 q) are equivalent.

(a) (X, q) is r-bounded.

(b) (X, fyq) has T3 completion.

(c) [q] contains a coarsest C3 member.

(d) [q] contains a coarsest SC3 member.
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Proof, (b) =» (a). This is Lemma 3.1.

(b) => (c) and (d). This follows from the fact that 6ΐ)q is the coarsest T3

member of [q] (Proposition 2.1, [7]), and any completion of (X, ^ ) is
necessarily strict.

(a) =» (b). Let Y = X U {a} and let /: X -» Y be the identity injection.
Let p be the finest convergence structure on Y such that (X,q) is a
subspace of (7, /?) and /(g) -> a for all g G Δ .̂ If g G Δq9 then cl^ /(§) =
i(c\q g) Π ά -» a in (7,/?). Also, the assumption of r-boundedness
guarantees that clpi(Φ) = i ( c l ^ ) for all f G 6 9 . Considering as a
complete Cauchy structure on F, it follows that ((Γ,/?),/) is a Γ3

completion of (X, 6i>q).

(c) =* (b). If Δ^ = 0, then 6ύq = β'7 is the coarsest C3 member of [<?].
If Δq φ 0 , let ^ G Δ^. Define β f = βq U (g G ̂ (X): there is n G TV
such that § > c\n

q <&}. Then β<$ G [9] and Q^ is easily seen to be a Γ3

Cauchy structure. Next we construct a T3 one-point completion of (X, G$).
Let 7 = I U { f l ) , and let/? be the finest convergence structure on Y such
that (X, q) is a subspace of (Y, p) and i(g) -> a for all β >: cl^ ^for some
n G N. It is easy to verify that ((Y, /?),/) is a Γ3 completion of (X, Ggr).
Since ^ is the infimum in [ήf] of {β^: f G A J , it follows that ^ is the
coarsest C3 member of [q]9 and (b) is established.

(d) => (b). The preceding proof is applicable here, since the T3 comple-
tion constructed for each (X,Gg) is strict. D

A Tychonoff topological space has a coarsest compatible uniformity
iff the space is locally compact. Thus one would expect r-boundedness to
be closely related to local compactness. This relationship is described in
the next two propositions.

PROPOSITION 3.3. A locally compact T2 convergence space (X,q) is
r-bounded.

Proof. Let ^-> x in (X, q), and let A be a compact set in W. It follows
easily that each § G Δ ? contains a set Gg which is disjoint from A. If
M= U{G6: § (Ξ Δ^}, then M Π A = 0, and therefore ^ V G3Lq = 0,
which establishes that (JT, <?) is r-bounded.
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As in [5] and [7], we define a convergence space to be almost
topological if it has the same ultrafilter convergence as a topological space.

PROPOSITION 3.4. // (X,q) is a Γ3, almost topological space, then
(X, q) is locally compact iff (X, q) is r-bounded.

Proof. If (X, q) is not locally compact, then there is ®s -> x such that
each F E ^is a member of a non-convergent ultrafilter §F. If clg(§F) V %
=£ 0 for some filter % -»y9 then y is an adherent point of cl^(δF); since
(X, q) is assumed to be almost topological, §F -+ y, contrary to assump-
tion. Thus §F E Δ^ for all F e f , and so f V GJtq Φ 0 . It follows that
(X, q) is not r-bounded. D

We next define a Γ3 convergence space (X, q) to be s-bounded if, for
all g E Δq, § V (Πffig) = 0, where 0 g = ( ί e A ^ : for all n > 1, (cl^f)
V ( d j β ) = 0} .

PROPOSITION 3.5. // # Γ3 ^p^cβ (X, q) contains a closed, infinite,
discrete subset A, then (X, q) is not s-bounded.

Proof. Any ultrafilter § on X which contains A is a closed member of
Δ . 6Eg contains all free ultrafliters on X which contain A and are distinct
from Q. Thus § V ( Π f t ^ 0, so (X, q) is not s-bounded. •

THEOREM 3.6. For a T3 convergence space (X,q), the following are
equivalent.

(a) (X, q) is both r-bounded and s-bounded.
(b) Each T3 member of[q] is C3.
(c) Each T3 member of[q] is SC3.

Proof, (b) => (a). (X, q) is r-bounded by Lemma 3.1. Let % E Δ^ and
define ®β to be the set of all filters on X which are finer than some finite
intersection of members of &g. Let % - Qq U β«o U %, where 6g = (^ E
F(X): there is n G TV such that ^ > cl^g). It can be shown by direct
arguments that % is a Γ3 member of [q]. If f E # g , then [ f ] = &g. Since
[β] 7̂  [^], it must be true that § V ( Π ^ ) = 0 otherwise [<f] > ΣS, so
[ # Ί ^ [ β ] in (X*, β*), contrary to Proposition 1.2. Thus (X,q) is
s-bounded.

(c) =» (b). Obvious.
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(a) =>(c). Assume (X, q) is both r-bounded and ^-bounded, and let
β G [q] be T3. By Proposition 2.1 it is sufficient to show that (X*, qf) is
Γ3; recall that % -* [ f ] in 9* iff there is § G [^] such that % > Σ§.

If Σ<$-+ [x] in (JSf , $•), then &^>x ]n(X,q) and also c l ^ - * x.
Using r-boundedness, one can show that cl^ (Σ Φ) = 2(cl^ SΓ), and the
latter tff-converges to [x]. If S G β - β*, then β G Δ^ and the two types
of boundedness can be used to show that cl^ Σ§ = Σ(cl^g) Π [§]; again,
the latter filter ^f-converges to [&]. Thus (X*9qf) is regular. The T3

property is established by showing, in addition, that cl^ {[3C]} = {[%]}
for all % G β; this again follows direct from r-boundedness and ̂ -bound-
edness. •

To simplfy the terminology, we shall say that a T3 convergence space
satisfying any of the three equivalent conditions of Theorem 3.6 is
rs-bounded. The next corollary is an immediate consequence of the preced-
ing theorem, Propositions 3.4 and 3.5, and the fact that a T3 topological
space which is not countably compact contains an infinite, closed, discrete
subset.

COROLLARY 3.7. An rs-bounded T3 topological space is both locally
compact and countably compact.

COROLLARY 3.8. A metrizable space is rs-bounded iff it is compact.

Proof. If (X, q) is compact, then [q] — {Qq}, and 6q is obviously C3.
The converse follows from Corollary 3.7. D
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