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CHARACTERIZING GLOBAL PROPERTIES IN
INVERSE LIMITS

ZVONKO CERIN

To Georgie

This paper presents necessary and sufficient conditions, in terms of
properties of bonding maps and bonding spaces, on an inverse sequence
X— {Xl9pll+\} of compact metric spaces in order that its inverse limit
X — lim X is either an approximate absolute neighborhood retract, an

(internally) e-calm compactum, an absolute neighborhood retract, an LC"
compaction, or that Xhas (covering) dimension < n.

1. Introduction. Let X denote the inverse limit of an inverse se-

quence X — {Xί9 Pi i+\} of compact metric spaces. The main purpose of

this paper is to identify necessary and sufficient conditions which will

insure that X is either an approximate absolute neighborhood retract

(both in the sense of Clapp [Cl] (AANRC) and in the sense of Noguchi

[No] (AANRN)), an (internally) e-calm compactum [Cl], an absolute

neighborhood retract (ANR), an LCn compactum, or that X has dimen-

sion < n.

The problem of characterizing the dimension of the inverse limit of an

inverse system was studied earlier by Pasynkov [Pa] and by Delinic and

Mardesic [DM]. On the other hand, Fort and Segal [FS, Theorems 2 and

3] considered a surjective inverse sequence X={Xi9pi /+1} (i.e., an

inverse sequence with all bonding maps pi; l + 1 onto) of locally connected

continua and discovered that each bonding space X{ can be embeddded as

a subset X* of the product P = Π / > 0 X, (see §3) in such a way that the

inverse limit X (considered as a subset of P) is a locally connected

continuum iff the sequence Xf, X*,... converges O-regularly to X [Wh].

Another characterization of local connectedness in inverse limits was

given by Gordh and Mardesic [GM]. They introduced a notion of local

connectedness for inverse systems and proved that the inverse limit X of a

surjective inverse system X = {Xα, pαα,, A) of locally connected continua

is locally connected iff X is locally connected.

Our approach is motivated by shape theory and represents an applica-

tion of ideas from the author's recent papers [Cl] and [C2] and his earlier
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studies of globally regular convergences [C3]-[C7]. It can also be regarded
as a natural extension of techniques both from [FS] and [GM].

The following is a brief description of our method for the case of
AANRc's.

First we observe that the Mardesic-Segal treatment of movability in
[MS2] and the author's notion of movably regular convergence [C3]
provide the following characterization.

(1.1) For an inverse ANR-sequence X = {Xi9 ptli+ x} the following are
equivalent:

(i) X = lim ^ i s movable [B].

(ii) X is movable [MS2].
(iii) The sequence X*9 Xξ,... converges movably regularly to X [C3].
Then we use Corollary (4.3) in [C3] which shows that AANRc's agree

with e-movable compacta and perform changes necessary to make
e-(l.l): For a surjective ANR-sequence X = [Xi9 Pn+i) the following

are equivalent:
(i) X = lim X is e-movable.

(ii)A^ise-movable.
(iii) The sequence Xf9 Xξ9... converges e-movably regularly to X

[C6].
a true statement (see Theorem (4.2)). This requires defining a notion of
e-movability for inverse sequences which is straightforward if one recalls
that (roughly speaking) the concept of an e-movable compactum is
obtained from Borsuk's original concept of a movable compactum by
replacing homotopies with ε-homotopies.

In order to get characterizations of ANR's, LCn compacta, (intern-
ally) e-calm compacta, and dimension, we shall "rigidify" (using results
from [Cl] and [C2]) the following theorems for corresponding shape
invariants of strong movability [B], strong «-movability [C8], calmness
[C9], and fundamental dimension [B], respectively.

(1.2) Let X = {Xi9Pii+\} be an inverse ANR-sequence. The following
are equivalent.

(i) X = lim A îs strongly movable (strongly ^-movable),

(ii) A îs strongly movable [Ml] (strongly π-movable).

(iii) The sequence Xf9 Xξ9... converges strongly movably regularly
(strongly H-movably regularly) to X.

The strongly movably regular convergence in (iii) is less restrictive
than the weakly ^-movably regular convergence in [C5] and is defined as
follows. A sequence {At}f=l of compacta in a metric space Y converges
strongly movably regulary (strongly n-movably regularly) to a compactum
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Ao, Ao C Y, provided in some, and hence in every, ANR M which
contains Y, for every neighborhood U of Ao in M there is a neighborhood
V of Ao in M, KCf/, such that for every neighborhood W of AQ in M
there is an index iw with the property that for every i^iw there is a
neighborhood Hβ of At in Λf, WjCKfl W9 so that for every ^,-map (for
every *P/-map) (see §2) /: ( # , Jf0) -* (F, Wtf) there is a homotopy ft:
K -> t/, 0 < / < 1, with/0 =fJλ(K) C fF, and/! | # 0 = / | tfo

(1.3) For an inverse ANR-sequence X= [X^ pxf/+1} the following are
equivalent.

(i) X = lim Z is calm.

(ϋ) Xis calm (i.e. ̂ satisfies (4.2)(vi) in [C9]).
(iii) The sequence X*, X*,... converges calmly regularly to X.
The calmly regular convergence is weaker than ^-calmly regular

convergence studied in [C4]. Its definition is analogous to the above
definition of the strongly movably regular convergence (see (5.5)).

(1.4) (Nowak [N] and Cerin [CIO]) The inverse limit X of an inverse
ANR-sequence X— [Xt, pt /+1} has fundamental dimension < n iff X is
fl-tame (i.e., iff for every index i there is j >: /, an at most ^-dimensional
finite polyhedron P, and maps α: Xj^> P and β: P -> Xt such that the
diagram

xi - Xj

is homotopy commutative).

We thank the referee for helpful suggestions (especially for Remark
(6.4)).

2. Preliminaries. Throughout the paper P̂ will denote the class of
all compact ANR's and φp will denote the class of all pairs (K, Ko) where
K and KQ are compact ANR's and Ko is a subset of K. By <$n {<$£) we
denote all K e <$ ((K9 Ko) G %) with dim K < /i.

A map /: Γ̂ -» 7 is called a ty-map provided K GΦ. Similarly, a map
of pairs/: (K9 Ko) -+ (7, Yo) is a ? ;-wφ if (K, Ko) G ^ .

We shall say that maps/and g of a space Z into a metric space (Y, ί̂)
are ε-c/ô e provided d(f(z), g(z)) < e for every z G Z. If Z and W are
subsets of Y and the composition of /: Z -* W with the inclusion of W
into y is ε-close to the inclusion of Z into Y, we call/an e-map.
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Two maps /, g: Z -> 7 of a space Z into a metric space (7, d) are
ε-homotopic (and we write /— εg) if there is a homotopy ht: Z-* Y9

0 < / < 1, between/and g (called an ε-homotopy) such that Λo and Λ, are
ε-close for all ί E / = [0,1].

For a metric space (7, d), 2Y denotes the hyperspace of all nonempty
compacta in Y with the Hausdorff metric dH, while dc denotes Borsuk's
metric of continuity defined by

dc(A9 B) = inf{ε 13 ε-maps/: A -> B and g: 5 -> A)

for i4, 5 E 2 r. We shall also need the sup-norm metric d on the collection
Map(Z, Y) of all maps of a compact space Z into 7 given by

for/,gEMap(Z,7).
Let 4̂ be a subset of a metric space (7, </), let C/ and F, FCC/, be

open subsets of 7 which contain Λί, and let ε > 0 and 8 > 0 be given.
Then Ψ(U, F; A), Ψh(V, δ; A\ and #/(t/, F; A) will denote the following
statements.

Ψ{U9V\A) For every neighborhood W of A in 7 and every

) f: K^Vthere is an ε-homotopy ft: K -* U9 0 < / < 1, with/0 = /
a n d / W C ΪF.

^ ε ( F , δ; 4̂) For every neighborhood W oί A in Y there is a

neighborhood Wo of A in Y, Wo C V Π W, such that every two δ-close
^P-maps/, g: ^ -» >F0 are ε-homotopic in W.

For every neighborhood W oί A in Y there is a

neighborhood Ŵ, of A in Y, Wo C V Γ) W, such that for every ^-map /:
(K, Ko) -»(F, iF0) there is an ε-homotopy /,: K^U, 0 < / < 1, with
/o = / , / , ( * ) CΪT, and/, |tf0

A compactum 4̂ is {strongly) e-moυable if for some, and hence for
every, embedding of A into an ANR M the following holds. For each
neighborhood U of A in M and every ε > 0 there is a neighborhood F of
Λ in M, F C C/, such that (#/(ί/, F; >ί)) ̂ β(ί/, F; ^) is true. We proved in
[Cl] and [C2] that a compactum A is (strongly) e-movable iff it is an
AANRC (an ANR).

A compactum A is e-calm if for some, and hence for every, embedding
of A into an ANR M the following holds. For every ε > 0 there is a
neighborhood F of A in M and a δ > 0 such that *PΛ

e( F, δ; 4) is true. If for
every ε > 0 there is a δ > 0 such that δ-close ^P-maps into A are ε-homo-
topic in every neighborhood of A in M then A is internally e-calm. We
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proved in [Cl] that a compactum A is strongly ^-movable iff A is
e-movable and (internally) e-calm.

For a compact ANR M and an ε > 0 , let Γ(M, ε) (Γ*(Af, ε)) be the
set of all δ > 0 such that, for any δ-close maps /, g: Y -» M defined on a
metrizable space 7 (and any δ-homotopyy :̂ A -> M, 0 < t < 1, defined on
a closed subspace 4̂ of 7 withy0 — f\A andy, = gM), there exists an
ε-homotopy Λ,: 7 -> M, 0 < / < 1, such that Λo — f,hx— g, (and ht\A —
jt\A for every ί E /) ([Hu, p. 122]).

For a map /: A -> 5 between metric spaces, let Λ( /, ε) be the set of
all δ > 0 with the property that d{x, y) < 8 in A implies d{f{x\ f{y)) < ε
in B.

Throughout the paper X— {Xt, pt .+ 1} will denote an inverse se-
quence where each Xi is a compact metric space and pi / + x: X/+ { -» Jfz is a
continuous map. ^ = lim X will denote the inverse limit of X, while / :̂

X -> A) is a projection. For y > ι, Pij = p. i+ι

Qp^x^2

o "m ° ^y-υ a n d

7?̂ ,. = id x. If each bonding space Â  is an ANR, X will be called an inverse
ANR-sequence. Inverse LC"-sequences and inverse AANRc-sequences are
defined analogously.

3. Fort-Segal embeddings. This section describes the method due
to Fort and Segal [FS] of embedding the bonding spaces Xi of a surjective
inverse sequence X= {Xι9 pi /+1} into the product P = Π / > 0 A) in such a
way that the images X* converge to the inverse limit X C P. Since we
shall study global properties of X in an ANR, we must slightly modify
their procedure in order to get that P is nicely embedded in a Hubert
cube.

Let X( be a compactum in a Hubert cube Q( for each positive integer
/, let pi / + ! be a mapping of Xi+, onto Xi9 and let Di be a metric for Qt so
that Dt{x, y) < 1 for all x and j> in Qέ. Let ̂  / + 1 : β / + 1 -» βz be an
extension of ^ ί + 1 . Let (X, /?z) = Km{Xi9 pt ί+1} and let (β, ̂ )
= limlβ;, ^ z / + 1 }. Note that Xis a subset of β and/?, is an extension of ρt

for every / > 0. We then define

di(x,y)= ί 2-'DJ{pIJ(x)9pIJ(y))
7 - 1

for each positive integer i and all c and y in Qn and we define

d(u,v)= 1 l-JDjiPjW.pjiv))
7 = 1
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for all u and υ in Q. Then d is a metric for Q and dt is a metric for βf. for
each / > 0. Moreover lim^^ dXp^u), p^v)) = d(u,υ) uniformly on

Let Q — Π / > 0 Qi If we define a metric d* for Q by letting

7 = 1

for α = (α,, α 2 , . . . ) and 6 = (6 l 5 Z?2,...), then the inclusion map is an

isometry of ( β , d) (and therefore also of (X9d)) into ( β , </*)). Choose a

point g = (qλ9 q2,...) in Q. We now define for each positive integer / an

isometry Hι of (Qi9 dt) into ( β , J*) by letting

for every x E. X(. We define Λy as the restriction of Hι on Xt and we put

Â * = h^X^. Note that for every j > / there is a map /?*: X7* -» X* given

by

and that d*(p?(xf)9 xf) < 2~ι for all xj E Λ^. Also, observe that there is

a map /?f: X -> Λ̂ * defined by

and that

for al l(x l 5 x2> ) E ^

In §§4-6 we shall always consider the spaces X and Xi with metrics d

and dp respectively. For example, in Definition (4.1) below, when we say

that ptJ. © ψ is ε-close to φ we mean that d^p^ ° ψ , φ ) < ε.

4. Approximate absolute neighborhood retracts. Here we shall char-

acterize surjective inverse AANRc-sequences whose limits are AANR c ' s

and surjective inverse ANR-sequences whose limits are AANRN 's.

(4.1) DEFINITION. An inverse sequence X— {Xi9 pt ί+1} is called

(internally) e-movable provided for every ε > 0 there is an index z'o such

that for every / > /0, every j > i and for every ^-map φ: K -> Xt there is a
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map (ψ: K -> X = lim Jf) ψ: ΛΓ -» Λ̂  with (ptf © φ ε-close to φ) ptj © ψ

ε-close to φ.

(4.2) THEOREM. For a surjectiυe inverse AANRc-sequence X =

{ X. ,pu+\} the following are equivalent.

(i) X = lim ^ /j e-movable or, equivalently, an AANRC.

(ii) X is e-movable.

(iii) Jf is internally e-movable.

(iv) 7%e sequence {X*} converges e-movably to X[C€\.
(v) The sequence {X?} converges to X in the metric of continuity d*

induced on 2Q by the metric d*.

Proof. We shall prove (i) =» (ii), (ii) => (iii), and (iii) => (v). We already
proved in [C6] that (iv) and (v) are equivalent and that (iv) =̂> (i).

(i) =* (ii). Let an ε > 0 be given. Since X is an e-movable compactum
in the Hubert cube Q, by Proposition (4.2) in [C2], there is a neighbor-
hood V of X in Q such that for every neighborhood W of X in Q and
every ^P-map φ: K -> K there is a map ψ: A" -» fΓ which is (ε/3)-close to φ.
Select an index /0 so that X* CV and so that p*j is an (ε/3)-map and pf

is an (ε/6)-map for all j >i> i0. Consider arbitrary indices j > / >: /0

and a ^P-map φ: K -> A). Since Xy is an e-movable compactum, there is a
neighborhood Wof Xin Q and an extension/ j * : W -> X* of/?* such that
/?* is an (ε/3)-map. By the choice of V, the map hi ° φ: K ^> X* is
(ε/3)-close to a map ψji 1£ -* Ŵ . But, then ψf = ^7* © ψ1 is (2ε/3)-close to
Az o φ. Hence, /?z* © ψf = /?,* © pf © ψ, is ε-close to Λz © φ. It follows that φ
is ε-close to/?/7 © ψ, where ψ = hjι © ^* © ψ,, because Λz is an isometry and
the diagram

PTJ

x* - Λ;

commutes.
(ii) => (iii). It clearly suffices to prove that for every ε > 0 there is an

index i 0 such that for every / > i 0 there is an ε-map/: X* -> X. For a given
ε > 0, pick an index ι0 so that for ally > / > ι0 there is a map / y : Jζ -> Xj

with /?/y. © ^ 7 (ε/2)-close to id^. Let i > ι0 and select a sequence / = /, <
i2 < -" such that for every j > 0 there is a map fy. Xt -* Xt with
Z7/1 ° / (β/2y)-close to id^ (with the distance measured with respect to
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the metric dtj). Then the map/;*: X* -> X*+χ defined by^* = hij+λ ° f. o Λ~I
is an (ε/27)-map (measured in the metric d*) for every j > 0. Hence
/ = limn_^Jf* ° /„*_, ° o /f is an ε-map of Xf into X

(iii) => (v). By assumption, for every ε > 0 there is an index i0 such
that for every / > ι'o there is a map fc Xf -> X with /?* ° / (ε/2)-close to
iάx*. But, if ι0 is so large that each/?* is an (ε/2)-map, f will be an ε-map
so that d*(Xf, X)<ε for all i > i0.

(4.3) COROLLARY. If every bonding map pii+x in an inverse AAΉRese-
quence X— [Xi, Pi z+i} is an approximately right inυertible map [Gel],
[Cl], then X — lim X is an e-moυable compactum.

Proof. The assumption about bonding maps clearly implies that the
inverse sequence X is e-movable so that we can apply (4.2)(ii) =» (i).

Since a compactum is an AANRN iff it is an AANRC and an FANR,
[Bo], (1.2) and (4.2) imply the following.

(4.4) COROLLARY. Let X= {Xi9 p}, i+1} be a surjective ANR-sequence.
The following are equivalent.

(i) X = Urn X is an AANR^

(ii) X is e-movable and strongly movable [M].
(iii) The sequence X*, X*,... converges both strongly movably regularly

and e-movably to X.

5. Internally e-calm and e-calm compacta. In [Cl] the author de-
fined internally e-calm and e-calm compacta in order to get a new
characterization of ANR's analogous to the characterization of FANR's
as compacta which are both movable and calm [CS, Theorem (4.5)]. It is
still unknown whether there exists an (internally) e-calm compactum
which is not an ANR. This section shows how to recognize (internally)
e-calm compacta as inverse limits of surjective inverse ANR-sequences.

(5.1) DEFINITION. An inverse sequence X— {Xi9 pt z+1} is internally
e-calm if for every ε > 0 there is an index i and a δ > 0 such that for every
index j > /, pj ° φ and pj ° ψ are ε-homotopic in Xj whenever φ and ψ are
δ-close ^-maps into X.

(5.2) DEFINITION. A sequence {Ai}f=ι of compacta in a metric space
Y converges internally e*-calmly to a compactum Aθ9 Ao C 7, provided in
some, and hence in every, ANR M which contains Y, for every ε > 0 there
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is a δ > 0 such that for every neighborhood W of Ao in M and every γ > 0

there is an index ι'o so that / > i0 implies Aέ C W and δ-close ^-maps <p, ψ:

ίΓ -> X are γ-close to maps φ\ ψ': K -* Ai9 respectively, which are ε-homo-

topic in At.

(5.3) THEOREM. For a surjectiυe inverse ANR-sequence X— {Xi9 pu+x)

the following are equivalent.

(i) X = lim X is internally e-calm.

(ii) Xis internally e-calm.

(iii) The sequence Xf9 X*, . converges internally e*-calmly to X.

Proof, (i) => (ii). Let an ε > 0 be given. Select an / so big that pf is an

(ε/3)-map for ally > / and a δ > 0 such that δ-close ^P-maps into X are

(ε/3)-homotopic in every neighborhood of X in Q. For y > /, choose a

neighborhood Ŵ  of X'm Q such that/?*: Z -» X? extends to an (ε/3)-map

^ * : Ŵ  -> Â *. Now, δ-close maps φ, ψ: K -> ^ are (ε/3)-homotopic in Ŵ  .

Hence, p* ° φ — p* ° ψ and pf ° ^ — pf ° ψ are ε-homotopic in X* so

that/?7 o φ = h'jX ° /?7* © φ is ε-homotopic ioPj ° ψ = Λj1 o p * o ψ (because

Λy is an isometry).

(ii) => (iii). For a given ε > 0, pick a δ > 0 and an index i{ such that

p{ o φ and p{ © ψ are ε-homotopic in ^ (/ > /j) whenever φ and ψ are

δ-close ίP-maps into X Consider a neighborhood W of X in Q and a

γ > 0. Choose an index iQ > ij so that pf is a γ-map and X* C W for all

i ^ /0

(iii) => (i). Let an ε > 0 be given. Select a δ > 0 with respect to ε/3

using the assumption. Let W be a compact ANR neighborhood of X in <2

and let γ E Γ( W, ε/3). Choose an index /0 so that X*Q C W and so that

δ-close ^-maps φ, ψ: K -+ X are γ-close to maps φ', ψ': .fif -> Â *, respec-

tively, with φ' and ψ' (ε/3)-homotopic in W. Since φ and φ' are (ε/3)-ho-

motopic in W and ψ and ψ' are (ε/3)-homotopic in WΓ, it follows that φ

and ψ are ε-homotopic in W and therefore that X is internally e-calm.

(5.4) DEFINITION. An inverse sequence X— {Xi9 pt /+,} is e-calm if

for every ε > 0 there is an index i and a δ > 0 such that for every j >: /

there is a k >j with/?^ © φ ε-homotopic iopjk © ψ in Â  whenever φ and ψ

are δ-close ^-maps into Λ^.

(5.5) DEFINITION. A sequence {Ai}f=ι of compacta in a metric space

Y converges e*-calmly to a compactum Ao, Ao C Y, provided in some,

and hence in every, ANR M which contains Y, for every ε > 0 there is a
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δ > 0 such that for every neighborhood W of Ao in M there is an index iw

with the property that for every i>iw there is a neighborhood WQ of At in

M, W^ C W, so that δ-close ^P-maps into WQ are ε-homotopic in W.

(5.6) THEOREM. Let X= {AΓZ, pt /+1} fe α surjectiυe inverse ANR-se-

quence. The following are equivalent.

(i) X — lim X is e-calm.

(ii) Z w e-calm.

(iii) ΓΛe sequence X*9 X*, . converges e*-calmly to X.

Proof, (i) => (ii). For a given ε > 0, select a neighborhood V of X in β
and a δ > 0 such that ^PΛ

ε/9(F, δ; X) holds. Then choose an index i so that
X* C V and /?/ is an (ε/9)-map of X onto X* for all y > /. Let y >: /.
Extend/?* to an (ε/9)-map j?*: W->X*of& closed neighborhood Wof X
in Q and let TJ G Λ(^*, γ), where γ G Γ(Z/, ε/3). Inside f f Π F pick a
neighborhood Wo of X in β using %n(V, 8; X) and take a k >y so that
A^ C ^ 0 and so that/?^ is an τj-maρ.

Consider δ-close ^P-maps φ, ψ: K -* Xk into A .̂ The compositions
Λ̂  o φ and Λ ^ ψ are δ-close maps of K into T^. Hence, they are
(ε/9)-homotopic in W. Since pf is an (ε/9)-map, p* ° hk° φ and
p* ° hk° ψ are (ε/3)-homotopic in Xy*. But, for every pointy G JQf, there
is x G X such that /?*(.*) =>^ so that p*{x) — ρf{x) — p*k ° />*(*) =
/7

/*(j;) a n d pf(y) are γ-close. It follows that pjk o Λ̂  o φ is (ε/3)-homo-
topic to ̂ y* o ^ o φ i n JQ*. Thus, pjj. ° hk o φ and /?ĵ  ° Λ̂  ° ψ are ε-homo-
topic in AJ. This implies that / ^ ° φ and pJk ° ψ are ε-homotopic in XJm

(ii) => (iii). Let ε > 0. Choose an / and a δ > 0 such that i and 3δ
satisfy (5.4) with respect to ε/3. Consider a compact ANR neighborhood
W of Xin Q and let η G Γ(W, ε/9). Pick an indexy = ίw>i such that
X* C W 3ndp*k is an rj-map for all A: >y'. Finally, for every k >7, let W£
denote a neighborhood of Xk in ϊF such that there is a min{δ, η}-map rk:
Wo

k - Z*.

(iii) => (i). For a given ε > 0, select a δ > 0 with respect to ε/3 using
(iii). Let W be a compact ANR neighborhood of Jf in Q and let
η E Γ(ίf, ε/3). Then choose an / > iw and a neighborhood Wo of Xin β,
PΓ0 C W, such that/?* extends to a min{δ/3, η}-mapp* of PΓ0 into W .̂ It
can be easily checked that (δ/3)-close ^P-maps into Wo are ε-homotopic in
W. Hence, X is e-calm by Proposition (4.2) in [Cl].
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6. ANR's and LCn compacta. In this section we shall put together
results from §§4 and 5 and get conditions which characterize surjective
inverse ANR-sequences whose inverse limits are ANR's. Then we shall
indicate changes that one must make in our theorem to obtain analogous
results for suqective inverse LCw-sequences whose inverse limits are
LC-compacta. In particular, the Fort-Segal characterization mentioned in
the introduction appears as the O-dimensional case of ours. Some applica-
tions of our method are also presented.

(6.1) DEFINITION. An inverse sequence X — {Xi9 pt f+1} is strongly
e-movable provided for every ε > 0 there is an index /0 such that for every
i > z0, for every j > /, and every δ > 0 there is a k >y with the property
that for every ^-pair (K, Ko) and maps φ: K -> X{ and ψ0: Ko -» Xk with
φ I Ko = pik o ψ0, there is a map ψ: K-> Xj such that pi} ° ψ is ε-close to φ
and ψ I .RΓ0 is δ-close to pjk o ψ0.

(6.2) DEFINITION. A sequence {^l,}^ of compacta in a metric space
Y converges strongly e*-moυably to a compactum Ao, AQ C 7, provided in
some, and hence in every, ANR M which contains Y, for every neighbor-
hood U of Ao in M and every ε > 0 there is a neighborhood V of Ao in M,
F C ί / , such that for every neighborhood HP of ̂ 40 in M there is an index
iw with the property that for every i^iw there is a neighborhood W# of
A, in M, ^ C F Π I f , s o that for every ^,-map /: (K9 KQ) ^ (F, JFJ)
there is an ε-homotopy ft: K -> f/, 0 < / < 1, with/0 = /, fx(K) C ΪF, and

(6.3) THEOREM. For a surjectiυe inverse ANR-sequence X—{Xi9 Pi
the following are equivalent.

(i) JSr=lim X is an ANR.
(ii) X is strongly e-movable.

(iii) X is both e-movable and internally e-calm.
(iv) X is both e-movable and e-calm.

(v) The sequence Xf9 X*,... converges strongly e*-movably to X.
(vi) The sequence Xf9 X*9... converges both e-movably and internally

e*-calmly to X.
(vii) The sequence Xf9 X*,... converges both e-movably and e*-calmly

toX.

Proof. We shall prove that (i) => (ii) and (ii) => (iv). The other implica-
tions are consequences of results in §§4 and 5 and Theorem (4.9)(a) and
Lemma (4.10) in [Cl].
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(i) =» (ii). For a given ε > 0, select a compact ANR neighborhood Fof

X in Q such that for every neighborhood W of X in Q there is a

neighborhood Wo of X in Q, WQ C F Π WK, with the property that every

^-map φf: ( # , JSΓ0) -> (F, Wo) is (e/4)-close to a map φ£: # -> Wwhich

agrees with φf on Ko (Proposition (3.2) in [Cl]). Choose an index iQ so

that X* C V and /?* and /?* are (η/2)-maρs for all / and j \ j > / > ι0,

where Ϊ J 6 Γ ( F , ε/4), 0 < η < ε/4.

Consider indicesy and ij > / > /0, and a δ > 0. Choose an (τ7/2)-map

r\ W -* X which retracts a neighborhood JF of X in Q onto X Inside the

intersection V Π W pick a neighborhood Wo of X in Q as above and take

an index /: > j such that X* (Z Wo and such that r\X% and /?* are

(γ/2)-maps where 2γ E A(p*9 δ) and 0 < γ < ε/4. Observe that γ E

A(p*k9 δ) because pi is onto and/?7* = ρ*k ° /? .̂

Let (i^, Ko) be a pair in ^ and let φ: K-* Xt and ψ0: Jί0 -» ^ be

maps with φ\K0 — pιk ° ψ0. The compositions φ* = Az © φ and ψ0* =

hk o φ0 satisfy φ* | Ko = p*k o ψ*. Since /?^ is an (τj/2)-map, there is an

(ε/4)-homotopy gt: Ko -> F, 0 < t < 1, such that g0 = φ* | # 0 - Λ * o ψ*

and gj = ψ0*. By the homotopy extension theorem, gj can be extended to a

map φf: K -» K which is (ε/4)-close to φ*. The choice of F and Wo

implies that (ε/4)-close to φ* there is a map φ*: K -> W which agrees

with φf on KQ. Let ψ* = p* © r o φ* and let ψ = h~ι ° p* ° r ° φ | . Since r

and /?7* are (ε/8)-maps and /?* is an (ε/4)-map, ψ* is (ε/4)-close to φ*

and /;*. ° ψ* is ε-close to φ* and hencep tJ ° ψ is ε-close to φ. On the other

hand, pk ° r ° ψ* is γ-close to ψ^ so that p*k° pk ° r o ψ* = ^* o r o ψ* =

ψ* IAΓ0 is δ-close to / ^ ° Ψo* a n ( i Λus /^^ ° ψ0 is δ-close to

(ii) => (iv). Since every strongly e-movable ANR-sequence X is clearly

e-movable, we must show that X is e-calm. For an ε > 0, pick an index i0

as in Definition (6.1) but with respect to ε/9. Then choose an / > /0 so

that/?* is an (ε/9)-map for every j > /. Let a δ > 0 have the property that

3δ E A(pi9 η) where η E T(Xι9 ε/9).

Consider an index j > / and select a /c >y as in Definition (6.1) with

respect to j and a γ E Γ(X7, ε/3) and so that p* is a δ-map. Let φ, ψ:

K -> Λ^ be δ-close maps of a compactum îΓ into Xk. Then φ* = hk ° φ:

Γ̂ -» X^ and ψ* = hk° ψ: K -* Xk are δ-close and for every x E K there

are j , z £ l such that φ*(x) = p*(y) and ψ*(x) = p*(z)> Since j ; and z

are 3δ-close, p*(y) and /?*(z) are 77-close. But p*{y) — p*k ° p*(y) —

Λ*(Φ*(^)) a n d Pΐ(z) = Pΐk° Pΐ(z) = PΪk(Ψ*(x)) so that />**<><,>* and

^ o ψ* are η-close maps into Jζ*. Hence, there is an (ε/9)-homotopy H:

KX I -+ X* with HQ = ^ ^ o φ * and ^ = p*k o ψ*. The choice of fc
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implies that there is a map G: K X I -> Xf such that /?* ° G is (ε/9)-close
to H and pfk ° φ* is γ-close to Go and pfk ° ψ* is γ-close to G,. Since 7/ is
an (ε/9)-homotopy and/?* is an (ε/9)-map, G is an (ε/3)-homotopy. On
the other hand, the selection of γ insures that/?,* ° φ* is (ε/3)-homotopic
to GQ and that pfk ° ψ* is (ε/3)-homotopic to G,. Hence, pfk ° φ* and
p*k° ψ* are ε-homotopic (in X*) so that pjk ° φ and pjk ° ψ are ε-homo-
topic (in Xj).

(6.4) REMARK. In condition (v) in the above theorem the strongly
e*-movable convergence cannot be replaced by the more restrictive
strongly e-movable convergence [C7]. Indeed, by [MSI, Theorem 1 and
Example 9], the simple closed curve X can be represented as an inverse
limit of a surjective ANR-sequence X — {X^ pt /+1} where each Xt is the
2-dimensional torus. If the sequence {X*} were to converge strongly
e-movably to X, then [C7, Theorem (3.5)] implies that X is homotopy
equivalent to almost all Xi9 an obvious contradiction.

However, with an additional assumption that every bonding map
Pa+χ is ARI, the characterization involving strongly e-movable con-
vergence holds.

(6.5) THEOREM. Let X- {Xi9 pt /+1} be a surjective inverse ANR-se-

quence and assume that each map pii+, is ARL Then X — lim X is an ANR

iff the sequence {X*} converges strongly e-movably to X.

Proof. Suppose that X is an ANR. By (6.3) and (4.2), X is strongly
e-movable and limd*(X*, X) = 0. Hence, it remains to show (see [C7,
Theorem (3.10)]) that for every ε > 0 there is an index / and a δ > 0 such
that δ-close ^P-maps into Xf are ε-homotopic in XJ (j>i).

For a given ε > 0, choose an index i0 so large that/?* is an (ε/9)-map
for all i and7,7 >: / ̂  i09 and that (6.1) holds with respect to ε/9 and /0.
Let δ > 0 satisfy 3δ E Λ(/?*, η), where η e Γ(X*9 ε/27), and let i > i0 be
such that pj is a δ-map for ally > i. Observe that δ E A(pfoJ9 η) for all

j ^ 1.

Let7 > / and let φ, ψ: K ^ Xf be δ-close ^P-maps into Xf. Let γ > 0
be such that γ E A(p^, η) and γ E T(Xf9 ε/6). Pick A: >7 with respect
to γ and 7 using the way in which i0 was chosen. Since pfk is an ARI map,
there are maps φ', ψ': ίΓ -> AJ w ^ Λ* ° φ y-close to φ and pfk°>p'
γ-close to ψ. Hence, there is an (ε/9)-homotopy H: KX I -* Xf joining
p*ok ° φ' and p*Qk o ψr. On the other hand, pfk o φ' and φ are (ε/6)-homo-
topic in Xf and pfk° ψ' and ψ are (ε/6)-homotopic in Xf. Choose G:
KX I -> Xf such that pfd o G is (ε/9)-close to // and Go is γ-close to
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p*k o φ' and Gx is γ-close to p*k ° f . Clearly, G is an (ε/3)-homotopy so

that φ and ψ are ε-homotopic in X*.

The converse follows from [C7, Lemma (3.3)].

(6.6) COROLLARY. // the inverse limit X of an inverse ANR-sequence

X— {Xn Pΰ+χ) with ARI bonding maps is an ANR, then X is (simple)

homotopy equivalent to almost all bonding spaces Xr

Proof. Combine (6.5) and [C7, Theorem (6.1)].

In order to handle LCn compacta, we define notions of e-«-movability

and (internal) e-«-calmness for an inverse sequence and notions of e-n-

movable and (internally) e*-«-calm convergence for sequences of com-

pacta in a metric space simply by restricting K in Definitions (4.1), (5.1),

(5.4), (5.2), and (5.5), respectively, to compact ANR's of dimension < n.

Similarly, if we require in Definitions (6.1) and (6.2) that (K, Ko) is a pair

of at most ^-dimensional ANR's, we get notions of strong e-«-movability

(for inverse sequences) and strong e*-«-movable convergence.

Consistent changes from arbitrary ANR's to ANR's of dimension

< n and from ANR's to LCn compacta.in our proofs provide the proof of

the following.

(6.7) THEOREM. For a surjective inverse LCn-sequence X— [Xi9 pn+x}

the following are equivalent.

(i) X = lim Xis an LCn compactum.

(ii) Xis strongly e-(n + \)-movable.

(iii) Xis both e-(n + l)-movable and (internally) e-(n + \)-calm.

(iv) The sequence Xf, X*,... converges strongly e*-(n + \)-movably to

X.

(v) The sequence Xf9 X%9... converges both e-(n + \ymovably and

(internally) e*-(n + \)-calmly to X.

There are also versions of (6.4), (6.5), and (6.6) for LCn compacta.

However, for n — 0 the assumptions in (6.5) is not necessary (we can

always get maps φ' and ψ' because without loss of generality K can be

chosen a single point and p^'s are onto). Since strongly e-1-movable

convergence is clearly equivalent to 0-regular convergence [Wh] for locally

connected compacta (see Theorem (3.10) in [C7]), it follows that (6.7)

includes Theorem 3 in [FS] as a special case.

Another interesting consequence of the method of proof of Theorem

(6.3) is the following improvement of Geoghegan's Theorem (1.3) in [Ge2].
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(6.8) THEOREM ([Ge2]). Let X= {Xi9 p{ ί+1} be an inverse ANR-se-

quence with each bonding map p{ / + x an approximate fibration [CD]. Then

X = Km X is an ANR iff X is an FANR.

Proof. Since every ANR is an FANR, it remains to prove that if X is
an FANR (which is equivalent to Geoghegan's condition that X is shape
equivalent to a CW-complex) then it must be an ANR. The approximate
homotopy lifting property of approximate fibrations [CD] and the proof
of (6.3) imply that X is ^0-e-movable [Cl], where ^PΛ0 is a class of all pairs
(K X [0,1], K X {0}) with K E 9. In other words, for every neighbor-
hood U of X in Q and every ε > 0 there is a neighborhood V of X in g,
V C U9 such that for every neighborhood W of Jf in Q there is a
neighborhood Wo of X in Q, Wo C W Π V, with the property that for
every pair (K9 Ko) E %0 and a map /: (ΛΓ, Ao) -* (F, W )̂ there is an
ε-homotopy /,: A -> U9 0 < / < 1, with/0 = /, fλ(K) C ΪΓ, and ̂  | A"o =
/I-KΌ Hence, the theorem follows from the following theorem which gives
a new characterization of compact ANR's.

(6.9) THEOREM. A compactum X is an ANR iff it is both an FANR and

Proof. Every ANR is clearly an FANR and ίPΛ0-^-movable. Con-
versely, suppose X is a ^Q-e-movable FANR. We shall prove that X is
strongly e-movable. Consider X as a subset of the Hubert cube Q and let a
compact ANR neighborhood U of X in Q and an ε > 0 be given. Let
ij E Γ*(t/, ε/2), 0 < η < ε/2. Choose a neighborhood F, of X in β,
Fj C {/, with respect to U and η using the fact that X is ^Q-e-movable.
The pick a neighborhood K of I in <2, FCF,, such that for every
neighborhood W of X in β, there is a neighborhood Ĥ o of X in β,
Wo C V Γ) W, with the property that for every ^-map /: (K, Ko) ->
(F, *F0) there is a homotopy/,: tf -> F,, 0 < / < 1, with/0 = fJλ{K) C 1̂ ,
and ft\K0=f\KQ for all / E [0,1] (this requires X to be a pointed FANR
which follows either directly from Hastings-Heller's theorem [HH] or one
can easily verify that X is arcwise connected and thus pointed 1-movable
[KM]). We claim that #/(!/, F; X) holds.

Indeed, let W be an arbitrary neighborhood of X in Q. Inside V Π W
pick a neighborhood Wo of X in Q using the choice of Vx and then a
smaller neighborhood W^oί Xin Q with respect to WQ using the way in
which Fwas chosen. If/: ( # , Ko) -» (F, Wo) is a β^-map, then there is a
homotopy ,F: # X [0,1] -> ^ with Fo = /, F,( A') C Wo and jFr | Ao = f\ Ko
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for all / E [0,1]. But, we know that η-close to F there is a map G:

KX[0,\]->W with Gx = Fλ. Clearly, G\K0 X [0,1] is an η-homotopy

between G0\K0 and Gι\K0=f\K0 while Go and FQ are (ε/2)-homotopic

in U via a homotopy which agrees with Gx_t on ΛΓQ. Hence, by the

homotopy extension theorem, Fo is ε-homotopic in U to a map of K into

JF that equals/| Ko on ίΓ0.

Theorem (6.8) has an amusing corollary which to the best of my

knowledge has not appeared in the literature.

(6.10) COROLLARY. A compact metrizable topological group G is a Lie

group iff G is an FANR.

Proof. By results in [Sz], a compact metrizable topological group G

can be represented as the inverse limit of an inverse sequence X —

[Xι,pιι+λ] where each bonding space Xέ is a manifold and each bonding

map/?M + 1 is a locally trivial fibre map. Theorem (6.8) implies that G will

be an ANR iff G is an FANR. Hence, the theorem follows from the

corollary to Theorem 4 in [Sz].

The next application of our methods was also observed by McAuley

and Robinson [McR].

(6.11) COROLLARY. Let X— {Xn pt ι+λ) be an inverse LCnsequence

with each bonding map pt l + 1 an UVn-map (or, equiυalently', a Σn-trivial

map [Cl]). Then X = lim X is an LCn compactum.

Proof. By Lemma (6.7) in [Cl], X is strongly e-(n + Immovable, so

that X is an LCn compactum by Theorem (6.7).

7. Dimension. In this final section we shall give a new characteriza-

tion of inverse AANRc-sequences whose inverse limits have dimension

< n. As in the previous sections, the idea is the same, namely, to

"rigidify" the corresponding result (1.4) in shape theory. However, the

technique of proof differs from the one used in §§4-6 (that relied heavily

on Fort-Segal embeddings and remetrizations of bonding spaces and the

inverse limit) and utilize the following improvement of Lemma 1 in [MR].
In view of Theorem 8 in [M2], this is a special case of Proposition 1 in

[M2].

(7.1) LEMMA. Let X — [X^ pi /+1} be an inverse sequence of compacta

and let Y be an AANRC. Then the following assertions hold:

(i) For every ε > 0 and for every map f: X -> Y there is an i* such that

for each i > i* there is a mapf: Xi -> Ywith d(f o p.9 / ) < ε.
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(ii) If ε > 0 andfn gt: Xt -» 7are maps such that d(fι° pn gt ° p^ < ε ,

then there is an i* > i such that d(fi ° pij9 g, ° ptj) < ε for every j > /*.

Proof. Since the proof of Lemma l(ii) in [MR] does not use any

assumptions on 7, it remains only to prove (i).

Let X* denote a compactum described in the proof of Lemma 1 in

[MR]. Recall that as a set X* in the disjoint union X U ( U / > 0 Xt) and that

the basis for the topology of X* is given by open subsets Ut C Xt and by

the sets [/* = pj\Ut) U Uy>£ pjj(Ut). In this topology on X* both X. and

X inherit their original topologies, every neighborhood of X in X* con-

tains almost all X^s9 and for every ε > 0 there is an index i such that

d(pj(x)9 x) < ε for ally > / and x E X.

Consider 7 as a subset of Q and pick a compact ANR neighborhood

V of 7 in Q for which there is an (e/2)-maρ r: F-> 7 [Cl]. Extend /:

X -> 7 to a map /*: ί/ -* K of a neighborhood t/ of Z in Z* and put

f=rof*:U-*Y. Observe that d(f\X9f)< e/2. For sufficiently large /,

j > / implies that Xj Q U so that fj — f\ X} is defined. By uniform continu-

ity of / on X* = X U Uj^ιXι there is a δ > 0 such that d(x, x') < δ

implies that d(f(x), f(x')) < ε/2 (x, xf E Xf). Since for sufficiently large

j one has d{pj(x), x) < δ for x E X, one concludes that

<*(/(*), /, ° Pj(x)) ̂  d{f(x), f(x)) + d(f(x)9 f{pj(x))) < f + § = ε

for all x E X

(7.2) DEFINITION. An inverse sequence JΓ= { 1 , , ^ /+1} is called

e-n-tame provided for every / > 0 and every ε > 0 there is a j > /, an at

most ^-dimensional compactum K, and maps α: X}-+ K and /?: K-> Xt

with jβ o « ε-close to/?/y.

Recall that a compactum X approximately dominates a compactum 7

[C2] if for every ε > 0 there are maps /: X -» 7 and g: 7 -> Z with

g,id y ) < ε .

(7.3) THEOREM. Let X — {Xi9 pι /+1} and Y— {Yι9 qt /+I} te inverse

A AN Resequences and let lim X= (X9 pt) and lim 7" = (7, #,). If X is

e-n-tame and X approximately dominates 7, //ze« 7 w αfao e-n-tame.

Proof. Let an ι > 0 and an ε > 0 be given. Since X approximately

dominates 7, there are maps /: X -> 7 and g: 7 -> Z such that

g,idy) E A(9 j, ε/6). Hence,

(1)
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By Lemma (7.1)(i), there is an index V > i and a map fv\ Xv -> Yt with
dUv ° Pv> <lι ° /) < e/6. Therefore,

(2) </(/•< ° A ' °g>«iofog)< ε/6-

Combining (1) and (2), we get

(3) d(fropitog9qi)<e/3.

Now, since the inverse AANRc-sequence X is e-w-tame, there is an index
/ > /', an at most ^-dimensional compactum K, and maps α': J!Q, -*K
and β': ϋΓ -> Xv such that </(β' o α ' , pVJ.) e A(/,, ε/3). Hence,

(4)

Next, sincejsy og; y ^ jς, is a map of 7 into an AANRC, by Lemma

(7.1)(i), there is a A: > / and a map gk: Yk -> Jiy, with rf(/?7-/ ° g, gk° <Ik) ^

(5) rf(>;- ° Λ' ° £>/" ° Λ r ° & ° 9k) < ε / 3

because pr = /?Γj, © ^./β From (3) and (5) we get

(6) d{fr o Λ r ogkoqk9 q.k o qk) < 2 ε / 3 ,

and from (4) we have

(7) d(fr o β> o a' o gk o ̂ y ; , o ^ o gk o ? J < ε / 3 .

If we apply Lemma (7.1)(ii) to (6) and (7), we see that there is an index
j > k so that

(8) f J j

and

(9) </(/Γ ° /?' ° «' ° gΛ ° qkjJr ° Λ'/ ° gk

Finally, (8) and (9) give us

(10)

Hence, if we put a = αr ° ĝ  o ̂ . : ŷ  ̂  ^ and ̂ 8 = /, o ̂ ^ ^ -̂  y;, the
last inequality can be rewritten as d(β ° α, qtJ) < ε, which proves that Yis

(7.4) COROLLARY. Let (X, pt) be the inverse limit of an inverse
AANRQ-sequence X—{Xi9 pt , + ]}. Then dim X < « iff X is e-n-tame.

Proof. Consider X as a subset of the Hubert cube (λ The corollary
follows from the above theorem and Theorem (5.2) in [C2], which says
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that dim X < n iff the inverse AANRc-sequence N= {Nι9 q} l + 1 } , where

N{ D N2D is a decreasing sequence of compact ANR neighborhoods

Nt of X in Q with X = Π / > 0 Nt and qt / + 1 : Λ^+1 -» TV, (7 > 1) are inclu-

sions, is e-fl-tame.
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