
PACIFIC JOURNAL OF MATHEMATICS
Vol. I l l , No. 2, 1984

ON THE STRUCTURE OF SIMPLE-SEMIABELIAN
LIE-ALGEBRAS

ROLF FARNSTEINER

Simple Lie-algebras, all whose proper subalgebras are abelian, and
their algebras of derivations are studied. In many cases the algebra of
outer derivations of such a Lie-algebra turns out to be abelian.

0. Introduction. In this paper the structure of simple Lie-algebras
having only abelian subalgebras, in the following referred to as simple-
semiabelian, will be investigated. It has been shown in [3] that this class of
simple Lie-algebras depends on the properties of the underlying base
field: there are, for instance, no simple-semiabelian Lie-algebras over
algebraically closed fields. Questions concerning the field theoretical
aspects are not studied here; we will approach the problem from a purely
Lie-algebraic point of view.

In order to apply the results of Kaplansky ([6], [7]) some introductory
remarks on base field extensions are necessary. Although according to the
nature of the topic, many structural aspects of simple-semiabelian Lie-al-
gebras vanish after base field extension, some features can be retrieved.
This applies in particular to the index one case studied in §4 which makes
it possible to illustrate the scarcity of examples of low dimension. At
present only three-dimensional representatives of this class are known (cf.
[3]) and it is an interesting open problem to construct such objects of
higher dimension.

I would like to thank Professor G. P. Hochschild of the University of
California at Berkeley and Professor H. Strade of the University of
Hamburg for the guidance and advice they gave me while this paper was
in preparation.

1. Remarks on base field extensions. In the following, let k be a
perfect field and let K be an algebraic closure of k. The Galois group of
K: k will be denoted by Ga\(K:k). Throughout this paper we will
consider a finite dimensional Lie-algebra G, together with the Lie-algebra
G' = Q®kKobtained by base field extension.

LEMMA 1.1. Let H C G be a Cartan subalgebra. Then the following
statements hold:

(1) H' : = H ®kKisa Cartan subalgebra of G'.
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(2) Let G' = Hf Θ Θ α G Λ G'a be the Cartan decomposition of G' relative

Hf. For γ in Gal(K: k) and a in R define

γ a : = γ ° « o i d c ® γ ~ ! .

(3) Gal(ϋ:: k) acts on R via

\Gdλ{K:k) XR^R

' | (γ ,α) π>γ a

The orbit of a G R under GaΛ(K: k) will be denoted by [α\.

DEFINITION. G is called ad-semisimple if ad^ is semisimple V J C G G .

According to (1.2) of [3] every ad-semisimple solvable Lie-algebra is

abelian. Every subalgebra and every homorphic image of an ad-semisim-

ple Lie-algebra is ad-semisimple.

Let if C G be a Cartan subalgebra. Then there exists an iί-module

V C G such that G = H® V (Theorem 4, p. 39 of [4]). This decomposi-

tion will be referred to as the Fitting decomposition of G relative to H. We

obviously have V®kK= Θ α e / ? G'α.

PROPOSITION 1.2. Let G be αd-semisimple. Then H C G is αbeliαn and

V is a completely reducible H-module. Moreover

G^= {x E G'\ [h,x] =a(h) - xVh E i / ' } Vα G R.

Proof. H is nilpotent, ad-semisimple and, by virtue of (1.2) of [3],

abelian. Consequently adΛ is diagonable for every h G H'. Since a(h) is

the only eigenvalue of adΛ |C/, we obtain a d j ^ = a(h) id^ . The H'-

module V ®k K is obviously completely reducible, therefore the //-module

V has the same property.

PROPOSITION 1.3. Let G be ad-semisimple and consider the Fitting

decomposition G = H θ V relative to a Cartan subalgebra //, as well as the

induced Cartan decomposition G' — Hr θ θ α e Λ G'a
(1) Let W C V be an irreducible H-submodule. Then there is a G R

such that (W®kK) Π G'a φ 0 and W®kK = ®σ&[a]{W®kK) Π G'a.

(2) Let \ττH(V) denote the set of irreducible H-submodules of V. Then

there is a mapping Q: I r r ^ F ) -> i?/Gal(^:: k)9 such that Q(W) = [a] if

w®kκ= ®σζΞ[
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(3) Suppose dim^G^ = 1 V a E R. Then Q is bijectiυe and if V —
®U\Vn where each Vt is irreducible, then lvτH{V) = {Vl9..., Vn}.

Proof, (1). By assumption, //' is abelian and every adΛ is diagonable.
Consequently, there is a common eigenvector x in W ®k K. This yields the
existence of a root a E R such that G'a meets W ®k K. Consider

U" = Σ iάG®Ί{{W®kK)C\G'a).
Γ: k)

By virtue of (1.2) Uf is an //'-module which is obviously contained in
W ®k K. Since Uf is invariant under the action of the Galois group there
exists, by general theory, a subspace U C Wsuch that U ®kK = U'. Now
U is an //-module and by virtue of the irreducibility of W we obtain
U = W. It is easy to see that U' = θ σ G [ α ] ( W ®k K) Π G'a.

(2) We need only prove Q is well-defined. This is obviously a
consequence of the uniqueness of the direct sum decomposition.

(3). Suppose dim^ G'a = 1 V a E R. By (1) we obtain

W®kK= 0 G'a VWGlrrH{V).
σ<ΞQ(W)

Let U9 Wbc irreducible submodules of Fsuch that Q(U) = β(IF). Then
U®kK— W®kK. Since £/, W are irreducible they are either equal or
have trivial intersection. By the equation above the latter case cannot
occur. To verify the suqectivity let a E R be a root and consider
Uf : = θ σ e [ α ] ( v Clearly, ί/r is an //'-module which is invariant under
the action of the Galois group (1.1). There is an //-module U C V such
that U®kK~ £/'. Let W C U be an irreducible submodule. Then there is
σ0 E [a] such that

σG[σ0] σG[α]

Consequently dim^ fF = dim^ U and we obtain U = fF. By definition of
t/ the equation β(ί/) = [α] holds.

Now consider a direct sum decomposition V — Φ " = 1 ^ . This yields
Λ = U;= 1 β(F ), therefore we have Irr^(F) = {Vl9..., FJ .

REMARK. One can show that the condition of (3) holds if V is an
irreducible //-module. According to (1.3) this also implies the Galois
group acts transitively on R. Suppose, conversely, that a transitive Galois
group action is given and all the root spaces are one-dimensional; then
I r r ^ F ) contains only one element, and by complete reducibility of Fwe
see that V has to be irreducible.
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We proceed by proving a lemma which is analogous to the classical
result concerning the Killing form and will be applied in the study of
the structure of simple-semiabelian Lie-algebras of index 1. Following
Dixmier [1] we define for every linear form/ E G* the associated alternat-
ing bilinear form

(GXG-*k
B/:[(χ,y)»f(ίχ,y])

Note that r a d ^ ) = {x E G; Bf(x, y) - 0 Vj GG} is a subalgebra
of G.

LEMMA 1.4. Let H C G be a Cartan subalgebra and suppose there is
f E G* such that H = rad(£y). Consider the extended linear form /':
G' -+ K. Then the following statements hold:

(I) H'= τad(Bf,).
(2)F':= θ β e Λ ^Cker/ ' .
(3) ϋy, | r x v, is non-singular.

(5)G^ Π G'ΐα = 0Vα Ei?.
(6) α E 7? => -α E R.

Proof. (1). We have H' = H®kK= md(Bf) ®kK= r ad(^) .
(2) Let a E i? be a root. Then there is A E //' such that α(/z) = 1 and

we consequently have k e r a d j ^ = 0. For w E G'a there is v E Ĝ  such
that w - [A, t?]. This yields/'ίwj" = /'([*, t?]) = ̂ (A, v) = 0.

(3) This follows directly from the definition of V and (1).
(4) If β φ - α then β + a Φ 0 and [G ,̂ G ]̂ C F . The result now

follows from (2).
(5) is a direct consequence of (3) and (4).
(6) According to (5) Bf,\c,XG, is non-singular. Hence there is an

isomorphism G'a — Gr* a proving that GLa Φ 0.

2. The algebra of derivations of a simple-semiabelian Lie-algebra.
We adopt the notation and the assumptions of the preceding section.

DEFINITION. G is called simple-semiabelian if G is simple and every
proper subalgebra is abelian.

Note that the maximal subalgebras of G are the Cartan subalgebras.
Moreover, for every maximal subalgebra H of G, H is equal to the
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centralizer CenG(x) for every non-zero element x of H. It has been shown

in [2] that the maximal subalgebras of G are of the form H — rad(i3y),

/ E G*. Every derivation of a simple-semiabelian Lie-algebra is semisim-

ple, by (4.1) of [3]. We use this to prove:

LEMMA 2.1. Let G be simple-semiabelian and let D E Der^(G) be a

derivation. Then every eigenvalue of D which lies in k is zero.

Proof. Let a E k be an eigenvalue of D. Then there is x0 E G\{0}

such that D(xQ) — a JC0; this implies that H := kD + k ad x is a

solvable subalgebra of Der^G). Since Derk(G) is (by (4.1) of [3] and

(1.3.22) of [1]) ad-semisimple it follows that H is abelian. This yields

0 = [/), ad, ] = α ad,,. Thus a = 0.

LEMMA 2.2. Let G be simple-semiabelian. Then the following statements

hold: (1) If H C G is a proper subalgebra and D E Der^(G) is a drivation

such that D(H) C H, then H C kerZ).

(2) Let D E Der^(G) and JC0 E ker£>\{0}, then the centralizer

Cen G (x 0 ) of x0 lies in ker/λ

Proof. (1). Consider Hλ : = a d ( # ) + kD C Der^(G). Then Hx is a

solvable subalgebra of Der^(G). Consequently, Hλ is abelian and, in

particular, H is contained in ker D.

(2). Let x0 E ker/)\{0} and let y E Cen G (x 0 ) . Then [J9(.y), *ol =

D([y, x0]) — [y, D(x0)] — 0. Consequently, we obtain the desired result

by applying (1).

THEOREM 2.3. Let G be simple-semiabelian of characteristic p > 0.

Consider a maximal subalgebra H C G, as well as ^iH' — [D E Der^(G);

D(H) — 0}. Then the following statements hold:

(\)%His a self-normalizingp-subalgebra ofΌcτk(G).

(2) If § a%H is a Cartan subalgebra of %H, then φ is an abelian

Cart an subalgebra ofΌeτk(G).

(3) If G = H ® V is the Fitting decomposition of G relative to H then

Der^(G) = %H®?iά{V).

(4) Der^(G)/ad(G) ̂  2ί^/ad(//).

(5) [Der^(G), Der^(G)] = ad(G) if and only if%H is abelian.

Proof. (1) Let D be an element of Nor D e r ^ ( G ) (9ί H ), the normalizer of

%H in Der^(G). Then we have [Z>, %H] C 31^, which, in particular, yields
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adD ( Λ ) E 91^ for every h E H. Consequently H is a Z>-stable subspace and
£> is an element of %H by virtue of (2.2). A self-normalizing subalgebra of
a restricted Lie-algebra is necessarily a/7-subalgebra.

(2) Every Cartan subalgebra of an ad-semisimple Lie-algebra is
abelian. Let D be an element of NorD e i > ( c ; )(φ). Then φ + kD is solvable
and therefore abelian. As a Cartan subalgebra of 21 #, φ obviously
contains the center 3(91//). This yields particularly ad(if) C φ and we
therefore have [ad(//)? /)] C [φ, D] — 0, which, in turn, means that D
lies in %H. We finally apply (1) in order to see that D is actually an
element of φ.

(3) Let G = H θ K be the Fitting decomposition of G relative H.
Consider in addition the Fitting decomposition of Der^(G) relative to φ
and write Derk(G) = φ θ W. According to (1.2), W is a completely
reducible φ-module, so we may write W' — (W Π 91//)® U. We claim that
U lies in ad(F). Let D be an element of U. If D(h) — 0, for an element
h E H\{0}9 then # = CenG(Λ) C kerD (2.2). This implies D E%H and
hence D = 0. Consequently, for a non-zero element h0oί H, the map

ft/-* t/
{

is injective and hence surjective. For every element D EL U there exists an
element D{ E ί/such that D = [Dl9 adΛJ = adD i ( Λ o ).

This proves the inclusion U C ad(G) and we obtain

Der^(G) = $ ® (W Π %H) ® U = %H + ad(G) = » „ θ ad(K)

since ad(^) C 21// and 31 # Π ad(F) = 0.

(4)

31^ + ad(G)/ad(G) ̂  ^H/^H Π ad(G)

(5) If 21// is abelian, so is Der^(G)/ad(G) by (4). Together with the
simplicity of ad(G) — G this yields the asserted equality. Suppose, con-
versely, that DQTk(G)/ad(G) is abelian, then 21// is solvable and hence
abelian.

REMARK. In the situation above, let v be an element of V and
x0 E H\{0). Then ker(adxjκ) = 0. Consequently there exists υλ E V
such that v = [x0, υ}]. Write D(υx) = hλ + v29 hx G H,v2& V. Then

D(v) = Ddx^v,]) =[x0, D(V])] =[xo,υ2] E V.



SIMPLE-SEMIABELIAN LIE-ALGEBRAS 293

Therefore we obtain the structure of a restricted 21 ̂ -module on V by
definingD v = D(υ).

Now let v be a non-zero element of V. The definition of 21 # gives rise
to the injectivity of the mapping

Since 1 is not an eigenvalue of any D E %H (2.1), we have v £ im Sυ.
Thus dim^ %H < dim^ V. Combining this with (3) of the preceding theo-
rem we obtain dim^ Der^(G) < 2 άimk G/H.

In some cases, notably when G possesses an invariant non-singular
bilinear form, %H can be shown to be abelian (cf. §3). At the moment, we
investigate the case of a "minimal" simple-semiabelian Lie-algebra.

PROPOSITION 2.4. Let G be simple-semiabelian of minimal dimension.
Then [Der^(G), Der^G)] = ad(G).

Proof, Let H C G be a maximal subalgebra and suppose %H is not
abelian. Let B be a minimal non-abelian subalgebra of %H and let / < B
be a maximal ideal of B. The subquotient B/J is not abelian since
otherwise B would be solvable and hence abelian. Consequently B/J is
simple. According to the choice of B and J every proper subalgebra of
B/J is abelian. This contradicts the minimality of dim^ G, since dim^ B/J
< dim^ %H < dim^ G. This shows that %H is abelian and the assertion
now follows from (2.3).

PROPOSITION 2.5. Let G be simple-semiabelian and let G = H θ V be
the Fitting decomposition relative to a maximal subalgebra H. Suppose V is
2ίH-irreducible and consider %v \— [D \v\ Z)G2ί^}, as well as
A : = alg^(adΛ|κ; h G H) and B := alg^(2ίκ), the associative k-algebras
generated by {adΛ|κ; h E H) and 21 κ, respectively. Then the following
statements hold:

(\)A C Z(B) is afield(Z(B) denotes the center)
(2) V is H-irreducible if and only if A is equal to B

Proof. (1) By the definition of 21 #, we have Z)°adΛ = adΛo£)
VZ>E2ί//, V h E H. %v is therefore contained in the centralizer
Cen5(adΛ \v) V h EH. Consequently, B C CenB(adΛ \v) V Λ E H, proving
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that ad Λ | κ lies centrally in B. This gives rise to A C Z(B). The Lie-alge-
bras %H and %v are canonically isomorphic and V is, by virtue of our
assumption, an irreducible 3t ̂ -module. Hence B is a primitive, finite-di-
mensional fc-algebra and, by general theory, therefore, simple. This in turn
implies Z(B) is a field and so is A as a finite-dimensional integral
/:-algebra.

(2) If A is equal to B, then V is obviously //-irreducible. Suppose,
conversely, that V is //-irreducible. Then V is A -irreducible and we infer
from (1) that dim^ V = 1. Since A lies centrally in B, B is a subalgebra of
End^(F). We therefore obtain 1 = dim^ End^(K) > dim^ B. ThusΛ = B.

Consider the extended Lie-algebra G' and, for a subalgebra H C G,
the associated subalgebra //'. We define %H, : = {/) E De%(G'); />(//')
- 0 } .

LEMMA 2.6. Ler G 6e simple-semiabelian and H C G maximal subalge-
bra. Consider the Carton decomposition G/' — H' ® @a(ΞR ^v TTẑ w ^ ^
following statements hold:

(1) There is a Lie-algebra isomorphism t\%H®kK -*%H, such that
t(D ® α) = /)

Proof. (1) By general theory there is an isomorphism of associative
algebras t: End^(G) ®k K -> End^(G ®Λ .fiΓ), such that /(/® α) =

αid^. It is easy to check that t(Deτk(G) ®kK) = Der^(G') and

(2) Let D be an element of %H and x G G .̂ Then

[A, Z> ® id^(x)] = D ® id^([A, JC]) - [/) ® id^(A), JC]

by (1.2) VhGH'. This proves Z> ® idΛ(G^) C Ĝ  VZ) ε δί^. Applying
(1) we obtain the desired result.

(3) According to (4.3) of [3] there is / ε G* such that H = rad(^).
Let/' E G* be the extended linear form and suppose D\c, — 0. Let x be
an element of G'_a\ then

0 - D([x, y]) = [x, D(y)] + [D(x), y] = [D(x), y]

for every y G G'a. This yields, in particular, D(x) E GLa Π G'^. Applying
(1.4) we find that D(x) = 0.
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PROPOSITION 2.7. Let G — H θ V be the Fitting decomposition of a

simple-semiabelian Lie-algebra relative to a maximal subalgebra H. Then

the following statements hold:

(1) If Vis not % ̂ irreducible, then dim^ %H < \ dim^ G/H.

(2) If%H is abelian, then &mk %H < \ dim^ G/H.

(3) // dim^ G'a = 1 V a E R then %H is abelian.

Proof. (1) By assumption there exists an 21 ̂ -irreducible submodule

W C V. Let H — rad(ϋy) for an appropriate / E G*. It is easy to verify

that V Π W1- is an 2ί ̂ -submodule of V. Consequently we have W Π W1-

— 0 or W C V Π W1-. In the second case W is a totally isotropic

subspace of F and therefore its dimension is bounded by \ άimk V. If

W C\ W±=0 then dim^ W < { ά\mk V or dim^ W^^ \ dim^ F. In either

case there exists an 91 ̂ -submodule U C V such that dim^ £/ < ^ dim^ F.

For u E t/\{0) consider the injective linear map:

We obtain dim^ %H < dim^ U < \ dim^ V.

(2) By virtue of (1) we only have to consider the case where V is

21 ̂ -irreducible. It is a result of [2] that this yields dim^G^ = 1 Vα E R

and char(/c) =£ 2. Let R — {α,,... ,α π , — ax,.. .,αw} and write G'a — Kxt,

1 < i < n. According to (2.6) the linear map is injective and therefore we

obtain:

w ->G'

i=\

observing (2.6)

(3) This is an immediate consequence of (2.6).

We finally use the results established above in order to estimate the

dimension of maximal subalgebras.

PROPOSITION 2.8. Let G be simple semiabelian and let H <Z G be a

maximal subalgebra. Then dim^ H < \ dim^ G.

REMARK. It can be shown (cf. [2]) that dim^ H <\ dim^ G for

finite k.
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Proof. Let G = H @ V be the Fitting decomposition relative to H. V

is completely reducible and decomposes into a direct sum of irreducible

submodules V = Vx θ θ Vn. Since for v G Vt the map 5^: H -> Vo

where ^(Λ) = [A, υ] is injective, we obtain dimkH < dim^ F), which

yields the desired result in case « > 2. If V is irreducible then by applying

(2.5) and (2.7) consecutively we obtain 2 dim^ H < dim^ F. This yields

H < j dim^ G.

3. Simple-semiabelian Lie-algebras having a non-singular invariant
bilinear form. In this section we assume k to be perfect of positive

characteristic p > 3. All the results stated in the sequel hold in the

non-modular case as well, however they are even stronger and well known

so that we dispense with stating them explicitly.

Let K be an algebraic closure of k and let G be a finite-dimensional

Lie-algebra over k. We assume G to carry a non-singular invariant

symmetric bilinear form/: G X G -> k. On G', consider the extended form

f: G' X G' -> K, which is non-singular.

THEOREM 3.1. Let G be simple-semiabelian. Then any two maximal

subalgebras are of the same dimension.

Proof. Let H C G be a maximal subalgebra. We claim that G' is

classical with respect to H' (cf. [8] p. 28). We have to show (a) 3(G') = 0,

(b) [G\ G'] - G\ (c) [Λ, x] - α(Λ) x V h e H'9 V x e G'a, (d)

dimJG^, G^α] = l V α E Λ, (e)Vα,j8 E Λ 3 / E GF(/>): α + /β ^ Λ.

(a) and (b) are direct consequences of the simplicity of G. Property (c)

follows from (1.2). By applying Theorems 90 and 89 of [6] we obtain

dim^G^ = 1 V α G i ? which in turn yields dimκ[G^GLJ < 1. Since

[G'a, G'_a] Φ 0, by (1.4), (d) holds. Finally (e) is a consequence of Theo-

rems 90 and 92 of [6].

Now let Hx and H2 be two maximal subalgebras of G. According to

the above H[ is a classical Cartan subalgebra of the classical algebra G\

By virtue of Theorem III.4.1 of [8] we have dim^i/ί = dΐ\vcίκH
f

2 which

yields the asserted result.

THEOREM 3.2. Let G be simple-semiabelian. Let H be a maximal

subalgebra of G and write Gf — H' θ ®aζΞR G'a. Then the following state-

ments hold: (1) dim^ G'a = 1 V a E R.

(2) [Der,(G), Der,(G)] = ad(G).

(3) dim^ Der^(G) < f dim^ G/H.
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Proof, (1) According to (1.2), G' is a F-algebra in the sense of [6] p.
75. Since G' is centerless we may apply Theorems 90 and 89 consecutively
in order to obtain the desired result.

(2) By virtue of (2.7) %H is abelian and the assertion is a consequence
of (2.3).

(3) Since %H is abelian, (2.7) applies and, combining this with (2.3),
we obtain

dim* Der*(G) = dim* %H + dim* G/H < f dim* G/H.

4. Simple-semiabelian Lie-algebras of index one. Except for the

existence of a non-singular invariant form, we adopt the assumptions of
the preceding section. The number ind(G) : = min/GG*dim^rad(5/) will
be called the index of G.

THEOREM 4.1. Let G be simple-semiabelian of index 1 and let H C G be
a one-dimensional maximal subalgebra. Write G' = Hr θ θ α ( Ξ / ? G .̂ Then
the following statements hold:

(\)dimκG^ = 1 Vα E R.
(2) dim* G-3or there is n E N such that dim* G - pn.
(3)IfdimkG^3thenR U {0} = ΣσG[a]GF(p) - σVα <Ξ R.
(4)[Der,(G),Der,(G)]-ad(G).

Proof. (1) Let/be a linear form of G such that H — rad(£y) and let/'
denote the linear form of Gf defined by/. Then H' = rad^,)- Let a E R
be a root and suppose x E: Gf

a has the property [x, GLa] = 0. Then
J C G G Π G'ΐβ = 0 (cf. (1.4)). The assertion now follows from [7] Theo-
rem 4.

(2) Suppose dim* G Φ 3. By virtue of [7] Theorem 4, R U {0} is an
abelian group and, since /? α = 0 V α £ Λ , it also has the structure of a
GF(/?)-vector space. Let n denote the dimension of R U {0} over GF(/?).
Then R U {0} has/?" elements and by (1) we obtain dim* G — dim^ Gf —
| Λ U { 0 } | = / Λ

(3) Let a E i? be a root and consider Δ : = Σσ € Ξ [ α ] GF(/?)σ. Obviously,
Δ is a subspace of R U {0}. The equality

Σ τσ(γ-σ), τ σGGFW
σe[α]

proves the invariance of Δ under the action of the Galois group. Conse-
quently @' : = H' θ θ λ e Δ w 0 } Oχ is a subalgebra of G' having the prop-
erty (idc ® γ)(®0 C δ ' V γ G Gal(A:: A:). This gives rise to a subalgebra
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® C G such that © <8>* K — ©'. Since ©' is not abelian we must have

© = G and ©' = G'. Hence Δ = i?U {0}.

(4) This is a direct consequence of (1), (2.7) and (2.3).

REMARK. Using Theorem 88 of [6] one can show that every simple-

semiabelian Lie-algebra of index 1 possessing a non-singular invariant

symmetric form is three dimensional.

Let W be an irreducible //-submodule of V. Since d i m ^ G ^ ^ 1

Vα e R we have W®k K — Σ γ G G a l ( Λ Γ : k) G'ya for an appropriate a E R

(cf. (1.3)). By applying (2.6) it is now clear that D(W) C W Vi) E » „ .

The following proposition illustrates the scarcity of simple-semi-

abelian Lie-algebras of low dimensions. Let W(\) denote the Witt-algebra.

PROPOSITION 4.2. Let G be simple-semiabelian. Then:

(2) dim^ G = 5 => char(fc) = 5 am/ G' ^

(3) dim^ G = 6 => Gr ^ sl(2) Θ

(4) dim^ G = 7 =* char(^) - 7

Proof. (1) Suppose dim^ G = 4 and let // C G be a maximal subalge-

bra. Since dim^ G/H is even ((4.3) [3]) we necessarily have dim^ H = 2,

contradicting (2.8).

(2) By virtue of (2.8) every maximal subalgebra of G is one dimen-

sional. The equation 5 = dim^ G = pn yields n = 1 and p = 5. Conse-

quently i? U {0} = GF(p)a Vα E i? and the assertion follows from

Theorem 2 of [7].

(3) If H C G is a maximal subalgebra, its dimension is not greater

than 2. As in (1) we find that H has dimension 2. It is a result of [2] that

G' then decomposes into a direct sum of copies of sl(2).

(4) Analogous to (2).
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