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POISSON PROCESS OVER σ-FINITE
MARKOV CHAINS

GUILLERMO GRABINSKY

There is a well-known construction which associates with each
σ-finite measure space (X, S,μ) a certain stochastic process {N(F):
F G S, μ(F) < 00} called the Poisson process over ( I , S , μ ) . Any
μ-preserving bimeasurable map τ on X "lifts" to a probability preserving
map Γ, characterized by N(F) o T = N(τ~ιF). We show the following:
If T is the shift arising from a Markov chain preserving a σ-finite
measure with stochastic matrix (p,j)ltJ(=w Then Γis a Bernoulli shift iff
p\"j -> 0 V/, j 6 N as « -> 00. If, in addition, T has a recurrent state or
if it is transient and ( § , μ) is not completely atomic, then T has infinite
entropy. The analogous results are valid for p-step Markov chains
preserving a σ-finite measure (v > 1).

Introduction. We will examine the ergodic properties of dynamical

systems arising by the use of the Poisson process as described in the

following result (see [8]).

THEOREM 0. Let (X,o>,μ)bea σ-finite (infinite) measure space. There

exists a unique probability space (Ω, β, p) together with a countably additive

set function N defined on sets F E § with μ(F) < 00, satisfying:

(i) N(F) is a Poisson random variable with mean μ(F).

(ii) // (JF)) is a sequence of pairwise disjoint sets (modμ) then the

sequence (#(/*))) is independent.

(iii) 6B is generated by the class [N(F): F E § , μ{F) < 00}.

Throughout this paper r will denote an invertible measure-preserving

transformation, i.e. an automorphism, acting on the Lebesgue space

(X, S, μ), and it will also be assumed that there is no finite τ-invariant

measure equivalent to μ. τ gives rise to an automorphism T on (Ω, 6B, p)

satisfying N(F) OT=N(T~]F). We call ((Ω, &, p\ T) the Poisson dy-

namical system with base ((X, §, μ), T).

The following result is shown by F. A. Marchat [7].

THEOREM 1. (a) τ has no invariant sets of positive finite measure iff T is

ergodic iff T is weak mixing.

(b) T satisfies the mixing condition: μ(F Π τ~nG) -> 0 as n -> 00

whenever F, G E § have finite measure iff T is m-fold mixing \fm > \ iff T

is mixing.
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We provide a (different) proof of this theorem in §1. In §2 some

technical results are recalled ([7]) and brief proofs are provided. §§3 and 4

contain the main results of this paper. It is shown that if T acts on

(X, S, μ) as a Markov chain with transition matrix (pt; )7 G N , then the

corresponding Poisson dynamical system is isomorphic to a Bernoulli shift

iff p^j -> 0 V/, j G N as n -> oo. If in addition to the last condition, either

T has a recurrent state or it is transient and ( S 9 μ ) is not completely

atomic, then the corresponding Poisson process has infinite entropy. The

analogous results remain valid for *>-step Markov chains preserving a

σ-finite measure (v > 1).

Poisson processes over Markov chains have been considered by several

authors. S. Goldstein and V. L. Lebowitz [2] examined the case in which τ

is the (j9 j) random walk; they showed that the corresponding Poisson

transformation is a #-automorphism. F. A. Marchat [7] obtained the same

result for any Markov chain preserving a σ-finite measure. S. Kalikow [6]

showed, for the case where τ is a recurrent random walk, that the process

{N{x(n)=a}: ^ ^ Z, α G Z} forms a stationary Markov chain whose shift is

Bernoulli. This process is a factor of the Poisson process over r, so his

result is a corollary of ours; we don't know, however, whether the factor is

proper.

Kalikow's work was earlier than ours, but we learned of each others'

results later, and the arguments are different.

This work is part of the author's Ph.D. thesis [3] done under the

supervision of Professor Jacob Feldman, to whom I express my apprecia-

tion for his patience and much encouragement.

1. Ergodidty and mixing. We provide a different proof of Theorem

1, based on the computation of a dependence coefficient for certain

σ-algebras contained in &. We need some definitions and notation. Let
(3r' — { F G S : μ(F) < oo} denote the ring of sets of finite measure and let

ΣF = σ{N(H): H G § ΓΊ F), F G f.

Define

p(Σ F , ΣG) = swp{\p(M Π MO - p{M)p(M')\ :MGΣF,M'(Ξ ΣG) .

Clearly p(ΣF, ΣG) = 0 iff μ(F Π G) = 0.

LEMMA 1.1.

p(ΣH9ΣH) _
T T T T — - 1.

μ{H)
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Proof. Since 0 < N(G) < N(H) whenever G C H, then {N(G) = n)
contains or is disjoint from {N(H) = 0} according to whether n — 0 or
n φ 0, hence any set M G Σ f f which is not disjoint from {N(H) = 0}
must contain it, i.e. [N(H) = 0} is an atom of Σ^. Therefore p(M) >:
p({N(H) = 0}) orp(M) < 1 - p({N(H) = 0}) and hence

pίΣ^, Σ*) < 1 - />({#(#) = 0}) = 1 - exp

On the other hand setting M = M' = {iV(//") = 0} we obtain

Dividing by μ(H) and taking limits the result follows. D

LEMMA 1.2. Let Fx, F2 and G be such that μ(Fλ Π F2) = 0.

= p(ΣF i, Σ σ ) = p(ΣF i, ΣG_Fi).

Proof. By the definition of p, it is enough to show that

(1) p ( Σ F i , Σ C U F 2 ) < p ( Σ F i , Σ G _ F 2 ) .

Let

β = ί U Cy n 2>y: Cj G Σ F i , Dj E Σ ^ ^ , Cf n Cy = 0 , / ̂ y , / finite}.

Then β is an algebra of subsets and is such that ΣGUFi = σ(β). Let
M EL Σ F I and M ; G 6 be arbitrary. Then by independence of C, and
-Dy Π M one gets

\p(M Π MO - p{M)p(M')\ < 2 ^ ( ς ) p ( 2 F l , ΣG_F 2) < p(ΣF i, ΣO_F 2)

and (1) follows by approximation. D

COROLLARY 1.3.

p(ΣF,Στ-*c) ->0 asn-+ao iff μ(FΠτ-nG)-*0 asn->oo.

Proof. It follows from Lemma 1.2 that

p(Σ F , Στ-*c) = p(ΣFΠτ-«G, ΣFΠτ-«G).

Then apply Lemma 1.1. D
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We are now ready to establish the following

THEOREM 1.4. (1) T has no invariant sets of positive finite measure iff T

is ergodic iff T is weakly mixing.

(2) T satisfies the mixing condition iff T is m-fold mixing for all m> 1

iff T is mixing.

Proof. (1) If T has no invariant sets of positive finite measure, it

follows from the mean ergodic theorem that

1 n~ι

— 2 /*(F n τ~JF) -» 0 as n -> oo for all F E S\
n j=o

Let A, B E ΣF be arbitrary. Then by Corollary 1.3

\p{Anr-JB)-p(A)p(B)\n := 0

as n -> oo.
7 - 0

For general A, B E 6B, the same result holds by approximating by sets in

ΣF for large F G f . Hence Tis weakly mixing and, in particular, ergodic.

Conversely if F E 5" is τ-invariant and has positive measure, then N(F) is

Γ-invariant and non-constant so T is not ergodic.

(2) Assume T satisfies the mixing condition. Fix m > 1 and F G f .

Let 0 = / ! 0 < Λ , < •••</!„, be non-negative integers and put F} —

U?Ljτ-n'F9 j= l , . . . ,m. Then μ(F Π Fj) -* 0 as min{ns-ns_}: s =

l,...,m} -> oo. Let^o^^. . ^ E Σ ^ a n d ς ^ n ^ Γ ^ . ε Σ ς . By

adding and subtracting/7(y40)/?(C1) and using the triangle inequality one

gets

ί m \ m

Π T-Ά, - Π /»(A,)i=0 i=0

Π P(A,)

Repeating the same argument with T~nχAλ in the role of Ao, and C2 in the

role of C l 9 one gets

n c2) -

- π
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Continuing in this fashion it follows that

Therefore

p[ n r -

/
' (

m

m

' "\3>

M,j -
m

i = 0

as minl/?^

7=1

- « , _ , : J = 1,. . oo.

For general v40, ,4,,... ,̂ 4m E β the same result follows by approxi-
mating by sets in ΣF for large F E f . Hence T is m-fold mixing Vm> 1
and, in particular, it is mixing. Conversely, if Γis mixing then, as n -» oo,
we have

(N(G) o T\ N(F)) - (N(G), l)(l, #(/•)) = μ(F)μ(G) VF, GE$,

but one easily computes that

(iV(<5) o Γw, N(F)) = μ(F)μ(G) + μ(F Π T ^ G ) .

Therefore T satisfies the mixing condition. D

REMARK 1. There are τ's that satisfy the mixing condition but the
associated T 's are not ΛΓ-automorphisms. In [3] an ergodic T satisfying the
mixing condition was constructed so that T has entropy zero.

2. Conditional expectations. In this section a formula for condi-
tional expectations over certain σ-algebras of & is recalled. The results and
proofs are essentially those of [7] and are included here for the sake of
completeness.

For each σ-algebra § C § such that μ | § is σ-finite, let ©(§) = σ{N(F):
F G ®ίΠ §} C ($,, and let £(§) be the linear space of simple functions
/ = Σ/e/CyΛ ,̂ / finite, with finite ^-measurable support. Using linearity
and setting N(F) = N(XF), we define N(f) for / E £(§); notice that
N(f) is also a Poisson random variable with mean Jfdμ. Define

one easily verifies that EexpN(f) — exp£ψ(/) where ψ(x) = ex — 1.
On the other hand, since ψ(x + y) = ψ(x)ψ(y) + Ψ(JC) + Ψ(>0, it follows
that
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Hence φ(/) E L2(Ω, (£, /?). Notice that we have used inner products in
two different L2-spaces.

PROPOSITION 2.1. The class (Φ(/) : / E £((?)} generates
L2(Ω, ©(§), /?) /<?r et ery sub-σ-algebra § ofξ>.

Proof. Assume φ E L2(Ω, $(§), /?) is such that (φ(/), Φ) = 0 V/ E
£(§). We must show φ = 0. Given F,,.. .,Fn E f Π g define a signed
measure on (N U {0})" by placing

Let i ί e R " arbitrary. Then the Laplace transform of *v, ,...,/•, ̂ s e q u a l t o

exp 2 uiN{Fi)\φdp = exp£ψ(/)(φ(/), φ) = 0
ι = l /

with
n

— 2d UiΛFι'

Consequently φ dp is 0 on σ{N(Fx)9... ,N(Fn)} and, hence, is 0 on %(§).
Thus φ = 0. •

In order to obtain a formula for the conditional expectation
^(Φ(/)l®(@)) w e n e e d t o extend the definition of φ(/) for all / E
L2(Ji, S,μ). Let f,gEL2(S) and find sequences (/„) and (gn) in
£(S) such that/, ->/and gw -» g in mean. Then

«Ω = eχP | |ΨU)| | 2

x+

-2exp(ψ(/J,ψ(/m)).

Therefore (Φ(fn)) is fundamental in mean and hence converges in mean to
some limit in L2(Ω, β, /?), which we define as φ(/). Similar arguments
show that the identity (Φ(/), Φ(g)) = exp(ψ(/), ψ(g)) remains true.

THEOREM 2.2. Let§C§bea o-finite, sub- o-algebra. Then

where pr( © |L 2(S)) denotes orthogonal projection onto the indicated sub-
space.



POISSON PROCESS OVER σ-FINITE MARKOV CHAINS 307

Proof. For simplicity write ψ g (/) = pr(ψ(/) \L2(@)). We first show
that ψ" ι ψ g (/) E L 2(g). Since ψ(/) E £(§), there exists c > -1 such that
ψ(/) > c. Hence ψ g (/) ̂  c, also. On the other hand there exists d > 1
such that |ψ" 1(;c) | = |log(l + J C ) | < d\x\ whenever x>c>-\. Therefore

Let g E £(S) be arbitrary. We have

= exp(ψ(/), ψ(g)) = exp(ψfl(/), ψ(g))

Since (φ(g): g E £(§)} spans L2( <$>(§)) one has

REMARK. Analogous results for the case μ( X) < oc are worked out in
Neveu[9, pp. 162-168].

3. Poisson process over Markov chains. We introduce some nota-
tion that will be used throughout the sequel. Let P = (/?,,,), /, j E N, be a
stochastic matrix and let μ = (μ^P)) denote a stationary measure for P,
i.e. Σιμιp!J — μy V/' E N. By a well-known result of T. E. Harris and H.
Robbins [4], every irreducible recurrent stochastic matrix has a stationary
measure unique up to multiplication by a constant (see [1] for terminol-
ogy). The pair (P, μ) is called positive or null according to whether
(Σ£ μ^P))"1 is positive or zero, respectively. Let (P, μ) denote a null pair.
We define the (two-sided) Markov shift T = τ(Pμ) as follows: Let X — N z ,
§ = the σ-algebra generated by cylinder sets, and let μ be the unique
σ-finite measure satisfying

μ{x GX:x(n) = in9...9x(n + k) = in+k]

and T: X -> ̂ given by (τ(x))(i) = x(i - 1), / E Z. It is well known that T
is an automorphism which is ergodic iff P is irreducible and recurrent.

Let G, = {x E X: χ(0) = /}, / E N, and let ^ = {Gl9 G2,...} denote
the 0-time partition; so μt = μ(Gι) and

Λ i y = μ{x(l) =j\x(0) - /} - μfGj

Define 3C0 = σ(^P), the O-time σ-algebra, and

b b

%h

a = V τ % , fl<4eZ, and %b = V τ '
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as usual %°° = σ{%a: a EN) and #_«£, = σ{%b: a<b<ΞZ}. Finally set
γ, = ®>(%s

0) and &s = V%_mT-'ys; Notice that β o c £ , C C β s

and &s T £ as s ->• oo. {Proof:
00

= V
ί = - 0 0

00

= V
s = 0 i

00

V T-'Ί
= - 0 0

00

3 ) = V T
i = -oo

00

', = V &s
s = 0

0 0

5 = 0

We need the following lemma.

LEMMA 3.1.

p{A\T-Nys) = p{Λ\T'NyQ) a.s. VA G V T'%
i=-k

s, r, k> 0, whenever N > r.

Proof. Any atom of % is of the form //-, where a — (α(0),.
G N 5 + ! and i/- = Π;= o T"1" Gα . Hence the family

v o r

n

: a G N ί + 1 such that μ ( ^ ) > 0}

is an orthonormal basis for L2(τ~N%s

Q). Consequently, VFG&Π %r_k

one has

By the Markov property μ(F\τ-NHΞ) = μ(F\τ-NGa(0)) whenever N > r;
substituting we obtain

By linearity of the projections we obtain

Consequently, by Theorem 2.2,

E{φ(f)\T-Nys)=E{φ(f)\T-Ny0) all/G

whenever N > r. Since (Φ(/): / e t{%r_k)} is a basis for L2(^>(%r

k)), it
follows, by approximating any χA with /I G V " = . t Γ ' γ r C ®(0C^) by
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basic functions and convergence properties of conditional expectation,
that

o
p(A\T-*ys)=p(A\T-Ny0) a.s. W ε V Γ ' γ Γ

i = -k

whenever N > r. D

We now come to one of the main results.

THEOREM 3.2. Let τ be a Markov chain with stochastic matrix P and
measure μ. Then T is Bernoulli iffp\"} -* 0, V/, j E N , as n -* oo.

Proof. If T is Bernoulli, then it is mixing and, hence, τ satisfies the
mixing condition. In particular,

Pij = μ{Gi Π τ-rtG/.)μ(Gz.)"1 ^ 0 Vi, j G N as n -* oo.

Conversely, we first show that the system ((Ω, &r9 p), T) is Bernoulli,
by showing that every finite partition Q which is γr-measurable is weak
Bernoulli, i.e. we must show that given ε > 0, 3JV = N(ε) such that
VA: > 1, Q\ ±εQ%+k (see [10] for definitions).

Let k > 1. Since γ0 C V^T'ty, C %{%r

0

+k), it follows from the
last lemma, by taking conditional expectations with respect to V ^=0 T'iyr

and replacing s by r + k, that

p\A\T-NV T-'yA =p(A I Γ ^ ) whenever N > r;
\ i = 0 /

for s = r,

Consequently,
Λ \ °

i=0 / i=-k

whenever N > r. Therefore for any atoms B G TNQ and Bk E Γ'^β^
with 0 ¥" Bk C B and iV > r, one has

distl V Γ-'ρ|£ = distf V T"Q\Bk).
\i=-k I \i=-k I

Hence it is enough to verify that Q\ ±εTNQ, VA: > 1, for some TV =
N(ε)>r. Equivalently Q±εQ:»_k, VA: > 1, for some iV > r. On the
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other hand, by applying the same arguments to the reversed Markov chain
one has that VC e TNQ and Ck e TNQ\ with 0 Φ Ck C C, dist(β| C)
= άis\(Q\Ck) whenever N > r. Consequently we need only show Q

±ε2

 TNQ f o Γ s o m e N > r β y a s s u m p t i o n μ^Qi Π τ'nGj) -> 0, Vi, y G N, as

n -> oo, and since P̂ generates S under T, it follows that T satisfies the
mixing condition; therefore T is mixing and Q ±ε TNQ if N is chosen
large enough.

Hence ((Ω, 6£r, p)T) is Bernoulli, and since &r T β as r -> oo, it
follows by a theorem of Ornstein ([10] page 53), that ((Ω, &, /?), T) is
Bernoulli. D

REMARKS. An irreducible null-recurrent Markov chain or a transient
Markov chain preserving a σ-finite measure satisfies the condition/?^ -> 0
as well as Markov chains with periodic states that are recurrent and null
(see [1] page 33, Theorem 4 for a complete study of the limiting behavior

If T is a p-step Markov chain (v > 1), then after minor modifications
in the conclusions of Lemma 3.1, we obtain the following

THEOREM 3.3. Let Ί be a v-step Markov chain (v > 1) preserving a
σ-finite measure μ. Then T is Bernoulli iff p^l -* 0, Vα, b E N", as n -> oo,
where

) = a(j): 0 <y < v - 1}.

4. Entropy of the Poisson process over Markov chains. We start by
establishing a formula for the entropy of Γ, if T is a Markov chain.

PROPOSITION 4.1. Let T be a Markov chain and T its Poisson transfor-
mation. Then

hp(T)= lim - ^ -

Proof. Since 6Er t & it follows by well-known properties of entropy
that hp(T) = lim^^Λ^Γ, &r). Let β be a γ.-measurable partition with
finite entropy. We have by Lemma 3.1 that

dist(<21 TNQ) = dist(β I T~NQk

0) Vk > 1 whenever N > r

so for N = r + 1 it follows that

dis t(ρ |Γ- r - 1 β) = distlβl V r - ( r + 1 ) / β Vn > 1.
\ i= 1 /
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HenceΛ,(7"+I, Q) = Hp{Q\T-r~xQ) so

hp{T, er) = -~j sup{Hp{Q\T-r-ιQ): σ(Q) C yr, Hp(Q) < oo},

from which the result follows D

We first evaluate hp(T) for some special kinds of Markov chains
which we describe below.

DEFINITION 4.2. Let (fn) be a sequence of non-negative real numbers
such that Σ™=ιfn = 1; put

Λλ" and u(λ)= 1 unλ
n =

n=\ n = 0 l

The sequence (un)™=0 is called a recurrent renewal sequence, as is any
sequence obtained in this fashion from an (/„) satisfying the above
requirements. Observe that every probability distribution (/„) determines
a unique recurrent renewal sequence, and conversely every recurrent
renewal sequence comes from a unique probability distribution. We will
write ΰ — (un). Given ΰ and the probability distribution (fn) from which
it comes, define a doubly infinite matrix Pu — (Pij{ΰ))iJ&^ as follows:

Then P- is stochastic, irreducible and recurrent and PSΛ — un. A sta-
tionary measure m — (m^ΰ)) for Pu is given by m^ΰ) — Σ/Lf //. Conse-
quently, P- is positive or null according to whether (Σ^= 1 nfn)~λ is positive
or zero, respectively.

Denote by T- the Markov shift with stochastic matrix Pu and sta-
tionary measure m — m(ΰ) for a recurrent renewal sequence ΰ and let Γ-
be its associated Poisson transformation.

PROPOSITION 4.3. If P- is null, then hp(T-) — oo.

Proof. Define H: [ 0, oo) -> [ 0, oo) by
oo n n

A2=0 Ά ' Ά '

where, as usual, OlogO is defined to be 0. H{x) is just the entropy of the
Poisson distribution with parameter x. It is easy to show that H is
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continuous, H(x + y) < H(x) + H{y), H{x) -> oo as x -> oo and

H(x)/x -> oo as x -> 0.

Let (/„) be the probability distribution associated with ΰ. By assump-

tion, Σ ? = 1 Λ / Λ = (X). Consequently Σ™=λ2nf2n = oo or Σ*=1(2/i + l ) / 2 l I + 1

= oo. We will consider just the first case, the other being entirely similar.

By the last proposition

Hp(Ts) > sap{Hp{Q\Ts'
λQ): σ(Q) C γ0, # , ( β ) < oo}.

Let πG = {{N(G) = n}}^0 VG G ff. Then Hp{τrG) = #(μ(G)); put β, -

7rC2 V V<7rG2/, where Gy = {x: x(0) = /}. Then because of the form of P-

we have G2/ Π T^ !G2>/ = 0,i^j'9 therefore, by independence,

ι = l ι=l \ i = l

Letting / -• oo, we get Λ^ίΓ-) = oo. D

DEFINITION 4.4. Let T be an automorphism of a σ-finite measure

space (X, S, μ) and let E £<$. We say that £ is a recurrent set iff for every

sequence

where μE(F) = μ(E Π F)/μ(E). It is clear that every set of the O-time

partition of a Markov shift is recurrent.

Assume E is a recurrent set of some conservative automorphism T.

Since E C U * = 1 τ~nE (mod μ), we can define the induced transformation

τE a.e. on E by setting rE(x) = τΓ f ( x )(;c) for x G U * = , £ Π τ~nE9 where rE

denotes the return-time function defined by

rE(x) = min{fc G N: τ^x G £ }

(See S. Kakutani [5].) Let En = ^ ( Λ ) . Then <&(£) = {£„ Jϊ 2,...} is a

partition of £ , called the return time partition of E relative to T. Since E is

recurrent, it is not hard to show that the sequence (un(E) = μE(τ~nE)) is

a recurrent renewal sequence, with associated probability distribution

(f» = ^εi^n))' Let Pjϊ(£) denote the stochastic matrix associated with the

sequence ΰ(E). Then by Kac's theorem

1 m,(E) = μ(E)-1 f />(£,) = μ(Eyι[rEdμ.
ι = l < = 1
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Consequently, P- ( E ) is positive or null according to whether or not

/ rEdμ is finite. On the other hand, μ(E*) = μ(E)'ιJ rEdμ where E* —

U ^ L Q T " ^ . Denote by (X\ S', m) the space of the shift τ- ( £ ) . Then one

can define a.e. an onto map φ: E* -> X' such that:

(ϊ)φ-]§>' C § Π £ ;
( i i ) φ o T | £ , = τΰ(E)oφ; and

(iii) μ o φ~ι — μ(E)m.

We multiply the stationary measure by μ(E) and, by abuse of notation,

we still can call this new shift τ-(E). It is clear that also hp{τu{E)) — oo if

μ(E*) — oo. On the other hand, since r is conservative, E* is actually

invariant and, hence, r can be written as the union of the transformations

restricted to £"* and X — E* and, therefore, T can be written as the direct

product of the Poisson transformations associated with the restrictions to

E* and X — E*. Collecting the above remarks we have the following:

PROPOSITION 4.5. Let r be a conservative automorphism and suppose it

admits a recurrent set E with μ(£*) = oo. Then τ\E* has a Markov shift as

a factor for which the associated Poisson transformation has infinite entropy.

The next proposition shows that "factors correspond to factors".

PROPOSITION 4.6. Let τ and τ' be endomorphisms of o-finite measure

spaces (X, S, μ) and (Jf, S', μ/), respectively. Let ((Ω, β,/?), Γ) and

((Ω', (£', /?')> T') be the Poisson processes over the given bases, respectively.

If T' is a factor of r, then T is a factor of T. In particular hp(T, &) >

hp.(T',&').

Proof. Let φ: (X, S, μ) -* (X\ §>', μf) be an onto map such that

φ~x%' C §, φ o T = τ ' o φ and μ ° φ"1 = μ'. Let &" = %(φ~x&). Then &"

is a sub-σ-algebra of &. Define a map φ: (Ω, &'\ p) -> (Ω', &\ p') by

sending {N(φ~λG) = n) onto {N(G) = n}9 VG E f Π § r , V/i > 0. Then

φ o r = r oφ on {{N(φ-\G)) = n}\ G E f Π § ' , « > 0 } and p o φ"1 =

// on {{Λ^(G) = λi): G e f Π § ' , / i > 0 } . But these classes generate &"

and (£', respectively. Consequently T is a factor of T. D

By the remarks and results of this section we obtain:

THEOREM 4.7. Let T denote a conservative automorphism that admits a

recurrent set E with μ{E*) — oo, or a Markov chain satisfying p\n^ -> 0,

V/, j E N, as n -* oo .swc/z //zαί /Y /z^ a recurrent state or is transient and

( § , μ) is not completely atomic. Then hAT) — oo.
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Proof. Let TE* denote the Poisson transformation corresponding to
T |£*. Then by the last proposition,

If T is a Markov chain satisfying the hypotheses, then by earlier results it
follows that T does not have invariant sets of positive finite measure.
Assume r has a recurrent state /0 E N. Let / denote the irreducible class
containing z0. Since / is closed (see [1]), i.e. ΣkGrpJk = 1 V/ G /, and / z is
τ-invariant, we have: μ(/ z ) = Σ7 ( Ξ /μ7 = oo and τ|7z is an ergodic Markov
shift. Clearly E — [x E / z : x(0) = z'o} is a recurrent set with μ(E*) —
μ(Iz) = oo. Therefore by the first part, hp(T) = oo.

Now assume T is transient and (S, μ) is not completely atomic, i.e. 3 a
set I 0 6 § with μ(X0) > 0, § Π I 0 is non-atomic and ̂  — Xo is a
countable union of atoms. Since Xo is τ-invariant we have μ(^ 0 ) = oo.
Since T is dissipative so is r \x acting on the σ-finite, non-atomic measure
space (ΛΓ0, § Π ΛΓ0, μ). Hence 3 F G § Π I 0 of positive finite measure
such that {τ~"F}wGN is pairwise disjoint. For each n > 1 find disjoint
subsets G\n\...,G^n) whose union is i 7 and such that μ(F) - nμ(G{

ι

n)),
i — 1,... ,w. Therefore, by independence,

hp[τ, ^

where /ί is the entropy function discussed above; since limx_0(H(x)/x)
= oo, letting n -» oo, we obtain /zp(Γ) = oo.

REMARK 1. The analogous results remain true for p-step Markov
chains (v > 1).

REMARK 2. If (X, §, μ) is completely atomic and σ-finite, and if T is a
dissipative automorphism, it might happen that hp(T) < oo or hp(T) = oo.
For, X is (modμ) the disjoint union of countably many atoms {Et) of
finite measure; since τnEi is also an atom V« E Z, we can write Z =
U w e Z τ"W (disjoint) (mod μ) with W a union of atoms [E^J^J such that
τnEj Π £_., = 0, V/i E Z, y τ^y in Λ Then Λ^Γ) = hp(T9 ττw) =

and so is finite or infinite according to whether μ{W) < oo or
= oo.
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