CHARACTERIZING THE DIVIDED DIFFERENCE WEIGHTS FOR EXTENDED COMPLETE TCHEBYCHEFF SYSTEMS

R. B. BARRAR AND H. L. LOEB

Newman and Rivlin have shown that there is a 1-1 correspondence between the nodes and weights of the nth order divided difference of n th degree polynomials. Their method applies only to polynomials. In this paper we develop a new approach and apply it to extend their results to the setting of Extended Complete Tchebycheff Systems.

0. Introduction. In [7] Newman and Rivlin (see also the reference there to S. Karlin's results) were able to characterize the weights which appear in the *n*th order divided difference formula with respect to the base functions $\{u_j(x) = x^j\}_{j=0}^n$ and to establish a 1-1 correspondence between these weights and the corresponding set of nodes, $0 = x_0 < x_1 < \cdots < x_n$, used in the formula. We propose in this paper to extend this result to the setting where the family $\{u_j(x)\}_{j=0}^n$ forms an Extended Complete Tchebycheff System (E.C.T.S.) on $[0, \infty)$. This means for each k, where $0 \le k \le n$, any non-trivial linear combination of the functions $\{u_0, \ldots, u_k\}$ has at most k zeros (including multiplicities) in $[0, \infty)$ where each $u_j \in C^n[0, \infty)$. We further assume that $u_0(x) \equiv 1$. For the remainder of this paper we shall postulate that these basic hypotheses concerning $\{u_i\}_{i=0}^n$ hold.

Among the E.C.T.S. for which these results are valid, we will highlight the families generated by the Cauchy Kernel and the Exponential Kernel.

1. Statement of problem. Let

(1)
$$S = \{ \mathbf{x} = (x_1, \dots, x_n) \subset \mathbb{R}^n : 0 < x_1 < \dots < x_n \}, \quad x_0 \equiv 0.$$

A is defined to be the set of all $\mathbf{a} = (a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ such that the following properties are valid

(2)
(i)
$$(-1)^{n-i}a_i > 0$$
 $(i = 0, 1, ..., n)$
(ii) $\sum_{i=0}^n a_i = 0$;
(iii) $(-1)^{n-j}\sum_{i=j}^n a_i > 0, \quad j = 1, ..., n.$

The sets S and A are related through the classical concept of divided differences. For each $\mathbf{x} \in S$ and each real-valued function f defined on $[0, \infty)$, consider the *n*th order divided difference of f with respect to the points (x_0, x_1, \ldots, x_n) defined as follows.

(3)
$$f[x_0,...,x_n] = \frac{U\begin{bmatrix} u_0,...,u_{n-1}, f \\ x_0,...,x_n \end{bmatrix}}{U\begin{bmatrix} u_0,...,u_n \\ x_0,...,x_n \end{bmatrix}},$$

where

$$U\begin{bmatrix} q_0,\ldots,q_n\\ x_0,\ldots,x_n \end{bmatrix} = \det\{q_i(x_j); i, j=0,1,\ldots,n\}.$$

We then set

(4)
$$a_i = (-1)^{n+i} \frac{U\begin{bmatrix} u_0 & \dots & u_{n-1} \\ x_0, \dots, x_{i-1}, & x_{i+1}, \dots, & x_n \end{bmatrix}}{U\begin{bmatrix} u_0, \dots, & u_n \\ x_0, \dots, & x_n \end{bmatrix}}, \quad i = 0, 1, \dots, n.$$

Clearly,

$$f[x_0,\ldots,x_n] = \sum_{i=0}^n a_i f(x_i).$$

The $\{a_i\}$ are called the weights of the divided difference formula. Cramer's Rule, together with (3), (4), shows that for a given $\mathbf{x} \in S$, $\mathbf{a} = (a_0, \ldots, a_n)$ satisfies (4) iff

(5)
$$\sum_{i=0}^{n} a_{i} u_{j}(x_{i}) = \delta_{n_{j}}, \qquad j = 0, 1, \dots, n,$$

where δ_{n_i} is the Kronecker delta symbol.

Thus for each $x \in S$, we can associate an **a** via the relationship (4). Let g be the map defined by (4), that is g(x) = a. The main purpose of this paper is to show that g is a 1-1 map of S onto A. As we indicated in the introduction, Newman and Rivlin proved this result for the special case of polynomials; that is, where $u_i = x^i$.

LEMMA 1. g maps S into A.

Proof. Since (u_0, \ldots, u_n) form an Extended Complete Tchebycheff System (E.C.T.S.), it is clear from the definition of the weights a_i in (4) that $\mathbf{a} = g(\mathbf{x})$ satisfies (i) and (ii). (In this regard recall that $u_0 \equiv 1$.)

To prove (iii), for $0 \le j \le n - 1$ pick $u^{(j)}$ in the linear subspace U spanned by (u_0, \ldots, u_n) with the properties

(a) $u^{(j)}(x_i) = 1, i = 0, 1, \dots, j,$

(b) $u^{(j)}(x_i) = 0, i = j + 1, ..., n.$

Using (5) and the above it follows that

$$\sum_{i=0}^{j} a_{i} = \sum_{i=0}^{n} a_{i} u^{(j)}(x_{i}) = b_{n},$$

where b_n is the coefficient of u_n in the expansion of $u^{(j)}$. From [5, p. 379] we infer that $\{(d/dx)u_j(x)\}_{j=1}^n$ forms an E.C.T.S. Thus by *Rolle's Theo*rem $(d/dx)u^{(j)}(x)$ has a maximum set of n-1 simple zeros consisting of j zeros in (x_0, x_j) and (n-j-1) zeros in (x_{j+1}, x_n) . Further, since $u^{(j)}(x_j) = 1$ and $u^{(j)}(x_{j+1}) = 0$, $du^{(j)}/dx < 0$ in $[x_j, x_{j+1}]$ and thus $(-1)^{n-j}(du^{(j)}/dx)(x_n) > 0$. Using as data these n-1 zeros of $(d/dx)u^{(j)}(x)$ and x_n , we conclude by Cramer's Rule that $\operatorname{sgn}(d/dx)$ $u^{(j)}(x_n) = \operatorname{sgn} b_n$; that is,

$$(-1)^{n-j}\sum_{i=0}^{j}a_{i}>0.$$

By (2)(ii),

$$\sum_{i=0}^{J} a_{i} = \left(\sum_{i=0}^{n} a_{i} - \sum_{i=j+1}^{n} a_{i}\right) = -\sum_{i=j+1}^{n} a_{i}.$$

Finally, then

$$(-1)^{n-(j+1)} \sum_{i=j+1}^{n} a_i > 0.$$

LEMMA 2. Let $\{\mathbf{x}^{(v)}\}_{v=1}^{\infty} \subset S$ be a sequence with the property that the corresponding sequence $\{\mathbf{a}^{(v)}\} \subset A$ (where $\mathbf{a}^{(v)} = g(\mathbf{x}^{(v)})$) has the feature that $\mathbf{a}^{(v)} \to \mathbf{a} \in A$. Then if $\mathbf{x}^{(v)} \to \mathbf{x}$, we can conclude that $\mathbf{x} \in S$.

Proof. Assume the result is false. We treat two cases. Case (1): $x_i^{(v)} \rightarrow x_0 \equiv 0$ for all *i*. Thus using (5) for j = n we find the limit function satisfies

$$\sum_{i=0}^n a_i u_n(0) = 1,$$

R. B. BARRAR AND H. L. LOEB

which contradicts (2)(ii). Case (2): For some *i* where $1 \le i \le n - 1$, $x_0 < x_i = x_{i+1}$. Thus by exploiting the fact that **a** satisfies (2)(iii) and (5), we can find a set of numbers $\{b_j\}_{j=0}^k$, where $b_k \ge 0$ with $0 \le k \le n - 1$ so that for the k + 1 distinct components of the limit vector **x**, say $\{x_{l_0}, \ldots, x_{l_k}\}$, we have

$$\sum_{i=0}^{k} b_i u_j(x_{l_i}) = 0 \qquad (j = 0, 1, \dots, n-1).$$

This contradicts the fact that $\{u_j\}_{j=0}^{n-1}$ form an E.C.T.S. Thus the proof is complete.

2. Main results. In this section we will develop the topological tools which we will use to prove our principal result; that is, g is a 1-1 map of S onto A. We will employ a differential equation approach which has been exploited by Fitzgerald and Schumaker [4]; Barrar, Loeb and Werner [2]; Barrar and Loeb [1, 3].

Our approach, in contrast to other attacks on these types of problems, has the important property that it does not require any type of a priori uniqueness. In this regard see Fitzgerald, Schumaker [4] or Newman, Rivlin [7], where such information is used.

Consider a fixed $z^* \in A$. We want to demonstrate that there is exactly one $x^* \in S$ which satisfies

$$\sum_{i=0}^{n} a_{i}^{*} u_{j}(x_{i}) = \delta_{nj} \qquad (j = 0, 1, \dots, n).$$

Since $\sum_{i=0}^{n} a_i^* = 0$ and $u_0 \equiv 1$, this is equivalent to demonstrating it for the system

(6)
$$\sum_{i=1}^{n} a_{i}^{*} (u_{j}(x_{i}) - u_{j}(x_{0})) = \delta_{nj}, \quad j = 1, \dots, n.$$

For each $x \in S$, consider the system of *n* ordinary differential equations

(7)
$$\frac{d}{d\tau} \left[\sum_{i=1}^{n} \left((1-\tau)a_i + \tau a_i^* \right) \left(u_j(x_i(\tau)) - u_j(x_0) \right) \right] = 0,$$

 $j = 1, \dots, n$

where $\mathbf{a} = g(\mathbf{x})$ and the initial conditions are $\mathbf{x}(0) = \mathbf{x} = (x_1, \dots, x_n)$. Here τ is the independent variable, $\mathbf{x}(\tau) = (x_1(\tau), \dots, x_n(\tau))$, and $\mathbf{a} = (a_0, \dots, a_n)$. Integrating (7) we find that

(8)
$$\sum_{j=1}^{n} ((1-\tau)a_i + \tau a_i^*) (u_j(x_i(\tau)) - u_j(x_0)) \equiv c_j, \quad j = 1, \dots, n.$$

We evaluate the constants c_i by setting $\tau = 0$. One finds using (6) that

$$\delta_{nj} = \sum_{i=1}^{n} a_i (u_j(x_i) - u_j(x_0)) = c_j, \quad j = 1, \dots, n,$$

and indeed at $\tau = 1$,

$$\sum_{i=1}^{n} a_i^* (u_j(x_i(1)) - u_j(x_0)) = \delta_{nj} \qquad (j = 1, \dots, n).$$

Thus, one notes that $\mathbf{a}^* = g(\mathbf{x}(1))$ and $\mathbf{x}(1)$ is a desired solution for \mathbf{a}^* . We see then that our main problem is to show that the system of differential equations has a solution in the interval [0, 1]. We proceed toward this goal.

For many important families of functions we will be able to verify the following assumption.

Assumption A. If $\{\mathbf{x}^{(v)}\}_{v=1}^{\infty} \subset S$ has the characteristic that $\mathbf{a}^{(v)} \equiv g(\mathbf{x}^{(v)}) \to \mathbf{a} \in A$ as $v \to \infty$, then $\{\mathbf{x}^{(v)}\}_{v=1}^{\infty}$ are bounded.

For the remainder of this section we shall postulate that Assumption A is valid for the E.C.T.S. $\{u_i\}_{i=0}^n$ on $[0, \infty]$ where $u_0 \equiv 1$.

Expanding (7) we obtain

(9)
$$\sum_{i=1}^{n} \left[\tau a_{i}^{*} + (1-\tau)a_{i} \right] u_{j}'(x_{i}(\tau)) \frac{dx_{i}}{d\tau}(\tau)$$
$$= \sum_{i=1}^{n} (a_{i} - a_{i}^{*}) \left[u_{j}(x_{i}(\tau)) - u_{j}(x_{0}) \right] \qquad (i = 1, \dots, n)$$
with $u_{j}'(x) = \frac{d}{dx} u_{j}(x)$

It is important to note that for $\tau \in [0, 1]$ and $\mathbf{x}(\tau) \in S$, the Jacobian matrix of the system (9),

(10)
$$J(\tau) = \{ (\tau a_i^* + (1-\tau)a_i)u_j'(x_i(\tau)); i, j = 1, \dots, n \},$$

is non-singular. This follows from the fact that $\{u'_j\}_{j=1}^n$ form a E.C.T.S. and that $(\tau \mathbf{a}^* + (1 - \tau)\mathbf{a})$ satisfies (2)(i) when $\tau \in [0, 1]$.

Further, it is easy to check using Assumption A and Lemma 2 that $\{\mathbf{x}(\tau); \tau \in [0, 1]\}$ is bounded, and if $\{\tau_v\}_{v=1}^{\infty} \subset [0, 1]$ has the property that $\mathbf{x}(\tau_v) \to \mathbf{x}$, then $\mathbf{x} \in S$. These facts can be used to show that the system of differential equations has a solution over [0, 1]. The basic ingredients of such an existence proof are enunciated in [1, 2].

For each $\mathbf{x} \in S$, let Φ be the map from $S \to B$ defined by $\Phi(\mathbf{x}) = \mathbf{x}(1)$ for $\mathbf{x} \in S$ where $B = \{\mathbf{x} \in S: g(\mathbf{x}) = \mathbf{a}^*\}$. If $\mathbf{x} \in B$, it is easy to verify that $\mathbf{x}(\tau) \equiv \mathbf{x}$ is a solution of (9) and, indeed, by the uniqueness of the solution of the system of differential equations, the only one. Thus Φ maps S onto B and since by the theory of differential equations Φ is continuous, Φ maps the connected set S onto the connected set B.

Let $x^* \in B$. Then x^* is a solution of the non-linear system (6). Further, the Jacobian matrix of the system is

$$\{a_i^*u_i'(x_i^*); i, j = 1, \ldots, n\}.$$

Since a^* satisfies (2)(i) and $\{u'_j(x)\}_{j=1}^n$ form a E.C.T.S., the matrix is non-singular. We can conclude by the *implicit function theorem* that x^* is an isolated point of *B*. Since x^* is an arbitrary point of the connected set *B*, it follows that *B* consists of exactly one point. Summarizing,

MAIN THEOREM. For each $\mathbf{a}^* \in A$, there is exactly one \mathbf{x}^* in S which satisfies

$$\sum_{i=0}^{n} a_{i}^{*} u(x_{i}^{*}) = \delta_{jn} \qquad (i = 0, 1, \dots, n),$$

and the map g defined by (4) is a 1-1 map which takes S onto A.

3. Applications. In this section we present some examples of E.C.T.S. which satisfy Assumption A and thus satisfy the hypothesis of the Main Theorem.

Consider the exponential kernel $K(\lambda, x) = e^{\lambda x}$ and any set of *n* positive numbers $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n$ with $\lambda_0 = 0$. Then we set

(11)
$$u_i(x) = K(\lambda_i, x), \quad i = 0, 1, \dots, n.$$

LEMMA 3. The exponential family of functions defined in (11) has the property that if a sequence $\{\mathbf{x}^{(v)}\}_{v=1}^{\infty} \subset S$ yields a sequence $\{\mathbf{a}^{(v)} = g(\mathbf{x}^{(v)})\}_{v=1}^{\infty}$ with the characteristic that $\mathbf{a}^{(v)} \rightarrow \mathbf{a} \in A$, then the $\{\mathbf{x}^{(v)}\}_{v=0}^{\infty}$ are bounded.

Proof. Let us assume that the components of $\mathbf{x}^{(v)}$ are not bounded. Then by going to a subsequence if necessary we can develop the following situation:

(12) (a)
$$\lim_{v \to \infty} x_n^{(v)} = \infty;$$

(b) $\lim_{v \to \infty} (x_n^{(v)} - x_i^{(v)}) = c_i, \quad i = l, ..., n, \text{ where}$
 $l \ge 1$ and $c_i \ge c_{i+1}, \quad i = l, ..., n-1, \text{ with } c_i \text{ finite};$
(c) $\lim_{v \to \infty} (x_n^{(v)} - x_i^{(v)}) = \infty, \quad i = 1, ..., l-1.$

Dividing each of the relationships

$$\sum_{i=0}^{n} a_i^{(v)} e^{\lambda_j x_i^{(v)}} = \delta_{nj}$$

by $e^{\lambda_j x_n^{(v)}}$ and letting $v \to \infty$, we find that the limits satisfy

$$\sum_{i=1}^{n} a_i e^{-\lambda_j c_i} = 0 \qquad (j = 1, \dots, n).$$

Let $c_{i_1} > c_{i_2} > \cdots > c_{i_k} = 0$ be the distinct values of $\{c_i\}_{i=l}^n$ where $k \le n - l + 1 \le n$. Then we can find numbers b_1, \ldots, b_k so that

$$f(\lambda) \equiv \sum_{i=l}^{n} a_i e^{-\lambda c_i} \equiv \sum_{m=1}^{k} b_m e^{-\lambda c_{i_m}},$$

where by property (2)(iii), $b_k \neq 0$. Thus since $f(\lambda_i) = 0$, i = 1, ..., n and $\{e^{-\lambda c_{i_m}}\}_{m=1}^k$ form an E.C.T.S., we have reached a contradiction. This completes the proof.

We claim that Lemma 3 is also valid for the Cauchy kernel, $K(\lambda, x) = 1/(1 + \lambda x)$.

LEMMA 4. Let $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_n$ be given and set $u_j(x) = 1/(1 + \lambda_j x)$ $(j = 0, 1, \dots, n)$. Then Lemma 3 is valid for the $\{u_i\}_{i=0}^n$.

Proof. Again assuming that $x_n^{(v)} \to \infty$, we can, by going to a subsequence if necessary, achieve the situation:

(a) $x_l^{(v)} \to \infty$, $i = l, \dots, n$, where $l \ge 1$;

(b) $x_i^{(v)} \rightarrow c_i$, i = 0, ..., l - 1, c_i finite with $c_i \le c_{i+1}$ and $c_0 = 0$. For each relationship

$$\sum_{i=0}^{n} \frac{a_i^{(v)}}{1 + \lambda_j x_i^{(v)}} = 0,$$

letting $v \to \infty$, we find

$$\sum_{i=0}^{l-1} \frac{a_i}{1+\lambda_j c_i} = 0 \qquad (j = 0, \dots, n-1).$$

Pick out the distinct elements $0 = c_{i_0} < \cdots < c_{i_{k-1}}$ of the set $\{c_i\}_{i=0}^{l-1}$ where $k \le l \le n$. Then there are k distinct numbers b_0, \ldots, b_{k-1} so that

$$f(\lambda) \equiv \sum_{i=0}^{l-1} \frac{a_i}{1 + c_i \lambda} = \sum_{m=0}^{k-1} \frac{b_m}{1 + c_{i_m} \lambda}$$

and where by properties (2)(i), (ii), (iii), $b_0 \neq 0$. Since $f(\lambda_j) = 0$ (j = 0, 1, ..., n - 1) we have contradicted the fact that the family $\{1/(1 + c_{i_m}\lambda)\}_{m=0}^{k-1}$ forms an E.C.T.S.

Our results can be extended to treat multiple knots also.

As an example, we have the following result, which includes the results of [7].

LEMMA 5. Let $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_r$ be given and consider the functions $\{x^q e^{\lambda_p x}; q = 0, 1, \dots, m_p - 1; p = 0, 1, \dots, r\}$. If $n + 1 = \sum_{p=0}^r m_p$ and if we set $u_j(x) = x^q e^{\lambda_p x}$ with $j = \sum_{t=-1}^{p-1} m_t + q$ and $m_{-1} = 0$, then Lemma 3 is valid for the functions $\{u_j\}_{j=0}^n$. (The λ_p are called the knots and the m_p are designated as the multiplicities of the knots of the kernel $K(x, \lambda) = e^{\lambda x}$. It is well known that this set of functions is a E.C.T.S., see [5, p. 9].)

Proof. Letting

n

$$f(\lambda, v) = \sum_{i=0}^{n} a_i^{(v)} e^{\lambda x_i^{(v)}},$$

we have

$$\frac{\partial^{q} f}{\partial \lambda^{q}}(\lambda, v) = \sum_{i=0}^{n} a_{i}^{(v)} (x_{i}^{(v)})^{q} e^{\lambda x_{i}^{(v)}}.$$

The set of equations corresponding to (5) for $a_i = a_i^{(v)}$, $x_i = x_i^{(v)}$ can be written as

(13)
$$\frac{\partial^{q}}{\partial \lambda^{q}} f(\lambda, v) \Big|_{\lambda = \lambda_{p}} = \delta_{p,r} \delta_{(q,m_{r}-1)} \qquad q = 0, 1, \dots, m_{p} - 1;$$
$$p = 0, 1, \dots, r$$

Assuming $x_n^{(v)} \to \infty$, if $r \ge 1$, we divide $f(\lambda, v)$ by $e^{\lambda x_n^{(v)}}$, and apply Leibnitz's rule for differentiation of a product to find, using the notation of (12)(a), (b), (c), that in the limit as $v \to \infty$, (13), for $p \ge 1$, becomes

(14)
$$\sum_{i=l}^{n} a_i c_i^q e^{\lambda_p c_i} = 0, \qquad q = 0, 1, \dots, m_p - 1; p = 1, \dots, r.$$

Combining equal c_i 's as in Lemma 3, this becomes

(15)
$$\sum_{s=1}^{w} b_s(c_{i_s})^q e^{\lambda_p c_{i_s}} = 0, \quad q = 0, 1, \dots, m_p - 1; p = 1, \dots, r,$$

where $w \le n + 1 - l$, $b_w \ne 0$ by (2)(iii), and $l \ge 1$. In (15) we are dealing with an E.C.T.S. of dimension $\le n + 1 - l$ with typical term $x^q e^{\lambda_p x}$.

Further, the function in (15) has at least $n + 1 - m_0$ zeros. Thus $n + 1 - m_0 < n + 1 - l$, that is,

$$(16) mmodes m_0 > l ext{ if } r \ge 1.$$

For any r, we divide the equations in (13) for $\lambda = \lambda_0$ by $(x_n^{(v)})^q$ for each $q = 0, 1, \dots, m_0 - 1$, and take the limit as $v \to \infty$. Using the notation of (12)(a), (b), (c) the result is a set of equations

$$\sum a_i(d_i)^q = 0, \quad d_i \le d_{i+1}, \qquad q = 0, 1, \dots, m_0 - 1.$$

Combining equal d_i 's we obtain a set

(17)
$$\sum_{s=1}^{g} b_{i_s} (d_{i_s})^q = 0, \qquad q = 0, 1, \dots, m_0 - 1.$$

Note that $x_i^{(v)} - x_n^{(v)} \rightarrow c_i$ (finite) implies $x_i^{(v)}/x_n^{(v)} \rightarrow d_i = 1$. Thus $d_i = 1$ (i = l, ..., n) with $g \le l$ and $b_{i_g} \ne 0$. In (17) we are dealing with a non-zero function with m_0 zeros generated from a E.C.T.S. of dimension at most *l*. Therefore we must have

$$(18) mmodel{m_0} < l.$$

If r = 0, (18) is a contradiction since $m_0 = n + 1$ and l < n + 1. If $r \ge 1$ both (16) and (18) must hold, which again is a contradiction.

References

- R. B. Barrar and H. L. Loeb, On monosplines of odd multiplicity of least norm, J. Analyse Math., 33 (1978), 12–38.
- [2] R. B. Barrar, H. L. Loeb and H. Werner, On the uniqueness of the best uniform extended totally positive monospline, J. Approx. Theory, 28 (1980), 20-29.
- [3] R. B. Barrar and H. L. Loeb, Oscillating Tchebycheff systems, J. Approx. Theory, 31 (1981), 188-197.
- [4] C. H. Fitzgerald and L. L. Schumaker, A differential equation approach to interpolation at extremal points, J. Analyse Math., 22 (1969), 117–134.
- [5] S. Karlin and W. S. Studden, *Tchebycheff Systems: With Applications in Analysis and Statistics*, Interscience, New York, 1966.
- [6] S. Karlin, Total Positivity, Stanford University Press, Stanford, 1968.
- [7] D. J. Newman and T. J. Rivlin, A characterization of the weights in a divided difference, Pacific J. Math., 93 (1981), 407-413.

Received May 5, 1982.

UNIVERSITY OF OREGON EUGENE, OR 97403