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HOLOMORPHIC FOLIATIONS AND DEFORMATIONS
OF THE HOPF FOLIATION

T. DUCHAMP AND M. KALKA

A deformation theory for transversally holomorphic foliations is
developed here and used to give an explicit description of the transver-
sally holomorphic foliations near the "Hopf foliations" on odd dimen-
sional spheres.

Introduction. In [1] and [2] we began the study of the deformation
theory of holomorphic foliations on a smooth compact manifold. Our aim
was to construct a reasonably explicit parameterization of a neighborhood
of a fixed holomoφhic foliation % in the space of all foliations by
generalizing Kuranishi's theorem on deformations of complex structures
on compact complex manifolds. However, in [1] we assumed the existence
of a smooth foliation ψ- transverse to the foliation %. The purpose of the
present paper is to eliminate this rather artificial assumption. In [3]
Gomez-Mont observed that the Kodaira-Spencer machine can be used to
show the existence of such a parameterization by an analytic subset of a
finite dimensional vector space. However, as is the case for the deforma-
tion theory of complex structures, the proof is rather abstract and is not
easily adapted to computations. To illustrate our results, we present here a
classification of all holomoφhic foliations near the foliation given by the
Hopf fibration S2n+X -* CPn.

We shall now give a more precise statement of our results. The reader
is assumed to be somewhat familiar with the notations and results of [1];
but we begin with a short review. Let % be a fixed holomorphic foliation
of real codimensions 2q on the smooth, compact, oriented manifold Mn,
i.e., % is given locally by smooth submersions into Cq which patch
together via local biholomoφhisms of Cq. Let L C TM and Q — TM/L
be the (real) tangent and normal bundles of % and fix once and for all a
splitting TM — L θ Q and a Riemannian metric on M respecting it. (In
[1] this splitting was assumed to be induced by a transverse foliation. This
is not necessarily the case here.) The complex structure map on Q induces
a splitting of the complexified normal bundle in the standard way,
Qc = <2(10) θ β ( 0 1 ) and there is a split exact sequence
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where E = Lc θ Q(0Λ) and where ( ) c denotes complexification. It will be

convenient to identify elements of E and <2(10) with either images in TMC;

for example, we will sometimes write X for i(X). Finally, set EQS — ASE*

®c Q(U0\ s^O; then T(E*S) = Uomc(AsE, β ( 1 ' 0 ) ). The ordinary exterior

differentiation operator induces operators dQ\ T(EQS) -» Γ ( £ ^ + 1 ) mak-

ing (Γ(£* 5 ) , dg) into an elliptic complex [1, page 324]. As usual, let 8Q be

the adjoint of dQ, let Δ ρ be the associated Laplacian, let G ρ be the Green's

operator of Δ^ and let HQ be the harmonic projection operator. Finally,

let Θgr denote the sheaf of germs of local holomorphic vector fields, locally

constant along the leaves of %. The complex of sheaves (EQS, dQ) resolves

Θg: and by Hodge theory we can identify HS(M,Θ^Q) with the finite

dimensional spaces HQT(EQS) C T(EQS).

Now observe that there is a bijection between maps φ E

Hom(EQ, ρ ( 1 0 ) ) = T(E£ι) and submodules Eφ C TMC near E - Eo given

by φ h-» Eφ = {x + φ(x)\x E E). It then follows from the complex

Frobenius theorem that the subset

(0.2) Έo\{%) = {φ e Γ(£*') \[T(EΨ), T(Eφ)] C Γ(£φ)}

corresponds to a neighborhood of S^ in the space of holomorphic folia-

tions on M. In §1 we shall characterize ¥o\(%) as the kernel of a certain

nonlinear operator

whose linearization is dQ. Our main result follows:

0.3 THEOREM A. There is a local analytic set B C H\M, Θ^) about

0 E Hι(M, Θgr) and a holomorphic map

(0.4)

vv/zαse /mαge w α locally complete family of holomorphic foliations near %.

That is, every holomorphic foliation sufficiently near % is equivalent, via a

diffeomorphism of M near the identity, to an element in the image of Φ. In

particular, the space of holomorphic foliations on M is locally path con-

nected. This partially answers a question raised in [6, page 245, Problem 12]

concerning the topology of the space of foliations.

As an example, let M — S2q+ι and let % be the Hopf foliation given

by the standard fibration Slq+X -*CPn. Use the holomorphic connection
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ω on the Hopf bundle to define the splitting TM — L@ Q and let the
metric on S2n+ι be g = ω ® ω + 7r*Λ where /z is the Fubini-Study metric
on CPn. Because H\CPn, θcpn) = 0, it follows from [2] that there is an
isomorphism

(0.5) Hι(s2<+\ Θ%) - C[ω] ® Γ(CP*, Θc/>.) - Γ(CP", θ C P . )

Finally, let Ω denote the Kahler form on CPn and observe that ρ(1-0) =
n and £ | ] = (C[ω] θ 77

0.6 THEOREM B. Γ/zere w ΛW cpew ^e/ ^ C T(CPq, Θcpq) about the
origin such that the map Φ in (0.4) is given by the formula

(0.7) Φ

where fx is a function on CPn satisfying the conditions

and

i
In §2 we prove Theorem B and use the fact that the group of

biholomorphisms of CPn is the projective linear group to explicitly
compute the image Φ.

REMARK. Since the completion of this paper we learned that Girbau,
Haefliger and Sundararaman [3] obtained somewhat stronger results using
the Kodaira-Spencer machinery. They compute the Kuranishi family for a
class of foliations which includes the Hopf foliation.

1. Proof of Theorem A. We begin with a characterization of the
operator dQ: Γ(£* ]) -> Γ(£* 2 ).

1.1 LEMMA. Let φ G T(E*1) = Hom(£, ρ ( 1 0 ) ) . Then dQφ e T(E*2)
= Hom(Λ2£', <2(10)) is given by the formula

(1.2) dQφ(X, Y) = v([X, φ(Y)]) - π([Y, φ(X)]) - ψ ° τ ( [ χ , y])

for all vector fields X,YET(E)C T(TMC).
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Proof. This is a straightforward computation after writing dQφ in
local coordinates adapted to the foliation % as in [1, page 320]. D

Next define operators [, ] β : Γ(J^ ! ) X T(Eg) -» T(Eξ2), pτ: T(E$)
-» T(E$2) and D: T(Eg) -» Γ(££2) as follows. For φ , ψ e r ( £ * ' ) and * ,
Y(ΞT(E) cΓ(ΓM c ), let

(1.3) [ψ, ψ]β( z , Y) = *{Φ °

(1.4) />T(Φ)(*> Y) = Φ

and

(1.5) Z)φ = dQφ

We can now characterize holomoφhic foliations near SQ as follows:

1.6 PROPOSITION. Given φ E Γ(£^), the associated distribution Eφ

defines a holomorphic foliation if and only if Dφ = 0.

Proof. First observe that a vector Z E ΓMC lies in Eφ if and only if
7r(Z) — φ © τ(Z) = 0. Now apply this observation to the vector field
Z - [Z + φ(X), Y + φ(Y)] for X, YE T(E) and conclude that [X +
φ(X), Y + φ(Y)] E T(Eφ) if and only if Dφ(X, Y) = 0. The result then
follows from the complex Frobenius theorem. D

From the above proposition, it follows that the problem of classifying
holomoφhic foliations near % will be solved once we classify the solu-
tions of the equation Dφ = 0. To do this we need the following estimates.

1.7 LEMMA. Let φ, ψ G Hom(£, ρ ( 1 0 ) ) . Then

and

) 2(1.9) | | A ( Φ ) - A ( Ψ ) | | , * C||Φ - ΨlUllΦll, +IIΨH,)2.
We have used the notation \\ \\sfor the usual Sobolev norms on sections of the
relevant bundles.

Proof. The easiest way to see this is to write out explicit local
formulae for these operators. In coordinates adapted to the foliation %,
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let {d/dx\ 3/3zΛ} span E and {[3/3z"]} span Q(W). Label elements of

{9/θ c', 3/3zα} by Ύ} and their duals by Yj\ and set [3/3zα] = Za. Here i

ranges between 1 and/? and a between 1 and q,p = dim L, q — dim β ( 0 1 ) .

Then, if we set τ[Zα, Z^] = C ^ ^ and τ[y7, Z J = 2)/^, we have for

and

the formula

(1.10) [

Λ

Inequality (1.8) now follows. With the same notation we see that

(1.11) pτ(φ) = {C^φfφf)Y*ιAY*'<8>Z8.

So we see that

Inequality (1.9) follows from this formula. D

1.12 REMARK. Observe that/?τ depends on the splitting (0.1). Suppose

that the splitting satisfies the integrability condition [Γ(β ( 1 '0 )), Γ(g ( 1 0 ))]

C Γ(ρ ( 1 0 ) ) . Then pτ = 0 as can be seen from (1.11) and the fact that

Cι

aβ = 0. If (0.1) is induced by a foliation transverse to %, or if % is given

by the fibers of a holomorphic fiber bundle and (0.1) is induced by a

holomorphic connection, then the above integrability condition is satis-

fied.

The next proposition shows that we need not examine all solutions of

the equation Dφ — 0.

1.13 PROPOSITION. Every solution of the equation Dφ = 0 of sufficiently

small norm is equivalent, via a diffeomorphism close to the identity, to a

solution of the system

( U 4 )
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Proof. The argument in [1, pp. 330-334] applies here. Simply replace
the local vector fields d/dza in [1] by the fields Zα = [d/dza]. Nowhere in
the argument was the integrability of the splitting (0.2) used. •

To investigate solutions of (1.14) we need the following lemma.

1.15 LEMMA. For φ0 E HQT(EQ1) of sufficiently small norm, say ε,
there is a unique solution φ = φ(φ0) of the equation

(1.15) φ = φ0 + δQGQ

Moreover, the map φ0 γ-± φ(φ0) is holomorphic.

Proof. We solve the equation by iteration, using the estimates of
Lemma 1.7 together with the standard elliptic estimate ||GρΦ||5 <

For n > 0, set φ π + ι = φ0 + d*GQ{[φn, φn]Q + pΎ{Φn)}. Then

Pτ(φn) - p M ^ ^ ,

^ C\\φn - Φn-ilL{lkll, +HΦn- ilL

Thus for ||φ0||Coo < 1/3C, φn converges in Hs for all s.
Uniqueless follows in a similar fashion. Suppose φ, ψ are two solu-

tions. Then

Thus, for HΦolL s m a l l the solution is unique. Holomorphic dependence on
φ0 is standard, for example, [5].) D

We can now define the analytic subset B QHQY(EQX) = Hι(M,Q$o)
of Theorem A. A section φ0 is in B if the following conditions are
satisfied:

(1.17)

(1.18) #ρ{[φ(Φo)>Φ(Φo)]ρ+ΛΦ(Φo)} - 0 ,
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and

(1.19) dQ{[φ(φo),φ(φo)]Q+pτφ(Φo)} = 0 .

The following proposition concludes the proof of Theorem A.

1.20 PROPOSITION, φ is a solution 6>/(1.14) with \\φ\\Coo < ε if and only if

it is in the image of the map

(1.2.) ( ^

Proof, φ is a solution of (1.14) if and only if the following equations
are satisfied:

(1.22)

(1.23) HQ{dQφ - {[φ,φ]e +Pτ(φ))} = -HQ{[φ9φ] +pτ(φ)) = 0,

(1.24) dQ([φ9φ]Q+pr(φ))=0

and

(1.25) δQ(dQφ-{[φ,φ]Q+pτ(φ)}) = 0.

In particular,

(1.26) δQ(dQφ- {[φ,φ]Q+pτ(φ)})=0

and

(1.27) dQδQφ = 0.

Adding, we get the equation

(1.28) ΔQΦ~ {[Φ,Φ]Q+PT(Φ)} = 0 .

If we apply the Green's operator GQ to the last equation, and use the
identity GQΔQ = Id — HQ, we get the equation

(1.29) Φ = HQφ + δQGQ{[φ, φ]e+pr(φ)}.

Setting φ0 = HQφ proves the proposition. D

REMARK. In [1] we were able to simplify the form that B takes, and
use this to conclude that if H2(M, Θ^) = 0, then B = a neighborhood of
0 in H\M,Θ%). The reason that we cannot make the same conclusion
here is that the operator [ , ]Q + pτ does not have the pleasant algebraic
properties (2.12)-(2.14) of [1], unless the splitting (0.2) is integrable. See
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Remark 1.12. In case [T(QU0)9 Γ(β ( 1 '0 )] C Γ(Qι>°), then our method
allows us to conclude that H2(M9 Θ f) = 0 => B = a neighborhood of 0 in
H\M,%). However, in [3] it is shown that H2(M, Θ^) = 0 implies
B = a neighborhood of 0 in *

2. Deformations of the Hopf foliation. As an application of Theo-
rem A, we now consider the holomoφhic foliations on M — S2q+ι —
{(z°,...,zq) eC«+ι\Σq

a=oz°za= 1} near the holomoφhic foliation %
given by the Hopf map π: S2q+X -» CPq. The notation is as in the
introduction. Via the projection map π we can make the identifications
T(ΘCpg) = Γ(Θ%) and C°°(CP*) C C°°(S2(?+1).

We first compute HQT(E*1) C Hom(£, ρ ( 1 0 ) ) .

2.1 LEMMA. Let g be a C°°-function on CPq and X a holomorphic vector
field on CPq. Then

(2.2) dQ{ω ® X) = 0

and

(2.3) δ ρ (gωΘJί)-0 .

In particular, H0Γ(E*1) = {ω ® X|X E Γ(Θ c p e)}.

(2.4) /fρ(g(o®^Γ) = ω ® ( α Z )

a — jCPqgv and v — ίlq/(q\).

Proof. Let p*\ AT*MC -»Λ£* be the natural mapping. Then
dQ(ω ® X) = (p*dω) ® Z = 2^^77*12) ® JΓ = 0 since dω = 2τr(τr*Ω)
and since Ω is of type (1,1).

To verify (2.3) we must show that for Y G Γ(<2° 0 )) the equation
(dQY, gω ® X)= 0 is satisfied. Write Y in the form 7 = ΣJiXι for /
smooth functions on S2q+ι and JQ holomoφhic vector fields on CPq.
Then a standard computation using the formulas (1.17) and (1.30) of [1]
together with Stokes' Theorem yields:

(dQY9 gω®X)=Σf (dft) Λ g h(Xi9 X)v
JS2q+\

d(figh(Xi,X)v) = 0.
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Finally, to verify (2.4), a set φ0 = co ® α X and let 3* be the adjoint of
the 3 operator on the complex of Γ10(C/>ί7)-valued (0, p) — forms on
CPq. It follows that (g-a)X = 3*η for η a Tι>°(CP^-valued (0, l)-foπn.
Now let ψ = co ® 7 be a harmonic element of T(E*1) where 7 E Γ(ΘCP*).
Then the result follows from the computation:

(ψ, Φ - Φ0) = / ω Λ G F

[/
CPq I/fiber

= 2ττ(7, 3 * η ) c ^ = 2ττ(37, η)cpq = 0

since 3 7 = 0 . D

Proof of Theorem B. By the results of §1, every holomorphic foliation
near % is equivalent to one of the form Eφ where φ satisfies the equations

(2.5) Dφ = 0,

(2.6) δQφ = 0,

and

(2.7) # β φ - φ0

for φ0 = co ® ̂  and X E Γ(ΘC/,^). Moreover, the section φ0 completely
determines φ. It is reasonable (and correct) to try φ = gco ® Jf for g a
function of CPq satisfying the condition fcpq gv = 1. By the above lemma,
(2.6) and (2.7) will hold true.

By Remark 1.12,pr = 0 so to solve (2.5) we must compute [φ, φ]Q:

[Φ, Φ]Q(U, V) = φ([φ(ί/), V\) - φ([φ(V), U]) - v[φ(U), φ(V)]

ί 0 if U,V are both horizontal or both vertical

= gω{[gω(U)X, V])X = -g2ω(U)Ώ(X, V)Xiί

{t/ is vertical and Fis horizontal.

Thus,

dQΦ ~ [φ, φ]Q = 3g Λ co ® Z + g2co Λ Ω ( I , - ) ® I

and φ defines a holomorphic foliation iff this expression is zero. Thus we
need to find g satisfying 3g - g2Ω(Z,-) = 0. Since H\CP\ Θ) = 0,



78 T. DUCHAMP AND M. KALKA

Ω( X, -) = dfx, for some fx, unique up to a constant. Thus we need to
solve the equation

H = g2a/x

which has gx — -\/fx as a solution. By choosing X sufficiently small and
fixing fx by the normalization fcp^Sx^^ 1> w e obtain the required
solution. D

We shall now utilize Theorem B to give a more concrete parameteriza-
tion of the set of holomoφhic foliations near the Hopf foliation.

Let z = (z°,...,z*) be a point in Cq+\ let [z] = [z°,...,z*] be the
associated point in CPq and let | z | = ]/zaza . Greek indices will range from
0 to q in this section and the summation convention is in effect throughout.
Identify S2q+X with the unit sphere {\z |2 = 1). Then ω is the restriction to
S2q+1 of the form 9 | z |2 and Ω = idd log | z |2. Note that the vertical vector
field on S2q+ι -> CPq is the vector field

Now every holomoφhic vector field on CPq arises in the following way:
Choose a complex matrix^ = (αf) E GL(q + 1, C) and set

(2.H) ^ = * 2 *

This vector field projects to a holomoφhic vector field Z on CPq and all
holomoφhic vector fields on CPq arise this way. It is now easy to ΐindfx

from the formula dfx = Ω( XA, -) as follows:

So

apzazβ

(2.12) / j r = £ £ 2

where CA is a constant chosen so that JCp«(-^/fx)v = l
We can now investigate the holomoφhic foliation associated to the

section φ = (-\/fx)ω ® X From the definition of Eφ9 it is easy to see
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that it is the subbundle of Γ(S 2*+ 1)C given by

(2.13) Eφ=H0Λ®C Yφ

where H0Λ is the subspace of horizontal vectors of type (0,1) and

Yφ = xH-fχr

where XH denotes the horizontal lift of X. Using the formula

and setting B = [b£\ = [aβ

a + {CA/q)8ξ] e GL(q + 1,C) we obtain the
formula

As observed in [3], the foliation Eφ is the pull-back to S2q~^1 of the
codimension q holomorphic foliation on CqJrλ given by the (complex) integral
curves of the holomorphic vector fields

(2.15) * * 9

Indeed it is easily seen from (2.13) and (2.14) that the normal bundle of
£ φ is generated by the pull-backs to S2q+X of the one forms of type (1,0)
annihilating^.

Denote by % the foliation on S2q+ι associated to B. From (2.13) we
see that the complex structure on the normal bundle is in some sense kept
fixed — what changes is the underlying real foliation.

2.16 REMARKS. (1) Since multiplying B by a scalar does not change
the foliation %, the map B H> f̂ , B E SL(g + 1, C) given a parameteriza-
tion of a neighborhood of the Hopf foliation by a neighborhood of the
identity in SL(g -f 1,C). The above discussion shows this parameteriza-
tion to be equivalent to that of §1. The complex dimension of the
parameter space i s ( # + l ) 2 — 1.

The above analysis can be used to give a more useful classification of
holomorphic foliations near the Hopf foliation.

2.17 THEOREM. There is a neighborhood U of the identity in
GL(q + 1, C) such that if A, B E U are two conjugate matrices, then ̂ A and
S^ are conjugate foliations. In particular, every foliation sufficiently near the
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Hopf foliation is conjugate to one of the form ^ where

/, 0

J =

0

with

0
]_

4

0

an n k X n k matrix with \ λ k — 1 1 < \.

4

Proof. Let 5 E GL(q + 1, C) be so near the identity that XB(\ z |2) has
positive real part for all z E C<7+1\{0} and suppose B is conjugate to a
matrix / as in the statement of the theorem. Let u — {u\...,uq^x) be
coordinates relative to a basis in which B assumes the form / and set
/ 0 ( ) | | / 1 ( ) | |

Construct a regular isotopy of embeddings φt: S2q+]

0 < t < 1 as follows. Let/,(z) be the quadratic form

ft(z) = (1 - tfx(z)

and set

where a(t, z) > 0 is the unique positive real number characterized by the
condition ft(a(t, z) z) = 1.

Letting % denote the foliations on C^+1\{0} given by the complex
integral curves of XB, it is clear that the pull-back foliation φ*(^β) ̂ s J u s t

®ίB. Moreover, since the image of φ, is just the set {z E C^+1 \f}(z) —\u\2

= 1} the pull-back foliation φ*(&B) is just ^ .
We need only show that the imbeddings φ, are all transversal to ($B.

For then %B and ̂  are isotopic to one another and therefore conjugate
(H. B. Lawson, Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418). To
prove that φ, is transversal to ΦB it is sufficient to show that the real part
of XB(ft) is positive at all points of C*+1\{0}.
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But by assumption XB(f0) has positive real part. The formula

= («',. . .,s« + I ) /

1 \

u

\ u q + x I

together with the inequality |λ^ — 11< \ for all k, easily yields the
inequality

Rc(XB(fx))>{l-\)\u\2-l\u\2>0

and therefore

0 - 0Re(Aj(/0)) + /Reί^ί/O) >0. D

2.18 REMARKS. (1) From 2.17 and the explicit formulas for the
integral curves of XJ9 it follows that % is a Riemannian foliation if and
only if B is diagonalizable with eigenvalues satisfying the condition λk/λι

real for all k and ^B is compact if in addition λk/λ/ is rational for all k.
(2) Note that Theorem 2.17 gives a parameterization of conjugacy

classes of holomorphic foliation near the Hopf foliations by a (^-dimen-
sional analytic space.
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