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CHARACTERIZING THE DIVIDED DIFFERENCE
WEIGHTS FOR EXTENDED

COMPLETE TCHEBYCHEFF SYSTEMS

R. B. BARRAR AND H. L. LOEB

Newman and Rivlin have shown that there is a 1-1 correspondence
between the nodes and weights of the nth order divided difference of n th
degree polynomials. Their method applies only to polynomials. In this
paper we develop a new approach and apply it to extend their results to
the setting of Extended Complete Tchebycheff Systems.

0. Introduction. In [7] Newman and Rivlin (see also the reference

there to S. Karlin's results) were able to characterize the weights which

appear in the «th order divided difference formula with respect to the

base functions {uj(x) — xJ}"=o and to establish a 1-1 correspondence

between these weights and the corresponding set of nodes, 0 = x0 < xx <

- " < xn9 used in the formula. We propose in this paper to extend this

result to the setting where the family {UJ(X)}J=0 forms an Extended

Complete Tchebycheff System (E.C.T.S.) on [0, oo). This means for each

k, where 0 < k < «, any non-trivial linear combination of the functions

{uQ,.. .,uk) has at most k zeros (including multiplicities) in [0, oo) where

each Uj E C^O, oo). We further assume that uo(x) = 1. For the re-

mainder of this paper we shall postulate that these basic hypotheses

concerning {Uj}J=0 hold.

Among the E.C.T.S. for which these results are valid, we will highlight

the families generated by the Cauchy Kernel and the Exponential Kernel.

1. Statement of problem. Let

( 1 ) S = [x = ( x u . . . 9 x n ) C R " : 0 < x { < • • • < * „ } , x Q = 0 .

A is defined to be the set of all a = (aO9...9an) E Rn+] such that the

following properties are valid

(i) ( - l y - ' a . X ) ( I = 0 , 1 , . . . , Λ ) ;
n

Λ,X (ϋ) Σ a, = 0;

(iii) ( - l ) " ~ y J U > 0 , j=h.-.,n.
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The sets S and A are related through the classical concept of divided

differences. For each x G S and each real-valued function / defined on

[0, oo), consider the nih order divided difference of/with respect to the

points (x 0 , xl9... ,xn) defined as follows.

U

(3)

where

We then set

f[xo,...,xn] =
XQ ,. . . ,Xn

U
uo,...,un

u ,Xn

= dct{q,(xj); i, j = 0, ! , . . . ,«} .

(4) a, = (-\r

Clearly,

u\u°
[*o>

u
_x0

- 1

5 *

?

-> Xι+\

..,un

- 1

f[xo, -.,xn] = Σ aif(xi)

The {a(} are called the weights of the divided difference formula. Cramer's

Rule, together with (3), (4), shows that for a given x E S, a = (a0,... ,an)

satisfies (4) iff

(5)
i = 0

where δnj is the Kronecker delta symbol.

Thus for each x E S, we can associate an a via the relationship (4).

Let g be the map defined by (4), that is g(x) = a. The main purpose of

this paper is to show that g is a 1-1 map of S onto A. As we indicated in

the introduction, Newman and Rivlin proved this result for the special

case of polynomials; that is, where uι — xι.

LEMMA 1. g maps S into A.
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Proof. Since (uθ9...9un) form an Extended Complete Tchebycheff

System (E.C.T.S.), it is clear from the definition of the weights at in (4)

that a = g(x) satisfies (i) and (ii). (In this regard recall that u0 = 1.)

To prove (iii), for 0 <jf < n — 1 pick w(7) in the linear subspace U

spanned by ( u θ 9 . . . , u n ) with the properties

(a) w(^(jcf.) = l,ι = 0,1, . . . J ,

(b)M<^(x/) = 0 , i = 7 + 1,...,Λ.

Using (5) and the above it follows that

Σ *, = Σ «,«ω(*,) = *„,
i=0 i=0

where bn is the coefficient of un in the expansion of u{j\ From [5, p. 379]

we infer that {(d/dx)Uj{x)}n

J=x forms an E.C.T.S. Thus by Rollers Theo-

rem (d/dx)u(J\x) has a maximum set of n — 1 simple zeros consisting of

j zeros in (x0, Xj) and (« — j — 1) zeros in (xj+λ9xn). Further, since

uϋ\xj)=l and K ° ' ) ( X / + 1 ) = 0, duu)/dx<0 in [x y,;c y + 1] and thus

( - l ) " " 7 ( d w ( / ) / ώ ) ( j c J > 0. Using as data these π - 1 zeros of

(d/dx)u{j\x) and JCΛ, we conclude by Cramer's Rule that sgn(d/dx)

uij\xn) = sgnbn; that is,

1 = 0

By (2)(ii),
J In n \ n

ya - ya - y a\ - - y a
ZJ

 ai ~ \ Δ aι ZJ
 aι ~ Δ ai-

ι = Q \ i = o ι=j+\ I i=j+\

Finally, then
n

Y a, >0. D

LEMMA 2. Let {x(ϋ)}^=i C S be a sequence with the property that the

corresponding sequence {a(v)} CA (where a ( ϋ ) = g(x(v))) has the feature

that a ( ϋ ) - * a E l Then ifx(v) -> x, we can conclude that x ^ S .

Proof. Assume the result is false. We treat two cases. Case (1):
χiiV) ~* xo — 0 f°Γ aU *• Thus using (5) fory = /iwe find the limit function

satisfies
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which contradicts (2)(ii). Case (2): For some / where 1 < / < w — 1,
xo < xι ~ xi+\ Thus by exploiting the fact that a satisfies (2)(iii) and (5),

we can find a set of numbers {bJ}
lj=Q9 where bk^0 with 0 < k < n — 1 so

that for the k + 1 distinct components of the limit vector x, say

{x/o,...,x/A},wehave

k

ΣbiuJ(χl) = o (y = o , i , . . . , / i - i ) .
i = 0

Jj-0

complete. D

This contradicts the fact that {UJ}"_Q form an E.C.T.S. Thus the proof is

2. Main results. In this section we will develop the topological

tools which we will use to prove our principal result; that is, g is a 1-1 map

of S onto A. We will employ a differential equation approach which has

been exploited by Fitzgerald and Schumaker [4]; Barrar, Loeb and Werner

[2]; Barrar and Loeb [1, 3].

Our approach, in contrast to other attacks on these types of problems,

has the important property that it does not require any type of a priori

uniqueness. In this regard see Fitzgerald, Schumaker [4] or Newman,

Rivlin [7],where such information is used.

Consider a fixed z* E A. We want to demonstrate that there is

exactly one x* E S which satisfies

Σ aΐUj(x,) = δnj ( j = 0, l , . . . ,/ ! ) .
j=0

Since ΣΊ=oaf = 0 and uo=l9 this is equivalent to demonstrating it for

the system

n

(6) 2 aΐ{Uj(Xi) ~ Uj(Xθ)) = Snj> 7 = 1,...,Λ.
2 = 1

For each x G S , consider the system of n ordinary differential equations

m —
dτ

- o ,

j = 1,...,«,

where a = g(x) and the initial conditions are x(0) = x = ( j t l 5 . . . ,xn).

Here T is the independent variable, x(τ) = (xι(τ)9...9xn(τ))9 and a =

(aQ9...9an). Integrating (7) we find that

(8) Σ ί O - T K + T α f K ^ U ί T ) ) - ^ ^ ) ) ^ ^ , y = l , . . . , / i .
7 = 1
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We evaluate the constants Cj by setting r = 0. One finds using (6) that
n

Onj £ Q1y Uj\Xj) UJ\XQ)j Cj9 j I , . . . , n ,

and indeed at T = 1,
n

2 αfffi ίxyO)) - Uj(x0)) = δnJ (j = l,...,/i).

Thus, one notes that a* = g(x(l)) and x(l) is a desired solution for a*. We
see then that our main problem is to show that the system of differential
equations has a solution in the interval [0,1]. We proceed toward this goal.

For many important families of functions we will be able to verify the
following assumption.

Assumption A. If {x(ϋ)}~=1 C S has the characteristic that a(ϋ) =
g(x(v)) -> a E A as v -> oo, then {x(ϋ)}^=1 are bounded.

For the remainder of this section we shall postulate that Assumption A
is valid for the E.C.T.S. (wz}^0

 o n [®> °°] where M O Ξ 1 ,
Expanding (7) we obtain

(9) z = 1 ' n

= Σ k - 4 w A ( ^ ) ) - φ o ) ] (i=l,...,n)
ι = l

It is important to note that for T G [0,1] and x(τ) E S, the Jacobian
matrix of the system (9),

(10) / ( τ ) = {{τaf + ( 1 - T ) 0 > ; ( X Z ( T ) ) ; /, 7 = 1 , . . . 9n}9

is non-singular. This follows from the fact that {uj}j=] form a E.C.T.S.
and that (Ta* + (1 - τ)a) satisfies (2)(i) when τ E [0,1].

Further, it is easy to check using Assumption A and Lemma 2 that
(x(τ); T E [0,1]} is bounded, and if {τΌ}™=ι C [0,1] has the property that
x(τυ) -> x, then x E S. These facts can be used to show that the system of
differential equations has a solution over [0,1]. The basic ingredients of
such an existence proof are enunciated in [1, 2].

For each x E 5, let Φ be the map from S -> B defined by Φ(x) = x(l)
for x E S where B = {x E S: g(x) = a*}. If x E B, it is easy to verify
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that x ( τ ) Ξ χ ί s a solution of (9) and, indeed, by the uniqueness of the

solution of the system of differential equations, the only one. Thus Φ

maps S onto B and since by the theory of differential equations Φ is

continuous, Φ maps the connected set S onto the connected set B.

Let x* E B. Then x* is a solution of the non-linear system (6).

Further, the Jacobian matrix of the system is

{ ά f u f j { x * ) \ i , j = 1 , . . . , « } .

Since a* satisfies (2)(i) and {uj(x)}j=ι form a E.C.T.S., the matrix is

non-singular. We can conclude by the implicit function theorem that x* is

an isolated point of B. Since x* is an arbitrary point of the connected set

B, it follows that B consists of exactly one point. Summarizing,

MAIN THEOREM. For each a* E A9 there is exactly one x* in S which

satisfies

j
1 = 0

and the map g defined by (4) is a 1-1 map which takes S onto A.

3. Applications. In this section we present some examples of

E.C.T.S. which satisfy Assumption A and thus satisfy the hypothesis of

the Main Theorem.

Consider the exponential kernel K(λ, x) — eλx and any set of n

positive numbers 0 < λx < λ 2 < < λn with λ 0 = 0. Then we set

(11) uXx)=K(λι9x)9 / = 0 , 1 , . . . , Λ .

LEMMA 3. The exponential family of functions defined in (11) has

the property that if a sequence {x(ϋ)}^=1 C S yields a sequence

{a(ϋ) = g(x ( ϋ ))}£= 1 with the characteristic that a ( ϋ ) -> a E A, then the

(x ( t ; ) }^ = 0 are bounded.

Proof. Let us assume that the components of x(v) are not bounded.

Then by going to a subsequence if necessary we can develop the following

situation:

(12) (a)

(b)

(c)

lim
u-» oo

lim
u->oo

/> 1

lim
ϋ-* 00

v ( ϋ > —

Uv) -
and

Uo) -

oo;

- ^ u ) )

- x^)1 = 00,

/

/

= /,..

= 1,

.,«

.,«

, where

— 1, with ci finite;

- i
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Dividing each of the relationships
n

by eλjχ<" and letting v -> oo, we find that the limits satisfy

2fl,β"V. = 0 (j=\,...,n).
i=l

Let ct > ct > > c, = 0 be the distinct values of {ci]
n

i=ι where

k < n — / + 1 < / I . Then we can find numbers bl9...9bk so that

i=/ ιw=l

where by property (2)(iii), bk Φ 0. Thus since /(λf ) = 0, i = 1,... ,n and
{e~Xc'«i}^=1 form an E.C.T.S., we have reached a contradiction. This
completes the proof. D

We claim that Lemma 3 is also valid for the Cauchy kernel, K(λ, x)
= 1/(1 + λx).

LEMMA 4. Let 0 = λ0 < \λ < < λn be given and set Uj(x) =
1/(1 + λ7x) (j = 0,1,... ,fi). Then Lemma 3 ώ valid for the {Uj}]=0.

Proof. Again assuming that x(

n

υ) -̂  oo, we can, by going to a subse-
quence if necessary, achieve the situation:

(a)x, ( ϋ ) ^ oo, / = /, . . . ,π, where/> 1;
(b) χί ϋ ) -> c, , Ϊ = 0,...,/ — 1, cz finite with cι < c ί + 1 and c0 = 0.
For each relationship

letting υ -> oo, we find

,• = 0 l ^ /XJLi

Pick out the distinct elements 0 = clQ < < clk_ι of the set {CJ'IQ where
/c < / < «. Then there are A: distinct numbers bO9...9bk_x so that

/=0
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and where by properties (2)(i), (ii), (iii), bQ Φ 0. Since /(λ y ) = 0

(j — 0,1,...,« — 1) we have contradicted the fact that the family

{1/(1 + cimλ)}^~]

0 forms an E.C.T.S. D

Our results can be extended to treat multiple knots also.

As an example, we have the following result, which includes the

results of [7].

LEMMA 5. Let 0 = λ o < λ 1 < < λ r be given and consider the

functions {xqeχpχ\ q = Q9\9...9mp— \\ p = 0 , 1 , . . . , r } . // n+\ =

Σp=0 mp and if we set Uj(x) — xqeλpχ with) — Σ?=lχ mt + q and m_, = 0,

then Lemma 3 is valid for the functions {UJ}J=0. (The λp are called the knots

and the m are designated as the multiplicities of the knots of the kernel

K(x, λ ) = eλx. It is well known that this set of functions is a E.C.T.S., see

[5,P 9].)

Proof. Letting

1=0

w e h a v e

/=0

The set of equations corresponding to (5) for aι — α7

(υ), xt — x\υ) can

be written as

(13) Z-a

p = 0 , l , . . . , r .

Assuming x(

n

v) -> oo, if r > 1, we divide/(λ, v) by eλx"v\ and apply

Leibnitz's rule for differentiation of a product to find, using the notation

of (12)(a), (b), (c), that in the limit as v -> oo, (13), for p > 1, becomes

(14) 2 « / ^ V l = 0, 0 = 0 , 1 , . . . , * ! , - l;p= l , . . . , r .
1 = /

Combining equal c/s as in Lemma 3, this becomes

(15) 2 b s ( c i a ) q e λ * * = 0 9 q = 0 9 l f . . . 9 m p - l ; p = l , . . . , r ,
s=\

where w < n + 1 — /, bw Φ 0 by (2)(iii), and l> 1. In (15) we are dealing

with an E.C.T.S. of dimension < /i + 1 — / with typical term xqex*x.
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Further, the function in (15) has at least n + 1 — m0 zeros. Thus n + 1 —
m0 < n + 1 — /, that is,

(16) m o > / if r > 1.

For any r, we divide the equations in (13) for λ = λ0 by (x(

n

v))q for
each ςr = 0,1, ,/w0 — 1, and take the limit as υ -> oo. Using the notation
of (12)(a), (b), (c) the result is a set of equations

Combining equal d,'s we obtain a set

(17) ί 6 i K ) * = 0> 4f = 0 , l > . . . , m 0 - l .

Note that jc}ϋ) - JC<U) -» ct (finite) implies x<υ)Λ<υ) -> dt = 1. Thus </,. = 1
(i = /,..., w) with g ^ / and ^ ^ 0. In (17) we are dealing with a
non-zero function with m0 zeros generated from a E.C.T.S. of dimension
at most /. Therefore we must have

(18) mo<l.

If r = 0, (18) is a contradiction since ra0 = n + 1 and / < n + 1. If
r > 1 both (16) and (18) must hold, which again is a contradiction. D
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