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SHALIKA'S GERMS FOR/?-ADIC GL(/i), II:
THE SUBREGULAR TERM

JOE REPKA

For an elliptic torus in GL(«) over a/?-adic field an explicit formula
is established for the germ associated to the "subregular" unipotent
class, i.e. the class whose Jordan canonical form contains a 1 X 1 block
and an(«— 1 ) X ( « — 1) block. In particular this, together with previ-
ously known information, gives all the germs for GL(3).

0. In [1], an ad hoc method was described for calculating the germ
associated to the regular unipotent class. Here that approach is refined to
deal with the subregular class. Neither the technique nor the final result is
particularly clean; it would be desirable to express the germ in terms more
suggestive of generalizations.

The results obtained here are consistent with conjectures made by J.
Rogawski in his thesis ([3]).

The idea is to construct a function /whose orbital integrals vanish for
all unipotent classes except the regular and subregular classes. The germ
can easily be calculated from the unipotent orbital integrals and the
orbital integrals of / over the classes of regular elements of an elliptic
torus.

§1 establishes notations and defines the function/. §§2-7 contain the
calculation of the elliptic orbital integrals of / , which are given by
Proposition 4. The unipotent orbital integrals are given in §8, and the
Theorem in §9 contains the main result, a formula for the subregular
germ, preceded by a brief summary of the notation. Finally, §10 describes
the result for GL(3) more explicitly.

I wish to acknowledge the help and encouragement of Jim Arthur,
Paul Gerardin, Robert Langlands and Paul Sally.

1. Let Fbe a/?-adic field, o = oF and p = pF its ring of integers and
prime ideal, respectively, and q = | o/p \. Let G = GL(«, F), K =
GL(w, o), and Kx — {k E K: k = id, mod £}, the congruence subgroup.
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be the element with diagonal entries all equal to J, all the entries on the
superdiagonal except for the topmost equal to 1, and the top entry in the
superdiagonal and all remaining entries equal to 0.

Let Sj = {k G K: k = uλ, mod £} = uxKv

Following [1], let u0 be the element with all diagonal and superdiago-
nal entries equal to 1 and all other entries equal to 0. We refer to the
conjugacy classes of u0 and uλ as the "regular" and "subregular" uni-
potent conjugacy classes, respectively.

PROPOSITION 1. The only unipotent conjugacy classes of G which meet

Sx are those of u0 and uv

Proof. The proof is similar to that of Proposition 1 of [1]. If u is in
any other unipotent conjugacy class, then (u — id)""2 = 0, but for any
s G Sl9 (s - id)""2 ^ 0. D

Define / to be the characteristic function of Sλ. We shall apply
Shalika's theory (cf. [1], §3). Let Γbe an elliptic torus of G so that T = TF

is isomorphic to Ex , where E/Fis an extension field of degree n. Because
of Proposition 1, we have that, for / G T close to the identity,

f f(g-ιuog)dg(1.1)
T\G Z(u0)\G

+ Tι(t)f f(g-\g)dg.
JZ(ux)\G

The function Γo was calculated in [1], By computing the three in-
tegrals in (1.1), we shall find Tl9 the germ associated to the subregular
class.

2. As in [1], for g G G we write χ(g) G Fn for the «-tuple consisting
of the coefficients of the characteristic polynomial of g — id. For each
/ G r , write Ct: T\G -> G for the map Ct: g H> g~ιtg = t8. Let G(t) =
C~x(Sλ). The measure of G(t) is the orbital integral of / over the
conjugacy class of /, which we need to compute.
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For each s E S,, define P(s) to be the (n — 1) X n matrix obtained

by deleting the last row of s — uv This gives a mapping P: S} ->

Mn_]n(p) =p(n~l)n (as in [1], superscripts on p will always refer to

Cartesian products of copies of p, and not to powers of the ideal). Our

intention is to parametrize the elements of Sx which are conjugate to t by

their first n — 1 rows. We have the composite map P ° Ct\ G(t) -> Sx ->

p(n-\)n^ a n ( j w e ^ ^ j c h a r a c te r ize its image and find its Jacobian. From

this it will be easy to find the measure of G(t).

For fixed t E T Π Kl9 let U be a neighbourhood of t in T Π Kλ

chosen so that no two elements of U are conjugate. Let A d T X T\G be

the set A = {(/, g): / G U, tg G 5Ί}. An easy calculation with determi-

nants shows that if 5 E Sx then χ(£) E t)n.

Consider the commuting diagram in Figure 1.

c w
T'XT\GΏA - > £ , - > ^ X j ) ^ ^ " " 1 ^ " 2

χ X i d l χ X P l i

w
pnXT\GDB > pnXp(n~l)n -> ^ X | 3 2 X j 3 ( " " 1 ) w " 2

FIGURE 1

The map labelled C in the diagram is the conjugation map taking

(/, g) to t8. The broken arrow at the bottom left is the identity on the first

factor, and, for fixed χ(t) in the first factor, acts as P ° Ct on the second

factor. The left-hand and centre vertical arrows are as labelled, and the set

B is just the image of A, i.e.

The map labelled Wis more complicated. For s E Sl9 take s — uλ and

delete the last row and the first two entries in the first row. The remaining

entries give an element of p(n~~l)n~2, and this is the third factor of the map

W. To describe the first two factors we must find a particular conjugate of

s — id of the special form

(2.1)

a
0
0

b
0
0

0
1
0

0
0
1 .

0
0
0

" 1
αn α, a-, a, α__

The entries α 0 , a]9. ,.,an_ι; α, b will give an element of $n X ft2 which

will be the first factors of that map.

To describe this conjugate more carefully, note that s — id has units

on the superdiagonal except for the topmost entry; that entry and all
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others are in p. We shall conjugate by a succession of matrices of the form
id + λEiΓ where λ E p and Etj has a 1 in the yth position and O's
elsewhere. This operation subtracts λ times the 7 th row from the zth and
adds λ times the zth column to they th.

By adding multiples of the (n — l)th row to the rows above it, we can
clear the last column above the superdiagonal. This will also add multiples
of earlier columns to the (n — l)th column. Then we can clear the
(n — l)th column above the superdiagonal (adding things to the (n — 2)th
column), and so on, continuing until all entires above the superdiagonal
are 0. The resulting matrix is uniquely determined by the above descrip-
tion. Then we clear the entries to the left of the superdiagonal in the
second row, then in the third row, and so on through the (n — l)th row. It
is easy to see that this process does not disturb the zeros above the
superdiagonal. Finally, make the units on the superdiagonal into Γs by
conjugating by a diagonal matrix whose diagonal entries are units and
whose first two diagonal entries are equal.

The result is a uniquely determined matrix of the form (2.1), and
using its entries we have now defined the map W in Figure 1.

It is not hard to see how the entries α, b are obtained from the
corresponding entries of s — uv Indeed

(2.2) a = (su - 1) +/>,, b = sl2 + p2,

where px and p2 are polynomials in (su — 1) and sλ2. The coefficients of
these polynomials are determined by the remaining entries of the first
n — \ rows of s — id (they are rational functions of those entries) and are
all in p. Furthermore, the transformation which takes the last row of
s — u{ into (α0, α l 5 . . . ,απ_j) has Jacobian equal to a unit, because it is a
composition of translations, unipotent transformations, and multiplying
each entry by a unit. From all this we conclude that the Jacobian of PFhas
absolute value 1, relative to the obvious co-ordinates.

The right-hand vertical map in Figure 1 replaces the last row
(α 0, α1?. ..,«„_,) of the matrix (2.1) with the coefficients of that matrix's
characteristic polynomial, and acts as the identity on the other factors.
The map W is now easy to describe. It is the identity on the first factor.
The second factor, which amounts to the first n — \ rows of a matrix
s — I/J, goes to an element of p2 X ^n~λ>~2 as follows: the first two
coefficients are just the numbers a, b defined by (2.2) in terms of the first
n — 1 rows of s — ux, and the remaining coefficients are just the re-
maining entries of s — uλ. It is easily seen that W has Jacobian equal to 1.
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3. Next we find the Jacobian of the right-hand vertical map.
It is easy to calculate the characteristic polynomial of the matrix (2.1).

Expanding by cof actors along the first row, we find that the characteristic
polynomial is

(3.1) (X - a)(XΛ'1 - an_λX"-2 - an_2X"~3 ax) - ba0

= X"~ (an_x + a)Xn~x - (α π _ 2 - aan_x)Xn-2

— - - - — (ax — aa2)X — (ba0 — aax).

So the Jacobian matrix of the right-hand vertical arrow is triangular, with
one diagonal entry equal to -b and the remaining diagonal entries all ± 1 .
Consequently the absolute value of the Jacobian determinant is | b | .

In §5 of [1], the absolute value of the Jacobian of the mapping χ\
T Π Kλ^ pn was found to be \DE/F\

ι/2 \D{t)\λ/1 (here DE/F is the
discriminant of E over F). Since the Jacobian of the map C: V X T\G ~*
Sx is known to be D(t)9 it is now easy to write the modulus of the
Jacobian of each map in Figure 1.

4. For ί G Γ Π ί , , w e write Φ(X) = Φt(X) for the characteristic
polynomial of t — id. We wish to find all conjugates of / in Sl9 but we'll
start with matrices of the special form (2.1).

PROPOSITION 2. Let a, b E p. There is a matrix of the form (2.1) with
α 0 , α 1 ? . . . ,«„_! €Ξ p which is conjugate to t — id if and only if\Φt(a) \<\b\.

Proof. Write Φ(X) = Xn - βn^xX
n~λ - βn-2X

n~~2 β0. Note
each βt E p. From (3.1) we see that we need to find at E p so that
oin_x + a = β n _ l 9 a n _ 2 - a a n _ x = β n _ 2 , . . . , a k - a a k + x = β k 9 . . . , b a 0 -
a a x = β 0 .

From this

<*n-\

<*n-2

a =

we get

= & - ! - * ,

• n 2 ι

βk + cιβk+λ' - an~k

and finally

ba0 = βQ + aax=β0 + aβx + +an~%_x - an = -
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It is clear that this system will have a (unique) solution with a E p if

and only if | Φ ( α ) | < | 6 | . D

The version we want is a simple reformulation of the proposition.

COROLLARY. Referring to Figure 1, the image in the lower right corner

of Sλ Π tG, the set of all elements in Sx which are conjugate to t, is

{ ( χ ( 0 ; a9 b\ yl9 y29... 9y(n_λ)n_2): \Φt(a)\<\b\ 9y. E \> arbitrary}.

Proof. The only thing needing to be checked is the surjectivity, i.e.

that every value of (α, b\ yl9...) E p2 X p(n-ι)n~2 i s the image of some

ί G S , Π /G. This follows from (2.2) by HenseΓs Lemma. D

5. We now concentrate on the bottom row of Figure 1. Since both

maps act as the identity on the first factor, for each fixed / E T Π Kλ we

have a map G(t) -> p2 X ^ ( / 2 ~ 1 ) w " 2 , whose Jacobian and whose image we

know. From this we shall find the measure of G{t)9 which is the orbital

integral of/over the conjugacy class of /.

The map which goes along the top row of Figure 1 and down the

right-hand side has Jacobian with modulus equal to |D(t) | 1 \b\ (here b

is the co-ordinate of the matrix (2.1) which occurs in the image space, but

that happily turns out to be what we need). The map going down the left

side has Jacobian of modulus \DE/F\
ι/2 - \D(t) | ι / 2 , so the map along the

bottom row must have Jacobian with modulus | DE/F\~ι/2 | D(t) | 1 / 2 | b | .

To find the measure of the set G(t) we must integrate the reciprocal of

this number over its image, which is described by the Corollary to

Proposition 2.

6. We need to describe {(a, b) E p X $: \Φt(a)\<\b\). To do this,

identify / G Γ with an element of Ex , also called t.

Define d(t, F) = min{|t -y\: y E. F), the "distance from t to F".

Here the absolute value on E is the one which extends the normalized

absolute value on F.

It is easy to prove that, provided (q, n) — 1, d(t, F) —\t —

(\/n)TτE/F(t)\, with the absolute value as above, and from this that

</(/, F) = | Φ,((l/w)Tr(O - 1) | 1 / Λ , which is perhaps easier to work with in

terms of matrices (recall Φ, is the characteristic polynomial of t — iά

rather than t, which accounts for the " - 1 " ) . However, both these formulae

may fail if (q, n) φ 1.
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Now let JC0 E F be such that \(t - 1) - J C 0 | = d(t, F) (the above

discussion shows that JC0 could be taken to be (l/«)Tr(/) — 1 if (q, n) =

1). Note that for t E V Π A^, we have x 0 E t>.

LEMMA 3. Lei1 G T Π K{, let Φ(X) be the characteristic polynomial of

t — id, and choose x0 as above. Then

ί|a-*oΓ> if\a-xo\>d(t,F),
1 ( α ) l \d(t9F)\ if\a-xo\<d(t,F).

Proof. Note that d(t, F) = έ/(/ - 1, i 7 ) . Now Φ ( Λ ) = H(a - (/,. - 1)),

where tl9...9tn are the conjugates of / over i7. And | a — (tt — 1) \ — \a — (t

- 1)I, for all /. Moreover, \a - {t - 1)| = |(α - x 0 ) + (x 0 - (ί - 1)) | .

Since \x0 — (t — 1) | = d(t, F), the result is obvious except possibly in the

case where \a — xQ\= d(t, F) ̂ IXQ — (t — 1 ) | , when it is at least clear

that \a - (t - l ) | < ί / ( ί , F). But if the strict inequality held it would

contradict the definition of d(t9 F). D

7. We are now ready to evaluate the orbital integral of / over the

conjugacy class of /. For convenience we fix t E T Π Kx and define the

positive integer r by d(t, F) — q~r/n.

Normalize measures as in [1]: the Haar measure on G whose restric-

tion to K is just the product of the normalized F + measure on each

co-ordinate; the measure on T = Ex is | /1^1 dEt, where | \E is the normal-

ized absolute value on E, dE the normalized E^ measure (for which oE has

mass equal to 1).

PROPOSITION 4.

/
JT\G

Proof. As described in §2, the orbital integral equals the measure of

the set G(t). The bottom row of Figure 1 gives a map from G(t) onto a set

described in §4, and the Jacobian was calculated in §5. So we see that

( / ( g - ' ί g ) dg = m e a s u r e G (ί)
JT\G

\b\-ldadbdyidy2 dy(n_l)n_2,
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where the integral is over

So this equals

Letting \b\— q~k, the double integral becomes

where Ak = {a G p: |Φ,(α)|< q'k). By Lemma 3,Ak = 0 if ^ ' r > q'k. If
r > k, then

and

so the sum equals

rΣ q~[k/n]~ι = 2 ί 2
it=l k=\ k=r

U - i fc.

The result follows. D

8. Proposition 4 tells us the first integral in (1.1). To get the other
two we need to normalize measures on Z(w0) and Z(uλ). On Z(u0) we use
the normalization described in [1]. For Z{uλ) we proceed analogously. For
each z G Z(uλ), write z = au, where a is diagonal and u is unipotent.
Then let dz — da du, where da is the product of the standard Fx measure
on each of the (two) parameters of a, and du is the product of the
standard F+ measure on each parameter of u.

The orbital integrals of / over the classes of u0 and uλ are then
calculated as in §7 of [1]. (The calculation for ux is perhaps simplified if
you first conjugate everything by the matrix obtained from the identity
matrix by interchanging the first two rows. This makes Z(ux) entirely



SHALIKA'S GERMS FORp-ADic GL( n), II I8i

upper triangular.) We find that

(8.1) / f(g-λuog) dg = ̂ »-D»+i( Λ - i + χ/q)9

{u0)\G

/,

9. We are now able to describe the germ associated to the subregular
unipotent conjugacy class. We recall the notation: T = Ex is an elliptic
torus, t E V is identified with an element of E. The integer r is defined by
q-r/n _ j ^ p} — πύnjjt — y\: y ^ F), where the absolute value on E
extends the normalized absolute value on F. The normalizations of the
measures are given in §§7 and 8; the germ Tγ(t) is defined by equation
(1.1). We assume r > 0.

THEOREM. The germ associated to the elliptic torus T s Ex and the
subregular unipotent conjugacy class is

r,ω = - -4 W Γ u>ωΓ/21 r[k/n].
^ ' k=r

Proof. Proposition 4 gives the left side of (1.1), Γ0(ί) was calculated in
[1], and the other two integrals in (1.1) are given by (8.1). D

Note that Γ,(ί) is always negative.

10. In the particular case of GL(3), this can be said more clearly. If
T is an unramified torus (i.e. E/F is unramified) then r/3 E Z, and the
germ is

(10.1) Γ,(0 = -*q-χ\DEJ
/2 X/1

If T is ramified, then it is easy to see that r/3 £ Z, and it follows that
the germ is

- (2 + \/q)q-^\DE/F\
V2.\D(t)\-1/2d(t, F),

(10.2) Γ l ( / ) H ifrSl,mod(3),

-(1 + 2/q)q-^\DE/F\
l/2 \D(t)\-l/2d(t, F),

if r = 2, mod(3).
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The other germs for GL(3) were found in [2] and [1]. It is perhaps
worthwhile to discuss the non-central singularities of GL(3); they are
necessarily of the form diag(α, a, b), with a¥=b. First we note that
elements of an elliptic torus cannot approach this singularity (if an
element of a cubic extension of F approaches a G F, then its conjugates
also approach α, so it is impossible for one of them to approach b). So any
torus whose elements approach diag(α, α, b) can be contained in the Levi
component of a standard maximal parabolic subgroup and the whole
question — including the calculation of germs — reduces to one on GL(2),
which is straightforward.
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