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DE RHAM THEOREM WITH CUBICAL FORMS

BOHUMIL CENKL AND RICHARD PORTER

With a simplicial complex X there is associated a commutative
differential graded algebra of polynomial differential forms T(X) to-
gether with a filtration T*>*(X) C T*><*+\X) in each degree *. T*«(X)
is a differential graded module over the subring of the rationals
Zίi*. , q] The deRham theorem for such a complex T(X) is proved.
We have demonstrated elsewhere that the refined deRham complex
T( X) makes it possible to substantially refine most of the results of the
rational homotopy theory. In particular we defined the homotopy cate-
gory of C'N spaces which is equivalent to an algebraic homotopy
category of (TV — 1) connected free commutative differential graded
algebras over the integers, satisfying a simple algebraic condition on
cohomology.

1. Introduction. As a refinement of the deRham complex of ra-
tional differential forms, A*(X; Q) on a simplicial complex, Cartan [1]
and Miller [11] defined a filtration A*>q(X; Z) of A*(X; Q) such that the
cohomology Hp{A*yq(X\ Z)) is isomorphic to the singular cohomology
HP(X; Z) for p < q. In our study, [2], [3], of the relationship between the
fundamental group of X and the filtered algebra A*'*(X; Z), the best
results are obtained under the assumption that HX(X\ Z) is both finitely
generated and free. An effort to eliminate the freeness assumption lead us
to the construction of a new commutative filtered algebra of forms,
T*>*(X). T*>*{X) is an analogue of the filtered Cartan-Miller forms
obtained by replacing simplices with cubes. Since each simplicial complex
has a canonical subdivision into cubes, T*>*(X) can be viewed as a
functor defined on simplicial complexes. For fixed q, T*>q(X) is a
complex of Qq modules where Qq denotes the smallest subring of the
rationals containing \/p for each prime /?, p < q, Qo — Qx — Z, The
usual wedge product of forms induces a map T*'*(X) ® T**q*(X) ->
T*-qι+qi(X). The main result of this paper is that integration of forms
over cubes induces an isomorphism 7: Hp(T*'q(X))-> Hp(X;Qq) for
q >: 1 and for all/?. / is multiplicative in the sense that the diagram

r® r I i

Hp>{X; Qj ® H»{X; Qj - H"+»(X; Qqι+J

commutes.
35
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In [2]-[6] the Γ-forms are used to set up a correspondence between
spaces and commutative differential graded algebras over the integers. For
nonsimply connected spaces the algebraic model is equivalent to the
Lazard completion of the fundamental group. For certain categories of
C.W. complexes of finite type the Γ-forms induce an equivalence between
the ordinary homotopy category of such C.W. complexes and a homotopy
category of free commutative differential graded algebras over the in-
tegers. The homotopy category of tame spaces [7] of finite type is
equivalent to a homotopy category of free commutative differential graded
algebras over the integers, also of finite type.

The key technical difference between the Γ-forms and the filtered
version of Cartan-Miller forms is that integration of Γ-forms induces an
isomorphism in all dimensions, while integration of the filtered Cartan-
Miller forms A*'q induces an isomorphism only in dimensions < q. As a
consequence the algebraic models of simply connected spaces constructed
in [4]-[6] contain more information about torsion in homotopy than the
analogous models constructed using filtered Cartan-Miller forms. The
algebraic model of the fundamental group based on Γ-forms [2]-[4]
contains more information about π than is contained in the corresponding
model based on filtered Cartan-Miller forms unless the first homology
group is torsion free, in which case the two models are the same (see [3]).

Lambe and Priddy [10] have used the filtered version of Cartan-Miller
forms in the computation of AΓ*(G; Qq) for certain finitely generated
torsion free nilpotent groups G and certain q.

More precise statements of applications of the Γ-forms to homotopy
theory and some examples are given in §2. Section 3 contains proofs of
the properties of Γ-forms on a cube used in §4 to prove the main result.

2. Applications and examples. In [2], [3], [5] the Γ-forms are used to
associate a model, MX(X)9 to each connected space X with HX(X\ Z)
finitely generated. MX(X) is a free commutative differential graded alge-
bra over the integers generated by elements in dimensions 1 and 2, and is
called a 1-model for X. Mλ{X) in turn determines a space denoted by
I Mj( X) I. Mx( X) is an analogue, based on Γ-forms, of Sullivan's 1-minimal
model [14] and is a stronger invariant than the 1-minimal model of X.

Invariants of M,( X) are related to the fundamental group of X. Given
a 1-model Mx set LMX equal to the first homology group of the chain
complex Hom(QMλ, Z), where QMX denotes the indecomposables of Mx.
As in [14] the quadratic part of the differential on Mx induces a Lie
algebra structure on LMX. Denote by grLMx = ΘΛ>! gr̂  LMX the associ-
ated graded Lie algebra.
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Given a group G, gr(G) = Θ ^ g r ^ G ) denotes the graded Lie

algebra of successive quotients of the lower central series subgroups of G

and Laz(G) denotes the Lazard completion of G. Roughly, a Lazard

group is a group with just enough divisibility and completeness for the

inverse of the Campbell-Hausdorff formula to be defined and give a Lie

algebra structure on the group.

THEOREM 2.1. ([2], [3], [5]). Let X be a connected space with Hλ{X\ Z)

finitely generated. Then
(i) I Mx( X) I is an Eilenberg-MacLane space of type ΛΓ(Laz(τ7-1( X), 1)).

(ii) Θ ^ f e r , LMX{X) ® Qk] and ®k^[ek(^(X)) ® Qk] are isomor-

phic graded Lie algebras,

EXAMPLE 2.2. Let G be the group of upper triangular matrices with a,

b integers and c an element of Z/5Z.

1
0
0

a
1
0

c '
b
1

G has presentation {g,, g2, g21: (g2 1, g,), (g2 1, g2), gfi, (g2> sO&ύ1}-

Denote by X the 2-dimensional C.W. complex corresponding to this

presentation of G. Set MX(X) equal to the free commutative differential

graded algebra over the integers with generators wl9 w2, w21 in dimension

1; γ2 1 in dimension 2; and differential determined by setting dwλ — dw2 —

0, dw2] = -w2Wj + 5γ21. Then Af^X) is a 1-model for X LMλ(X) is

Z θ Z θ Z/5Z with generators iv,, vv2, iv2I, respectively, and with Lie

bracket given by [iv2, ivj = w21, [w2l9 wj = [ίv21, >v2] = 0.

In this case, G is a Lazard group so it follows from Theorem 2.1(i)

that \Mλ(X)\ is a K(G, 1). Note that G is isomorphic to the group

obtained by applying the Campbell-Hausdorff formula to LMX(X). We

conjecture, in general, that the Lazard completion of πx(X) is isomorphic

to the group obtained by applying the Campbell-Hausdorff formula to the

Lazard completion of LMλ{ X) as a Lie algebra.

In [4]-[6] the Γ-forms are used to associate a model M(X) to each

N — 1 connected free commutative differential graded algebra over the

integers called a model for X. M(X) in turn determines a space \M(X)\.

The construction of M(X) is motivated by Sullivan's construction of

minimal models [14] and is a stronger invariant than Sullivan's minimal

model, as M(X) contains information about torsion in the homotopy

groups of X and the Sullivan minimal model for M(X) ® Q is the

Sullivan minimal model for X.
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Given a free commutative differential graded algebra M of finite type
over the integers, set LM equal to the homology groups of the chain
complex Hom(βM, Z). The quadratic part of the differential on M
induces a bracket [ , ]: LpM ® LqM -»L p + q_ λM satisfying the usual
identities for the Whitehead product in homotopy

(a)

(b)

(-l) M M [[x, y]9z] + ( - l ) M W [ [ * z]9 x] + (-l) M M [[z, x]9y] = 0.

In [7] Dwyer defines tame spaces and proves that the homotopy
category of tame (N — 1) connected spaces, N > 3, is equivalent to an
algebraic homotopy category of tame N — 1 reduced differential graded
Lie algebras over Z.

An N — I connected space, N > 3, X is called tame if πN+k(X) is an
^-module for k > 0, where Ŝ  denotes the smallest subring of the
rationals containing \/p for each prime p with 2/> — 3 < k. We say X is
of finite type if each πN+k(X) is a finitely generated S^-module. Associ-
ated to each N — 1 connected space I , i V > 3 , there is a tame space Xτ

and a map /: X-^ Xτ inducing isomorphisms /*: πN+k{X) ® 5*̂  ->
^) . XΓ is called the tame localization of X.

THEOREM 2.3 ([4], [5]). (i) The homotopy category of tame N — 1
connected spaces, N > 3, of finite type is equivalent to an algebraic homo-
topy category of N — 1 connected free commutative differential graded
algebras of finite type over the integers.

(ii) LetX be an N — 1 connected space, N > 3, wΛαse integer homotopy
is of finite type and let M{ X) be a model for X. Then

(a) ®teo[LN+kM(X) ® Sk] is isomorphic to ®k^0[πN+k(X) ® SJ
6y α« isomorphism which sends the bracket in LM{X) to the Whitehead
product in π(X).

(b) I M( X) I is the tame localization of X.

The Γ-forms induce an equivalence between ordinary homotopy
theory of certain C.W. complexes of finite type and commutative differen-
tial algebras.

We say a graded group H* satisfies the C-N condition if multiplica-
tion by p defines an automorphism on HN+k for all pairs of positive
integers (p, k) with 2p - 3 < k + 1.



DE RHAM THEOREM WITH CUBICAL FORMS 39

A space X is called a C-N space if X is N — 1 connected and is
homotopy equivalent to C.W. complex of finite type whose cohomology
groups H*{X\ Z) satisfy the C-N condition.

THEOREM 2.4 ([6]). For each integer N > 3 the homotopy category of
C-N spaces is equivalent to an algebraic homotopy category of N — 1
connected free commutative differential graded algebras of finite type over
the integers whose cohomology groups satisfy the C-N condition.

EXAMPLE 2.5. Fix a positive integer N which is not divisible by 2 and
not divisible by 3. Consider the problem of identifying all homotopy types
of simply connected C.W. complexes whose integer cohomology ring is
H*, where

( 7 * = 0 3

Z/NZ, * = 4,8,
0 otherwise,

and the cup product H4 ® H4 -> Hs is the zero map.
Given integers α,, a2 set M(al9a2) equal to the free commutative

differential graded algebra over the integers with generators and differen-
tials in dimension < 8 given below where the arrow points from a
generator to its differential, and the number to the left of a generator
indicates the dimension of the generator.(3)

(4)
(8)

(3)
(6)
(7)
(7)

(10)

(5)
(6)
(8)
(9)

(7)
(8)

(7)

M, - + 0

w2-»0
«3-0

o, -»Nu 2

V2 -» UλU2

U 3 -» A^M3

o 4 -» u\

V5 - M l M 3

w, -* Nv2

w2 -* Nv4

W3 -> Ό2Uχ

w4 -* Nv5

JC, -»ΛΓwj

x 2 -» «2υ,

j , - iVx2

-o,u,
- ϋ , M 2

- ϋ 3 M 4

- W,M, - α,M3

- w , « 2

- w,o, - α 2 i/ 3
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Add additional generators as necessary so the cohomology vanishes in
dimensions > 9. The construction of M(ax, α2) is motivated by [9]. The
double lines above separate generators of different resolution degree.
Adapting the resolution-perturbation approach in [9], [12] to the present
situation it follows from Theorem 2.4 that the set of homotopy types of
simply connected C.W. complexes with cohomology rings H* are in a 1-1
correspondence with the set of algebraic homotopy types represented by
the algebras M(ax, α2). Here two free differential algebras are homotopy
equivalent if there is a map between them inducing an isomorphism on
cohomology.

Set G equal to the group of lower triangular matrices with a and b
units in Z/NZ and c an arbitrary element ("£), in Z/NZ. Then M(aλ9 α2),
is homotopy equivalent to M(βl9β2) if and only if there is an element
(fb) in G with

a 0W«i
c b

where al9 a2, βx, β2 denote the mod N reductions of aλ9 a2, βχy β2

respectively.
Thus the set of homotopy types of simply connected C.W. complexes

of finite type with cohomology ring H* is in a 1-1 correspondence with
the set of orbits of G acting on Z/NZ θ Z/NZ. This illustrates the
general result that if the ring H* is TV — 1 connected, N > 3, finite
dimensional and satisfies the C-TV condition, then the set of homotopy
types of simply connected C.W. complexes of finite type with cohomology
ring isomorphic to H* can be identified with the set of orbits of a
unipotent group acting on a lattice in a finite-dimensional algebraic
variety.

A cell complex corresponding to the algebra M(ax, a2) is constructed
as follows. Set Xx equal to the wedge of spheres Si V Sb V S] and let ta9

ιb9 ιc denote elements in π(Xλ) corresponding to the inclusions of the
respective spheres. To Xx attach a 4-cell by an attaching map representing
the element Nιb in π3(Xx) and attach an 8-cell by a map representing the
element Nιc - ax[[ιb9 i j , ιa] - a2[[ιb9 ι β ], ιb] in irΊ(Xλ).

3. Properties of T***(IN). Denote by IN the standard TV-cube in

RN. IN is the set of TV-tuples x = (xl9... ,xN) of real numbers 0 < *,- < 1,

i — 1, 2,...,TV. A basic /?-form of weight q on IN in the coordinates
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is a differential form

x?χ - xpxftdxk Λ f\xbdxk

where {/,,...,/,} and {&,,... ,fĉ } are disjoint subsets of {1,2,... 9N}9 the

α's and /Γs are nonnegative integers, and q = max{α l 9 . . . 9 α y ; /^ +

I, . . . , j8 ,+ 1}.

Denote by β^ the smallest subring of the rationals containing \/p for

each prime/? with/? < q. Denote by Tp'q(IN) the module of all β ^-linear

combinations of basics-forms of weight less than or equal to q.

The usual differential on forms extends to a g^-linear operator d:

TP>%IN) -> τp+ι>q(IN) and the wedge product operation on basic forms

extends to a map

Note that the wedge product of forms of weights qλ and q2 can have

weight less than qλ + q2. For example the wedge product of form x\dx2 of

weight 2 in / 2 and of form x2 of weight 1 in I2 is the form x\x2dx2 which

has weight 2. The restriction of a form of weight q on / ^ to a face of / ^

can have weight less than q. For example the form x\dxx on I1 of weight 2

restricted to the face x2 = 1 is the form dx, on 71 which has weight 1.

Denote the boundary of IN by 3/^ and let r denote the restriction of

(/?, q) forms on IN to the boundary. The following lemma is used to prove

Theorem 4.1.

LEMMA 3.1. Forp>0,q>\ the sequence T™(IN) ^ Tp>%dIN) -» 0

is exact. That is, every p-form of weight less than or equal to q on dIN is the

restriction of a p-form of weight less than or equal to q on IN.

The proof of Lemma 3.1 follows easily from

PROPOSITION 3.2. Let (IN)k, Λ;>0, denote the k-skeleton of IN.

Suppose ω E Tp>q({IN)k), q>\, and the restriction of ω to the (k - 1)-

skeleton is identically zero. Then there is an ωk in Tp*q(IN) whose restriction

to(IN)k isω.
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Proof of Lemma 3.1. Assume by induction on k that Tp-q(IN)
Tp'\{IN)k~x) -> 0 is exact and consider the diagram

0 0

1 i

Tp^(lN,(IN)k~]) ->

1

I
0.

The column on the left is exact by assumption, the top row is exact by
Proposition 3.2, and the second column is exact by definition of
Tp^((IN)k, (IN)k~ι). A diagram chase shows that the middle row is
exact. Thus Proposition 3.2 implies TP^(IN) -* Tp«({IN)k) -> 0 is exact
for all k. In particular, T™(IN) -> τp^((IN)N~ι = 97") -> 0 is exact.

Proof of Proposition 3.2. Let ω e Tp-%(IN)k

9(IN)k'1) with # > 1. We
want to show that ω is the restriction of a form ωk on 7^. Since ω
restricted to (iN)k~{ is identically zero, ω is a sum of elements in
TP>i((IN)k, (IN)k-χ) which are nonzero on only one fc-face of (/")*.
Thus we can assume ω is nonzero on only one λ -face of IN

9 say F. Denote
by {xai9-.-9xak} Λe set of variable coordinates on F. Set {xbχ9...9xbι}
equal to the set of coordinates that are identically I on F and set
{xC|,. ,xc} equal to the set of coordinates that are identically zero on F.
Note {al9... 9ak}9 {bl9... 9bi}9 {cl9... ,c7} are disjoint sets whose union is
{1,2,3,. ..,N}. ω restricted to F is a sum of forms of type
p(xaι9...9xak)dxatιΛ Λdxaιj where p(xaί,...9xak) is a polynomial
with Qg coefficients and I < iχ

P< i2 < < /p < /:. Since co restricted to
any (A: — l)-face of F is zero, it follows that each one of the summands
restricted to a (k — l)-face is also zero. Thus it is sufficient to prove
Proposition 3.2 in the special case where co = p(xaι,... ,xak)dxd]

Λ f\dxa , where ω is nonzero only on the Λ -face F of IN

9 and where ω
vanishes on the (k — l)-skeleton of F. The condition that ω vanishes on
the (k — l)-skeleton implies that if xfl is I or 0 with p + I < / < / : , then
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Define the element ωk e TP>%IN) by the formula

Clearly ω^ restricted to F equals ω. We claim that the restriction of ωk to

any other /c-face of IN, say F 1 , is identically zero. If {xh] xbj9 xC]9. ..9xc)

are the variables that are constant o n f 1 , then xbι9...9xbj(l — xCk)

(1 — xc) = 0 on F 1 so ωk restricted to F 1 is identically zero. Suppose

{xb]9... 9xb ι9 xC],... 9xc} is not the set of constant variables on/ 1 1 . Then at

least one of the coordinate functions {xei,.. 9xa} must be constant on

F 1 . If xa. is constant, 1 < / </?, then dxaχ Λ Λd;cΛ Λ Λdxa — 0

on F 1 so ωk = 0 on F 1 . If xα is constant, /? + 1 < / < k9 then

p ( x β l , . . . ,xaf) = 0 on F ι since ω vanishes on the (k — l)-skeleton.

If / is any (k — l)-face of IN then at least one of the variables xQ{

must be constant on /. But then ωk restricted to / is identically zero by the

above argument.

PROPOSITION 3.3. Let ω be a (p, q)-form on IN. Then the integral of ω

over any p-face of IN is an element of the ring Qq.

Proof. We can restrict ourselves to the (/?, #)-form

= γ«i . . . χ«jχβ\dxk Λ
l\ Ij K\ Λjω

A /?-face P of IN is determined by specifying p variable coordinates and

from the remaining N — p coordinates specifying some to be equal to 1

and the rest to be equal to 0. If the p variable coordinates are not

xkι,...9xk9 then the integral of ω over P is equal to zero. If the coordi-

nates xk9...9xk are variable, then the restriction of ω to P is either zero

or equal to

ωx = xζxdxk Λ

If P is oriented by the ordered basis {dxkχ9... ,dxk }, then

This is an element of Q since each βι•,+ 1 < q.
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Because the proof of Stokes' Theorem for chains on IN can be
repeated word for word from the classical case we get

COROLLARY 3.4. The integration over chains induces a map of cochain
complexes

where on the right we have the complex of cubical cochains on IN.

PROPOSITION 3.5. For N > 1 and q> 1, the cohomology of the complex
{T*i{IN\d}isgwenby

HiT{I))\
V V Π [0 fori>Q.

Proof. The result follows by direct calculation in the case N = 1.
Assume by induction that the proposition holds for N — k. The proposi-
tion follows for N ~ k + 1 by applying the Kunneth Theorem to T*>q(Ik)

4. Properties of T***(X). Let X be a simplicial complex of finite
type together with a subdivision into nondegenerate cubes. An element in
Tp-q(X) is a rule, w, which assigns to each nondegenerate TV-cube, F, in X
an element ω(F) in Tpq{IN) so that for each face / of /% ω(/) is the
restriction of ω(F) to the face /. ω is called a (/?, q) form on X.
Integration gives a map of the complex T**q(X), of forms of weight < q
on X, into the complex of cubical cochains C*(X; Qq) on X with Qq

coefficients:

I:T*«{X)->C*{X\Qq).

From Corollary 3.4 it follows that this is a map of cochain complexes.
In fact in this case we have

THEOREM 4.1. For q > 1 the map

induced by integration is an isomorphism for all p.

Proof. The proof is by induction on the skeletons of X. Suppose the
proposition is true on the /-skeletons, X1, of X for / < k.
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Consider the commutative diagram

o .* τ*<i(xk,xk-1) -» τ*«(xk) -» τ*«(xk-λ) -* o
/I 71 /I

which gives rise to the commutative diagram

where the rows are exact and t is an isomorphism by assumption. By the
five lemma it suffices to show that K is an isomorphism. Let [Ik\ j E /}
be the set of /c-cubes of Xk. Then as a (^-module

j

and

C*(xk, Xk~x\ Qq) =ΣC*(lk

9 3//; Qq)
j

and it is sufficient to show that integration induces an isomorphism

(/*, 3/*)) ^>Hp(Ik, dlk] OX

The commutative diagram

0 _* T*'q(Ik,dIk) ^ T*q(Ik) -» T*^(dlk) ^ 0

n n n
0 - C*(lk,dIk;Qq) - C (/*;βJ - C*(θ/A

;ρ,) - 0

gives rise to a map of long exact cohomology sequences (note the top row

is exact by Lemma 3.1) with /: H*(T*q(Ik)) -> H*(Ik; Qq) an isomor-

phism by Proposition 3.5. Hence H*(T**q(Ik

9 dlk)) ^H*(Ik, dlk; Qq) is

an isomorphism by the five lemma.
If we denote by Λ the product on cohomology induced by the wedge

product of differential forms and by U the cup product, then we can
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formulate the multiplicativity property of the isomorphism / as follows:

THEOREM 4.2. The diagram

HiX; β J Θ H'(X; β J - H^(X; β, i+J

commutes.

Proof. It is sufficient to show that the diagram

H'iX: Qj9H»(X: β j - H"+»(X:

(1) J®JI U

commutes, where / denotes the inverse of /. / is induced by a map /:
C*(X; Qq) -> T*'q(X) of c o c h a i n c o m p l e x e s . F o r / = ( i v i2,...JN-P) a
sequence of integers with 1 < /, < ι2 < < iN_p < N and ε =
(ε l9 ε2,... ,εN_p) a sequence of O's and Γs, denote by λ̂  the /?-face of IN

with the ίyth coordinate function, Xt, identically equal to Ej for 1 <y < N
- p. Denote by (λ^)* the element of CP(IN\ Z) which is 1 on λε

z and 0 on
all otherp-laces on IN. Set J(λ))* equal to

- x t j ifβ,. = O,

and (j\, j29---Jp) is the increasing sequence with {/„.. .9iN-p} U
{y^...,^} = {l,2,...,7V}.For#> 1 the map 7: C*(IN; Qq) -» T*>4(IN)
of cochain complexes extends uniquely to a map /: C*(Z; Q )̂ -» T*
of cochain complexes. For Fap-facc of 7^,

0 otherwise .

Hence 7 o 7 is the identity on C*(X; Qq).
Define a map φ: C*(X; Z) -> g 2 ® C*(,V; Z) ® C ί̂̂ T; Z) as fol-

lows.
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Let N be an integer, N > 0. Let / = (il9.. . 9 i p ) 9 j = ( y , , . . . JN-P) be
increasing sequences of integers from the set { 1 , 2 , . . . , N } . Let ε =
(εl9...9εp)9 ε1 = ( ε j , . . . ,εjv_ ; ?) be sequences of 0's and Vs. Define the
element a(i9 ε, y, ε1) of Q2 by

— if / ory is empty,
a(i9ε9j9ε

ι) = \ 2N

otherwise,

where ρ(/, y) is the number of pairs (jk9 /,) with iι <jk. Define

φ: C*(/"; Z) - β 2 ® C*(/^; Z) ® C ^ / ^ ; Z)

by setting

where the sum is over all pairs (λ% λε

y) of faces of IN whose dimensions
add up to N9 and by requiring that φ commute with the inclusion of faces
of IN into IN. This defines φ: C*(-Y; Z) -> β 2 ® C*(X; Z) ® C*( JT; Z).
φ induces a map C*(X; Z) ® C*(X; Z) -> C*(Z; β 2 ) . From the acyclic
models theorem [8] it follows that any two diagonal approximations
induce the same product on cohomology. Hence the map H*(X; Z) ®

H*(X; Z)Φ-^H*(X; Q2) is the standard cup product [13] followed by the

coefficient map induced by the inclusion of Z into Q2.

By a direct computation

Hence diagram (1) is commutative on the level of cochain complexes.

REMARK. The map φ: C*(X; Q2) -> C*(X\ Q2) ® C*(X; Q2) is not

co-associative. The map of chain complexes

E: Cp(X; Qq) - HomβJ[r^( Jf); Qq)

is defined as follows: Let σ = Σ ot ® aι be an element of C^ Z) ® β^ (X
of finite type). Set £(σ) equal to the homomorphism which, when applied
to an element ω in Tp-q(X), is the element Σ aιjσι ω of Qg. It follows from
Corollary 3.4 that E is a map of chain complexes.
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THEOREM 4.3. If X is a simplicial complex of finite type, the map

E: Hq{X\ Qq) -» Hp(T*'q(X)) is an isomorphism of Qq-modules for q >: 1

and all p.

Proof. From the universal coefficient theorem for cohomology we get

the commutative diagram with exact rows:

0 - ΈxtQlHr+\T*«(X)),Qq) - Hp{T*>«(X)) -

0 - Ext o j(tf '+ I(*;β,),βJ - Hp{X\Qq) -

where iE)ίt and iH are isomorphisms. Hence E is an isomorphism.
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