
PACIFIC JOURNAL OF MATHEMATICS

Vol. I l l , No. 2, 1984

HYPERGROUP JOINS AND THEIR DUAL OBJECTS

RICHARD C. VREM

A hypergroup join is a hypergroup formed by the union of a discrete
hypergroup with a compact hypergroup. The compact hypergroup is a
subhypergroup of the join, but the convolution on the discrete hyper-
group is changed in the join. A characterization of compact joins in terms
of their dual objects is given which leads to a simpler criteria for their
existence. In particular, it is shown that if a compact abelian join has a
dual which is a hypergroup, then the dual is also a join. Examples of joins
are provided from the study of conjugacy classes of certain semi-direct
products of compact groups and a method is described for constructing
non-dualizable compact abelian hypergroups.

Introduction. The study of harmonic analysis on topological hyper-
groups was initiated through the fundamental papers of Dunkl [1], Jewett
[4] and Spector [6]. Most of the subsequent work on hypergroups has dealt
with the problem of extending known results for topological groups to
hypergroups. There has been considerable success in this endeavor. This
paper, however, will be concerned with a construction within the category
of hypergroups which is not possible within the category of groups. We
study the join of two hypergroups, which was introduced by Jewett [4,
10.5].

In §1 we define the join of two hypergroups and present some
elementary results concerning them. In particular, we show that the join of
a compact hypergroup with a discrete hypergroup always possesses a Haar
measure. We restrict our attention to compact joins in §2 and characterize
them in terms of their dual objects. As a corollary, a much simpler
characterization of compact joins is found. Our attention is further
restricted in §3 to compact abelian joins, where we show that the dual
object of the join can be viewed as the union of the dual objects of the
hypergroups making up the join. In fact, if the dual of the join is also a
hypergroup, then it too is a join. We conclude the paper with a number of
examples in §4. We show how joins can arise naturally from studying the
conjugacy class hypergroups of certain semi-direct products of compact
groups. Various previously discussed pathologies of hypergroups are shown
to occur in this class of examples. Also, a method is given for constructing
examples of "non-dualizable" hypergroups. We conclude with a discus-
sion of the family of countably compact hypergroups introduced by
Dunkl and Ramirez [2].
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The notation used will be that of Jewett [4] with these few exceptions:
δx denotes the point mass at x and x -> x v is the involution on K. If K is
compact we denote the collection of finite-dimensional continuous irre-
ducible representations of K (actually M{K)) by KA . If U G KA then
d(U) denotes the dimension of the Hubert space on which U acts. Also,
we will denote the identity and zero operators corresponding to U by Iυ

and 0^, respectively. The explanation of other notations can be found in
[4] or [7].

1. Joins. In this section we will place no further restrictions on the
hypergroups studied except those found in the definition of the join.
Following Jewett [4, 10.5] we proceed to define the join of two hyper-
groups. Suppose H is a compact hypergroup and / is a discrete hyper-
group with H ΠJ = {e}9 where e is the identity of both hypergroups. Let
K = H U / have the unique topology for which H and / are closed
subspaces of K. Let σ be the normalized Haar measure on H and define
the operation on K as follows:

(i) I f s, t G H t h e n δs- δt = δs* δr

(ii) If a, b G / and a ¥= b v then δa δ^ = δa * δh.

(iii) If s G H and a G / {a ψ e) then δs- δa = δa δs = δa.

(iv) If a G / and a φ e and δa^ * δa — Σh^jChδh, then δαv δa — ceσ

We call K the join of H and / and write K- HV J.
It should be noted that if K = H V / then / V H cannot even be

formed unless both hypergroups are finite. In fact, even if both / and H
are finite, H V / φ J V H unless either HorJis trivial.

Joins can arise quite naturally from studying groups. For example, the
hypergroup of conjugacy classes of A4 has the structure of a join (see [4,
9.10] for details). More examples are provided in §4.

For the remainder of the paper we will adopt the following notation.
If K — H V / then we will use * to denote the convolution on K (and
hence on //), to denote the convolution on /, and /* to denote / — {e}.

PROPOSITION 1.1. Suppose K—H\/J, where H has normalized Haar
measure σ, and J has discrete left Haar measure τ. We define τ* on K via
τ*(JC) = 0ifx<ΞH and τ*(x) = r(x) if x G /*. Then m = σ + T* is a left
Haar measure on K.
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Proof. Clearly m is supported on K so we need only check that m is
left-invariant. Let/ E C^(k), x E K and consider

(1) [fxdm = [f(x*t)dσ(t)+ 2 f(x*s)τ*(s).

If x E H then the fact that 8X * δ5 = δ, for all s E H shows that (1) is
equivalent to jκfxdm — jκfdm as desired. If x E /* then (1) can be
written

(2) [fxdm=f(x)+ Σ f(x*s)τ*(s)= Σ f(x * s)τ(s)

= Σ f(x-s)T(s)+f{x*xv)T(x^)
s(ΞJ-{xv]

= 2 fix • s)r(s) - f(x • x v ) τ ( x v ) + f(x * x v ) τ ( x v ) .

However,

so (2) can be written

ίfxdm =lfix- s)r(s) + τ(x v Γ'[/ f(t) dσ(t) -/(e)lτ(x v)
Jκ s(=j l Ή 1

= Σ fis)τ(s)+j fit)dσit)=j fdm.

P R O P O S I T I O N 1.2. If K= H V J and λ is a Haar measure on H then

λ * δ v = δ v * λ = λ for ally <ΞH and λ*δx = δx*λ = δx for all x E J*.

Proof. Clearly, if y <= H then λ*δy = δy*λ = λ. Now, if y G J* and

fSCJK) then

[fdδv*λ=[ ff(t)dδy*δb(t)dλ(b)
Jκ

 JHJK

= ί f fit)dδyit)dλib)=fiy).f
JHJK

A similar argument holds for λ * 8y.
It is easily shown that / is never a subhypergroup of K unless either H

or / is trivial. The next proposition shows that we can view / as a quotient
of K.
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PROPOSITION 1.3. // K = H V / then K//H is hypergroup isomorphic

to J.

Proof. We have K//H = {H * {x} * H: x E K). But δx * δv = δx for

all x E J* and j E if, so we may write K//H = {#} U {{x}:" x E /*}.

If we adopt the notation that x = H * {x} * H, then K//H = {x: x E /} .

Thus, we clearly have a bijection β: x -» x between K//H and /. It

follows easily from Proposition 1.1 and [4, 7.IB] that K//H is discrete.

Therefore, it suffices to show that β respects the hypergroup convolution.

Suppose we have x, y E J with x T^ y v . Then it follows that

x ' δy = Oχ * δy = 2 ^A

and, hence,

O Γ * ( δ * δ ) * (J — : / 1 C ( T * δ * ( J : = = / , C δ - - / i C δ/5/ Λ .
V Λ >" / AJ J S ΛU S S *md S β(s)

Furthermore,

so

σ * (δx * δχv) * σ — ceσ
s(ΞJ*

2. Compact joins. All hypergroups under consideration in this sec-

tion will be compact, so if K = H V / then / is finite. We begin with two

lemmas which will be used in the characterization of the dual object of K.

LEMMA 2.1. Let K be an arbitrary compact hypergroup with /* a finite

subset of K with the following properties:

(i) K — J* — Ha subhypergroup of K.

(ii) supp(δx * 8y) C /* for all x, y E J* with x Φ y v .

(iii) δz * δ zv ( / / = kzσ for z E J*, where kz > 0 0«d σ is normalized

Haar measure on H.

Then J — /* U {e} can be made into a discrete hypergroup as follows:

(a) Involution z -> zv as on K.

(b) Define <?/? / via
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where

Proof We have / is finite and \\δx * δy\\M{J) = 1, so by [4, 2.4B] it
follows that has a unique extension to a positive continuous bilinear
mapping from M(J) X M(J) to M(J). It is immediate from the defini-
tion of and condition (ii) that δx * δy is a probability measure with
compact support on / for each x, y E /. We need only check that
e E suppίδ^. δy) if and only if x — y v . Clearly, if e E suppίδ^ * δy) then
x — y v because δx δ = δ̂ . * δ whenever x =£ y v . Also,

which implies e E supp(δz * δ z Λ). Thus (/, •) is a discrete hypergroup.

LEMMA 2.2. If K — H \/ J is a compact hypergroup with normalized
measure m and H has normalized Haar measure σ with neither H nor J
trivial, then there exists a proper subset PofKA with {1} C P such that

forallU<ΞKA-P.

Proof If U E KA then σ(U) = (σ * σ) Λ ( ί/) = [σ(U)]2 and σ(ί/)*
= (σ v ) Λ (U) = σ(ί/), so σ is a projection operator on Hυ. Thus, there is
an orthonormal basis {£, frf(i/)} for Hυ and an integer /^ E
{0, l,...,J(t/)} such that

Using Proposition 1.2 it is immediate that UxUσ = C/σC4 for all x E AT, so
by Schur's Lemma (see, for example, [5, 6.3]), Uσ = £7^ for some constant
k. This forces either /^ = 0 or lu = rf(l/). If /^ = 0 for all U E ̂  Λ - {1}
then σΛ = m Λ , and if lυ = d(U) for all U E K Λ then σΛ = δ^ , in both
cases a contradiction by the uniqueness of the Fourier-Stieltjes transform
[7, 3.2].

The following theorem characterizes compact joins in terms of their
duals.
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THEOREM 2.3. Suppose K is a compact hypergroup with nontriυial

subsets H and J with the properties that H U J — K and H Γ\ J — {e}.

Then K=HVJ if and only if there exists {1} CPCKA such that

U\H = Iu f°r all U<ΞP and Uw* = 0v for all U<ΞKΛ-P (where /* =

J ~ {*})•

Proof. Suppose P exists as described. We first note that if U E KA

then I(U) = {x E K: Ux = Iυ) is a (closed) subhypergroup of K. This
follows easily from the fact that 8X * δ̂  is a probability measure and the
observation that

fy

for all x j G I(U). Furthermore, we claim

(1) H= Πl(U).
U<ΞP

Clearly, we have H C ΠU(ΞPI(U). If H φ Γ)UξΞPI(U) then there exists
x E /* with Ux = lυ for all U E P. Therefore, we can write

= υ i f t / E P ,
x 0 iΐU<ΞKΛ -P.

Thus ί4 χ . δ χ = UXUX = 14 for all ί / G ί Λ and, hence, (δx * δx)
Λ = δ x

Λ .
The uniqueness of the Fourier-Stieltjes transform [7, 3.2] shows that
δx * 8X — δx. Similarly, δχv = 8X. But this is a contradiction since

e E supp(δx * δ^v) = supp(δx * δx) = {x} C K - H.

This establishes (1).
The fact that each I(U) is a subhypergroup of K, together with (1),

gives that H is a subhypergroup of K. Now, if x Eί H, y G J* then, for
e a c h £ / E # Λ ,

for if U E P then ί/x = 7^, and if U E ΛΓΛ - P then Uy = 0^. Again, the
uniqueness of the transform shows that δx^ 8y — 8y* δx — 8y for all
xG/ίjG/*.

Now suppose y9 zE J and consider ί E s u p p ^ * δ z ) . Thus, for

/Gίfwe have z E supp^v * 8t) = suppίδ^v) and hence z = j ; v . There-
fore, if y ¥= zv then supp(δv * 8Z) C /*. If z E J then z v G i , since # is a
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hypergroup and e G supp(δz * SZΛ). If t G H then (using the notation of
[4, 3.2])

Thus H c supp(δz * δzv) for all z G / . I n fact,

δ,*(δ z *δ z v) = δ z *δ z v,

so δz * δ2Λ(// = kσ, where σ is normalized Haar measure on H.
We have P C K Λ , so choose UEKA -P. Clearly,

/ * C {JC G ΛΓ: £4 - 0υ}

and, hence, H = K — J* has nonempty interior, which implies H is open
by [4, 10.2A]. For each x G /* we have {x} * H — {x} is open, which
implies /* is discrete. Thus both /* and / are finite.

Finally, we define on / as in Lemma 2.1 and use Lemma 2.1 to
conclude (/, •) is a discrete hypergroup and K — H V J.

Conversely, suppose K = HV J with σ normalized Haar measure on
H. Then by Lemma 2.2 there exists {1} C P C K Λ such that

If JC G H then clearly 8X * σ = σ, in which case 8xσ — σ. Therefore,
— lυ— Uxv for all x G H. Proposition 1.2 shows that δ̂  * σ = δ̂  for all

y G /* and, hence, £,(£/) = 0^ = Uyv for all U<ΞKA-P. This com-
pletes the proof.

The preceding theorem allows us to provide an easier characterization
of compact joins.

COROLLARY 2.4. Suppose K is a compact hypergroup with nontriυial
subsets H and J with the property that H U / = K and H Π / = {e}.
Furthermore, we assume each U G KΛ has the property that either Ua — Iu

for alia G Hor(Iυ— Ua) is inυertible for some a G H. Then K = H V / if
and only if 8a * 8S = 8Jor all a G H and s G /*.

Proof. Necessity is obvious. We assume 8a * 8S = δ5 for all a G i/ and
5 G/*. L e t P = { ί / E ί Λ : Ua = Iυΐoτ all a <Ξ H}.lΐ U G KA-P, then
by our assumption there exists a G if such that (/^ — Lζ,) is invertible. If
s G /* then ί/5 = ί/̂ t/, or (Iυ - Ua) = 0^, which implies t/5 = 0^. This
completes the proof.
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It should be remarked here that the additional hypothesis added to

the statement of the corollary trivially holds for any compact abelian

hypergroup.

3. Compact abelian joins. In this section the hypergroups under

discussion will be compact and abelian. We begin with a lemma.

LEMMA 3.1. Suppose K — H V / is a compact abelian hypergroup. Then

each character χ E H Λ extends to a character χ* E K Λ via

x ( / ) i f t e H '
0 iftEJ*.

Also, for each character ψ E (J, •)Λ there corresponds a character ψ* £ K Λ

given by

Proof. Suppose χ G / ί Λ and define χ* on K as in (1). Now χ* is

clearly continuous and hermitian. We need to show χ* is multiplicative. It

is obviously multiplicative on H. If s E H and t EL J then χ*(5 * t) ~

χ * ( 0 = 0 = χ*(0x*( j ) F o r s, t E /*, s φ t v , we have supp(δ5 * δ,) C

/*, so again χ* is multiplicative. If t E /* with δt δtv= Σ 2 e J c z δ z then

X*{t*tv)= [ t f

by the orthogonality conditions on H (see [7, 2.6]). Thus χ* E ATΛ .

Next, we assume ψ E (/, •) v and define ψ* as in (2). It is evident that

ψ* is continuous and hermitian so we again need to check that it is

multiplicative. We verify only the case ψ*(/ * ty) where t E /*. Suppose

δt * δ,v = ΣzξΞJczδz and consider

*(s) dσ{s)+
H

z<Ξj

We conclude that ψ * £ ί



HYPERGROUP JOINS AND THEIR DUAL OBJECTS 491

We now introduce the following notation:

(H)* = {χ*: x £ H), (J)* = (ψ*: ψ e (/, ) Λ }•

THEOREM 3.2. // K = if V / ^ α compact abelian hypergroup then
K=(H)* U (/)*.

/. Lemma 3.1 shows that ( # ) * U (/)* C K. Suppose ψ is a
character on ^ . In the notation of Theorem 2.3 we have either ψ E P o r
ψ E /£ — P. If ψ is in P then ψ(// Ξ 1. Thus we need to show ψ^ = ψ is a
character on (/, •). It is clearly multiplicative for s91 G J* with s ¥= tv . If
t G /* with 8t - δ Λ = lzGJczδz, then

ψ(/ r v )= J c i ( z ) = c>W+ 2 cMz)
z<EJ z<EJ*

i) = φ (z)ψ (i).

If ψ G i^ = P then ψμ* = 0. This time we set ψ)7/ = ψ. It is straightfor-
ward that ψ is hermitian and multiplicative. Furthermore, if 5* is open in C
then (ψy\S) = φ~\S) Π 77, which is open in H, so (ψ)* = ψ.

The next theorem shows that Λ̂  can be written as a join if both H and
/ are hypergroups.

THEOREM 3.3. Suppose K = H V J is a compact abelian hypergroup
with H and J hypergroups. Then K «* / V H.

Proof. The isomoφhism here is the obvious one, namely ψ -» ψ*.
Clearly, J is finite (compact) and J^ is discrete. The theorem will follow
once we establish the following results:

(i) If χ,ψ G/withχψ = Σ τ e / α τ τ , thenχ*ψ* - Στ e/flττ*.
(ii) If χ, ψ E H with χ ^ ψ and χψ = Σ ? G ^ _ { 1 } crf, then

(iii) If x E /, ψ G i/ - {1}, then χ*ψ* = ψ*.
(iv)If ψ G ^ - {1} with ψψ = Σζ^ cζl then δψ% * 8r =

c{η + Σ^G/?_(1| Cςξ*, where η is normalized Harr measure on J.
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Note that η on / is given by

y] — a λ Σ (δψ * δ,(l))"'δv

where α = £
Parts (i) and (ii) are immediate from the definition of the bijection *.

To establish (iii) we consider χ E /, ψ G f f - {1}. I f j / E / * then

X*Ψ*(j) = 0 = ψ*(>0, and if y E // then χ*ψ*( j ) = lψ*(*) = ψ*(*).

Thus χ * ψ * = ψ * . In order to establish (iv) it suffices to show for each

(3)

If j G /* then ψ*ψ*(j) = 0. To show the right-hand side of (3) takes on
the same value, we first note that ζ*(y) = 0 for each f G /f — {1}. Also,

= Σ (δ,*

by an application of the orthogonality relations on J. Here we used the
fact that the map y: J -> C via j?(χ) = χ(j^) is a character on / [4, 12.4B].
Finally, iϊy E H then the right-hand side of (3) can be written

which establishes the theorem.

COROLLARY 3.4. If KV J is a compact abelian hypergroup then K is a

hypergroup if and only if H and J are hypergroups.

Proof. Sufficiency is contained in Theorem 3.3. To show necessity we
consider ψ, ζ E /. Thus ψ*f * is positive definite which implies \pξ is
positive definite. An application of [4, 12.4] shows that J is a hypergroup.
A similar argument holds for H.
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4. Examples. We begin with an example of how joins can arise
quite naturally from topological groups.

EXAMPLE 4.1. In this example we use the notation of [3, 2.6]. Suppose
G = W(s)S (semi-direct product) where Wis a compact group and S is a
finite group. Then there is a homomorphism s -> τs which carries S onto a
group of automorphisms of W and multiplication is given by

Furthermore, we may identify W with a normal subgroup of G and S with
a subgroup of G such that G/W^ S — {e,sί9...9sn}. Indeed, the ele-
ments of G/W are of the form {(w, s): w E W) = Ws.We shall further
assume that W acts transitively (under conjugation) within each of the
cosets Ws (s φ- e). That is, given (w, s), (w\ s) in Ws there exists an
x E W such that

(x,e)~](w,s)(x,e) = (w\s).

Clearly, G cannot act transitively between cosets. Under these hypothesis,
the hypergroup of conjugacy classes of G, written Gn consists of the
conjugacy classes of W, written Wn along with the cosets Wsl9...9Wsn.
We will show that Gf has the structure of a compact abelian join. Let
H = Wj = {[w]: w E W) and / = {e9 Wsl9..., Wsn). By Corollary 2.4
and the remark following it we need only show that 8[w] * δ ^ = δm for
all [w] E H and Ws E /. But

= ί
by the normality of Ŵ.

EXAMPLE 4.2. Suppose W is any compact group and form G —
(s)Z2, where Z2 — {e, x) and the action is given by τe(w) = w and

= w~ι. In this case G/W consists of two cosets W and WOc. In order
for W to act transitively on Wx we must be able to find a / E W for each
# E W such that

Applying the multiplication on G this is equivalent to the equation
{Γλat, x) = (e, x) and, hence, a — t2. Thus we need W — W{2) —
{w2: w E WK}. Therefore, if Wis a compact 2-divisible group then G7 is a
compact abelian join. Note that Gr has at least one isolated point, namely
x. For a finite example of this type we need only look at those dihedral



494 RICHARD C. VREM

groups D2n where n is odd. It should be noted here that (D2n)r is not a

join when n is even.

We next indicate how joins can be used to construct "pathological"

examples.

EXAMPLE 4.3. Suppose G — W(s)Z2 where Wis compact and 2-divisi-

ble. If m is normalized Haar measure on Gr then m G co(K), but m is not

a continuous measure (see [8] for other examples of this type). Also, a

slight modification of [8, 2.6] will show that Gr also provides an example

of a compact abelian hypergroup where the space of continuous measures

on K does not form an ideal in M(K).

One of the most disappointing features of compact abelian hyper-

groups is that their dual objects are not always hypergroups. The follow-

ing example provides a technique for constructing many such pathologies.

EXAMPLE 4.4. Let H be any compact abelian hypergroup and / any

finite abelian hypergroup whose dual, /, is not a hypergroup (see [4, 9.1C]

or [1, 4.6] for 3 element examples whose duals are not hypergroups). It

follows from Corollary 3.4 that K = H V J has the property that K is not

a hypergroup.

The last example deals with the family of countable compact hyper-

groups introduced by Dunkl and Ramirez [2].

EXAMPLE 4.5. Let Ha = {0,1,2,...,oo}, where 0 < a < {. Dunkl and

Ramirez showed in [2] that Ha can be given the structure of a countable

compact abelian hypergroup. Indeed, convolution is defined by

8n * 8m ~ 8m * 8n ~ 8m if Ή < /! ,

0 ί f/<«,
1 - 2a

ak iίt = n + k> n.

If we let H = {l,2,...,oo} and Jo — {0, oo}, then Corollary 2.4 shows

that Ha = H V / 0 . In this case, the convolution on JQ is given by

°0 * °0 ~ j _ 0°oo "+" I _ a °0

Clearly, H is a hypergroup isomorphic to Ha and, hence, can also be

written as a join. Indeed, if we let Hk — {k, oo} with
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and inductively form the discrete hypergroups Jn— /Λ_,V' Hn whose

convolution is given by

δr* δs = δs* δr = δr if r < s,

ίO i f ί < r ,

1 -a

then Ha can be viewed as the projective limit of {/„}. I.e., Ha is the

subhypergroup of the complete direct product hypergroup Tl™=0Jn (with

the product topology) consisting of sequences {xQ,xl9...} such that

Un xn = xn-χ, where Un is the projection of Hn onto Hn_v

The author would like to thank the referee for his comments regard-

ing Example 4.5.
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