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* PRODUCTS AND REPRESENTATIONS OF
NILPOTENT GROUPS

D. ARNAL

On each orbit W of the coadjoint representation of a nilpotent,
connected and simply connected Lie group G, there exist * products
which are relative quantizations for the Lie algebra g of G. Choosing one
of these * products, we first define a * -exponential for each X in g.
These * -exponentials are formal power series and, with the * product,
they form a group. Thanks to that, we are able to define a representation
of G in a " * polarization" and to intertwine it with the unitary irreduci-
ble one associated to W. Finally, we study the uniqueness of our
construction.

1. Introduction. The mathematical signification of quantization was
specified by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer with
the theory of deformations of the associative algebra of C°° functions on
the symplectic manifold W defined by the classical system [3]. (The
principal results of the theory will be given in §2 for completeness.)

Previously, some other methods of geometrical quantization were
considered by Kiriilov [7, 9, 16, 8]. This last approach had a very
important link with questions of finding and classifying unitary irreduci-
ble representations of a group G. The easiest and the most complete case
is of course when G is nilpotent. Let us suppose G is nilpotent, connected
and simply connected. We know all its unitary irreducible representations
[8, 15]. There exists a one-to-one mapping between classes of these
representations U and orbits W of the coadjoint representation of G. On
the other hand, the geometrical quantization of W, i.e. the construction of
fibre bundles with base W and fibre a circle, is unique, the de Rham
cohomology of W being trivial. Moreover, the representation U can be
canonically defined with that quantization and a polarization [7].

It is tempting to "test" the method of quantization by deformation (*
quantization) on the problem of constructing and classifying unitary
irreducible representations of connected, simply connected, nilpotent
groups.

The goal of this work is to canonically find the unitary irreducible
representation associated to an arbitrary orbit W by means of * products
defined on W. We first recall the principal definitions and results of the
theory of * products (which are formal deformations with parameter λ of
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the algebra C°°{W)). We consider the invariance and covariance of *
products with respect to the action of G. Then we give an example
showing that a too strong invariance property cannot be imposed. We
thus consider only g-relative quantizations, i.e. * products for which the
relation

X*Ϋ- Ϋ*X=2λ[X,Y]

holds (here l i s the function defined on Why X(ξ) = (ξ9 X)9 ξ e= W).
We prove the existence of relative quantizations on each orbit W\ the

so-called Moyal * product defined in a particular global chart on W.
Now we study the representations property of that * product. We

remain in the frame of deformation theory as far as possible: we fix the
value of λ only in the last step. Thus our approach is entirely distinct from
the method of Fronsdal and Lugo [4, 11]. Moreover, we do not limit the
structure of G and W.

For each X in g, we can define a formal power series in 1/λ:

e * x/ix = £ — I —'

The set G* of such series is a group for the law * . The map

Φ: G -* G*, Φ(exp X) = e** / 2 λ ,

is a group homomorphism.
Let n be a subalgebra of g subordinate to ξQ in W. Following a

method of Fronsdal, we solve, in a space of formal power series in 1/λ,
the equation

x*X=ξo(X)x V I G π.

The space S of solutions (* polarization) carries a representation m of G:

π(g)x = Φ(g)*x.

We define an intertwining operator between π and the unitary irreducible
representation U associated to W. This operator fixes the value of our
parameter λ and sums the formal series. That gives us each class of
unitary irreducible representations for arbitrary nilpotent G.

In the last part we prove that G* and Φ are unique up to an
automorphism and we study the uniqueness of π.

2. * Products. * products are introduced in [3] in order to define
the quantization(s) of a problem of classical mechanics. In fact we
suppose that quantum mechanics can be described as a deformation (in
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the sense of Gerstenhaber [5]) of classical mechanics with parameter λ
related to use h (in general λ = ih/2). We thus deform the structure of the
set of observables without modifying the observables themselves. More
precisely:

The classical problem is described by a symplectic manifold W\ on
the space TV = C°°(W, R) of observables, we consider the structures of Lie
algebras (for the Poisson bracket { , }) and associative algebras (for usual
product). A * product is an associative deformed structure

u*v = uv + £ λrCr(u, v) Vw,u e TV
r>0

(u * υ is a formal power series). We suppose that each Cr is a bidifferential
operator vanishing on constants. Thus the relation

l*w = w*l = w, Vw e N9

holds. Of course we do not impose commutativity for * since the *
products of observables will correspond to composition of operators in the
usual formalism of quantum mechanics. Gerstenhaber defined a cohomol-
ogy associated to that deformation problem:

If C is an ^-differential operator, vanishing on constants, its
coboundary δC will be: Vu0 9...,un e N

( δ C ) ( w 0 , u l 9 . . . , u n ) (

= u 0 C ( u l 9 . . . 9 u n ) - C ( u o u l 9 u 2 9 . . . 9 u n ) + C ( u 0 9 u x u l 9 . . . 9 u n )

Now if ω is an «-form on W9 we define an ^-differential operator Cω by

C ω ( W l , . . . , w J = ω{XUι9...9XUt), (wi,-. . ,«J e N9

where Xu is the symplectic gradient of u, i.e.,

Xuυ = {u,v} Vϋ e TV.

J. Vey [17] determined the cohomology groups Hn(δ):

Hn(δ) = {[Cω], ω «-form onff} ^ space of fl-forms on Ĥ .

The obstruction to deformation is in H3(δ), the equivalence of deforma-
tions is given (in the theory of Gerstenhaber) by H2(δ). These groups are
in general very large. Now we want to simultaneously deform the Lie
algebra structure of N with the * commutator because usually the
commutator of operators corresponds (up to an ih factor) to the Poisson
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bracket for classical observables. Thus we impose

Then

± - ( u * v - v * u ) = [ u , v ] = {u,v}

is a deformation of the Poisson bracket. The first condition is in fact
admissible and the obstruction to deformation appears now as an element
of H3(W), the third cohomology group in the de Rham cohomology of
the manifold W ([13]). Similarly, equivalences are described by H2(W)
([13]); * and *' are equivalents if there exists a series

H = Id + Σ KHr9

where the Hr are differential operators without constant terms such that

H(u*v) = Hu*Ήυ.

3. Vey * products. We know a * product on R2*, the so called
Moyal * product ([3]) associated to the Weyl-Wigner quantization

Λ/t

u*v = uυ + Σ τjp"(u>v)>
n>0 n'

where the operators Pn are defined by:

P ι ( u 9 υ ) = P ( u 9 υ ) = Λ ' ^ - u θ y i ; = { u 9 υ } 9

Pn(u, v) = Λ/lΛ Λ ' ^ 3 ^ . . . ^ . . . ^ .

If W is a symplectic manifold and Γ a symplectic connection on W9 we
can define operators

Pf(u9 v) = Λ'lΛ • Λ/-y"VI .., jiMVy1...̂ .

But the series Σ XnPγ/n! defines an associative product only if Γ is flat
([3]). By extension, we shall call a * product a Vey * product if

Cn{u,υ) = -^Qn(u,v) foraU/i,

where Pf and Qn have the same principal symbols (they do not depend on
Γ). Lichnerowicz [13] has shown:

THEOREM 3.1. Each * product is equivalent to a Vey * product.
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4. Invariant * product. Let us now introduce a symplectic action of

a Lie group G on W. We have a notion of invariance.

DEFINITION 4.1. G acts on N by

(g u)(ξ) = U{g~l£) V W G i V , g E G ^ G j f .

We extend, with the same notation, this action to the space of formal

power series with coefficients in N.

A * product is invariant if

g(u*υ) = (g u)*(g- v) Vu,v e # , g e G.

Two * products, * and *', are equivariantly equivalents if they are

equivalents:

I d + Σ λ Ή r ) ( u * v ) = ( i d + £ λ 7 (

and the Hr are invariants.

In fact, the theory of invariant * products is well known only if there

exists on W an invariant connection. In the hermitian case S. Gutt [6] has

shown the following theorem, whose generalization was given by Molin

[12].

THEOREM 4.1. // there exists on W an invariant connection, then the

obstruction to constructing an invariant * product is in H^nv(W), the group

of closed invariant 3-forms modulo exact invariant 3-forms, and the classifi-

cation up to an invariant equivalence is described by H?nv(W).

On the other hand, the proof of Theorem 3.1 can be rewritten in the

invariant case. We obtain

PROPOSITION 4.1. // there exists on W an invariant connection, then

each invariant * product is equivariantly equivalent to an invariant Vey *

product.

Finally, studying C2(w, v) it is easy to prove

PROPOSITION 4.2. ([10]). // there exists on W an invariant Vey *

product, then there exists an invariant connection.
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5. A counterexample in the nilpotent case. From now on G is a
nilpotent, connected and simply connected Lie group, g its Lie algebra,
and Wont of their orbits in the coadjoint representation in g*, the dual of
g. W is a symplectic manifold on which G acts. It is natural to ask for
invariant * products on W. Unfortunately this is generally impossible, as
the following example shows:

PROPOSITION 5.1. Let g be the nilpotent Lie algebra with basis
XQ9 Xl9...,Xn9Y(n > 3) and commutation relations

all the remaining brackets vanishing. Let G be the corresponding connected
and simply connected Lie group. Then the generic orbits W {the orbits such
that (£, Xo) Φ 0) are two dimensional, and there does not exist an invariant
connection, neither an invariant * product, on W.

Proof. We easily show that W can be parametrized by (p, q) e R2 in
such a manner that the vector fields differentials of the action of G are

(see [2] and a general proof in Proposition 6.1). If Γ is an invariant
connection,

gives us

V8 9̂  = adp + bdq with a and b constants.

Moreover the following relations are incompatible:

= -2q( Vddq + Vddp) - 2dp = -2bqdp.

Let Go be the subgroup of G, exponential of d/dq, 9/3/? and
q(d/dp). Clearly there exist G0-invariant connections on W. Moreover a
differential operator H is G0-invariant if and only if it is G-invariant.

Then if * is a G-invariant * product, it is a G0-invariant * product;
there exists a G0-invariant Vey * product equivariantly equivalent to *.
The equivalence being G-invariant, our Vey * product is G-invariant and
there should be a G-invariant connection on W.
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6. Relative quantizations. The notion of relative quantization was
given in [3]. Let Wbea, coadjoint orbit of a Lie group G. Thus elements X
of g appear as functions X on W:

X(ξ) = (ζ9 X) V£e f f , V l E 9 ,

A Q-relative quantization on W is a * product such that

[x,γ] =J^(X*Ϋ- Ϋ*x) = {x,Ϋ}(=[xΓr}) vi jEg,

In [2] we proved that each relative quantization is a coυariant * product.
That means there exists a representation p of G, by automorphisms of *,
which is a deformation of the action defined in Definition 4.1:

p(g)(u*v) = p(g)u*p(g)v,

p(gg') = P(g)p(g')>

p(g)= (ld+ Σ<*s(g))°g>
V s>l }

where the as(g) are differential operators without constant terms. Thus
relative quantizations give rise to representations. In the nilpotent case, we
proved in [2] the existence of relative quantizations on each coadjoint
orbit. For completeness and because it will be our starting point, we give
this construction.

PROPOSITION 6.1. ([15], [2]). Let W be an orbit of the coadjoint
representation of a nilpotent, connected and simply connected Lie group G.
Then there exists on W a global chart

such that:
(a) The canonical 2-form on W is Σf=1 φ f Λ dq{\
(b) Each X, X e g takes the form

k

where the at{q) (i > 0) are polynomial functions in qi+v. ..,qk.

Proof. We prove it by induction on dim g. Let 3 be the center of g. If
the kernel of the form to e 3* defined by
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is nontrivial, W is isomoφhic to an orbit W of g = g/Ker To and the
proposition holds. If it is not the case, 3 is one dimensional, and we can
write

g = R I 0 + Q19

where gx is an ideal ([15]) and Wis isomoφhic to H^ X R2, where Wx is
an orbit in g* — XQ , the isomoφhism being

This isomoφhism gives us the chart of Proposition 6.1. A direct compu-
tation proves (a) and (b). The following corollary is an immediate conse-
quence.

COROLLARY 6.1. On each orbit W of the coadjoint representation of G,
the Moyal * product in the chart of Proposition 6.1 defines a relative
quantization.

7. The * exponential. The relation of relative quantization is form-
ally

Thus it is tempting to consider the functions X/2λ in order to define a
representation of g and of G by exponentiation. Let us be more precise.
We now fix the chart of Proposition 6.1, put p0 = 1 by convention and
define the spaces:

ί L I 1 V
A = (polynomial functionsx = Σ \ TΓ χι>

I /=(Λ 2 λ ^
where x= Σ %-iι{q)Ph " ' Pit>i\ • ''/

0Liι...i/ being a polynomial function

in the variables qj9j > inί(i1

I i i \ι

B = < formal power series x = Σ \ TΓ xι

with the same conditions on xt >.

Now we take the Moyal * product on our chart. First we prove the
existence of a * exponential.
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T H E O R E M 7 . 1 . ( a ) For each Xl9...9Xn in g , (l/2λ)nXx* ••• * Xn

belongs to A .
( b ) The coefficient of (1/2Λ)' of this expression vanishes if n is

sufficiently large.
(c) For each X in g, there exists a formal power series in B:

P * */2λ = y JL (J_

Proof, (a) Starting from the relation

1 L

J (2λ)
1

~I+s - Ps+ι

X
k

> Σ ^v /
'Ί •••

where Z belongs to g and x to A, we see that the only remaining terms
satisfy s < I and are of the form biv.mii piγ pη, bι ...//? being a poly-
nomial function in the variables qJ9j > inί(iι ir). X/2λ * A is thus in
4 .

(b) Let r be the supremum of the degrees of at for all X9 X e g. We
compute the coefficient of ( l / 2 λ ) ; in our expression. We find a linear
combination of terms of the form

A K i ) * D2{ahl) - - Dn{aJnn)Plι - Λ / ,

where Xy = ΣjθίJi(q)pJ and the ^ are differential operators with constant
coefficients. Let / be the inf oϊjι - — j n . There does not exist a derivation
in the variable qi in Dl9...9Dn\ hence we do not derive by pt (see the
definition of Pr). Thus:

number of s such that is = i < I.

Considering successively the variables qι + l9 qi+2,... 9qk we easily find:

number of s such that is = / + t < l(r + 1)/,

where r is the supremum of d°X for all X in g. It means that

Λ < / [ l + ( r + 1 ) + ••• + ( r + 1 ) Λ ] ,

which proves (b). (c) is an easy consequence of (b). In fact, our *
exponential is a group morphism.
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THEOREM 7.2. (a) Let G* be the subset of B defined by

G* = [x e B: 3Xin g such thatx = e*k/2λ).

Then we can define the product x * y of two elements of G*, and G* with
that product is a group.

(b) The map Φ: G -» G* defined by

is a morphism from G onto G*.

Proof. Let Xv X2,... ,Xn e g. In B the series

" 1

m - ! •

converges (as a formal power series). Indeed the coefficient of (l/2λ) 7

depends only on the beginning of each series e * * / / 2 λ . The subset C of B of
all these expressions is thus stable for the * product.

Let us now consider the map Φ. We shall prove that Φ is a morphism
from G to C by induction on dim g. Let Xλ - Xι be a Jordan Holder
basis of Q. We define

^ ( e x p ^ ••• exp/;*,) = e*tΛ/2λ* ••• *e* ' ' * ' / 2 λ .

We suppose that Ψ is a morphism and Ψ = Φ if dim g < /. We thus
consider the subgroup Gλ of G with Lie algebra gx generated by ^

Xι-v
We verify directly the relation

= Adexp(X)(Y) VX, Y

with these hypotheses and compute

Ψ(exp X exp ttXt exp Z' exp r/^)

= Φ(exp X) * Φ(exp(Ad exp t^X')) * e * {

= Φ(exp Z ) * e * r ^ * Φ(exp X')* e**'1**

= Ψ(exρ Zexp f/A)) * ^(exp Xr exp ί/Jίζ), X, X'
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Finally if X = Σ ^ l / belongs to g, we can write

exp/X=

where each ai is a polynomial function and 9αlV/θf|,β0 = aί9 α£ (0) = 0
([15]). Ψ(exp/^f) is thus a formal power series with polynomial coeffi-
cients in t. By differentiation,

1

and since Ψ is a morphism,

That proves that Ψ = Φ and C = (?*. G* is thus a group for * .

REMARKS, (a) In §10 we prove that G* does not depend on the choice
of the chart 6.1.

(b) It is easy to add variables p09 q0 to W9 and then consider direct
products of orbits Wt in such a manner that each X is nonconstant on
YliWι = W. Thus on W our computation gives an isomorphism of groups
between G and G* and we are able to find the Campbell-Hausdorff
formula.

8. A * polarization and its representation.

DEFINITION 8.1. A subalgebra n of g is subordinate to | e Wif

The unitary irreducible representation of G associated to W is con-
structed from such an algebra. We easily see that:

LEMMA 8.1. With our notation, the algebra

n = {X <Ξ Q such that X(p,0) = X(090)Vp = (pλ ••• ρk)}

is subordinate to (0,0) and maximal

The reader can easily prove that lemma by induction on dim g. We
recall that k (= \ dim W) is then the codimensionality of π in g. Starting
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with this subalgebra, adjusted to our chart, we define a * polarization,
following an idea of Fronsdal ([4]):

DEFINITION 8.2. We call polarization with respect to n the space S of
all x in B such that

x * -^rX = -ί-1(0,0) x V l G n .
IK IK

In fact, we will define (see Theorem 8.1) a representation of G on S, G
acting on the left as in induced representations. Let us determine S:

PROPOSITION 8.1. Ifn is the algebra defined in Lemma 8.1, then:
(a) x e S if and only if

x*qt = 0 Vi = 1,2,. ..9k.

( b ) x e S if and only if

r + 1

ί>0

Proof, (a) Z = qk is in n by construction ([15]). Thus x * qk has to
vanish if x is in 5. But there exists in n an element

k-\

where α/f e R[^ / + 1,.. . , ^ _ J . Then x*qk-ι also vanish. Thus, we show
inductively that for each x in S the relations

x*qt = 0, V/ = 1,...,&,

hold. The converse is clear,
(b) Of course, the element

e~^λΣat(
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is in S. Conversely, the relations

v«>o ;

are equivalent to

But they impose

x0 = 0, xι = ao(q)po,

and if we suppose the existence of a09... ,ar_λ such that

r - l / i \ i

r ' j ί

let us put

y =ί{—

We obtain

γ~(yr+ι "~ Λr+i) = 0 for ally,

or

THEOREM 8.1. 7/X belongs to S and gto G, then Φ(g)*x is well defined
and belongs to S. We can define on S a representation πofGby

π(g)x = Φ(g)*x.

Proof. Keeping all our notations, we compute 1/2AΛΓ* x for x in S

a n d l = Σ,>oα ((

χ.x - . ( f Γ(\Γ(\ Σ -,



298 D. ARNAL

From that, we deduce that X/2λ * x is in S and the coefficient of ( l / 2 λ ) 7

in the series Xx/2λ * X2/2λ * * Xn/2λ * x vanishes if n is suffi-

ciently large. Φ(exp X)* x converges in the topology of formal power

series and belongs to S by construction, π is of course a representation. D

Our next step is to intertwine π with the unitary irreducible represen-

tation associated to W. For that, we have to determine m more precisely.

LEMMA 8.2. Let X be an element of Q such that

Let us define on Rk the vector field

Then X~ is a complete vector field and its flow exp — tX~ has the form

(exp -tX' q)j = qj - B^t; qJ+l9...,qk)

where Bj is polynomial.

Proof. Computing successively (exp -tX~- q)

we find

j = q } - B j ( t ; q J + l 9 . . . 9 q k ) ,

where

Bj{t\qJ+l9...9qh)

ζ ι - Bj+ι(s;q)),...92(qk- Bk(s)))ds.

PROPOSITION 8.2. Let

ί>0

be an element of S and X an element of g such that
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Then

π(exp X)x = e~pq/λexp\ -=τ- I ao(2exp —sX~- q) ds '

/>o

Let us remark that this last expression is well defined and in S, thanks
to Lemma 8.2.

Proof. Put

φ(u, x) = e-pq/λexpl^jl wαo(2exp -suX~- q) ds

X Σ^X^V-uX-'q)(^-\ , u^R

We define a formal power series element of S. We directly see

From that, we deduce

τ - φ ( κ , ττ(exρ —uX) x) = 0 for all «.

Then

φ(l ,x) = φ(l,ττ(exp -Z)τr(exp X) x)

= φ(0, ττ(exp X)x) = π(exp X) - x. D

9. The UIR U and the intertwining operator. First we recall the
description of the unitary irreducible representation U associated to W.

PROPOSITION 9.1. Let U be the unitary irreducible representation associ-
ated to W. Then:

(a) U is induced by the character χon N = exp π:

χ(expZ) = e^
ϊ<^x> where ξ = (0,0).

(b) The space H where U is defined is L2(Rk) with variables qn

i = 1,..., k, and Lebesgue measure.
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(c) The space H°° of C°° vectors for U is the Schwartz space if of C°°
functions on Rk, rapidly decreasing.

(d) For a good choice of variables q, if X e g is such that X =

A> we can w r i t e

(U(cκpX)f)(q) = expj/^T/1 αo(2exp -sX~ q) ώ}/(exp -X~ q)

(X~ is defined in Lemma 8.2).

Proof, (a)-(c) are well known (see [7] and [15] for instance). As usual,
we prove (d) by induction on dim g. The only nontrivial case is when
Ker to = 0 (see proof of Proposition 6.1), then U is induced by the
representation Uλ of Gx associated to Wx ([15]). We introduce the variables
q = ql9... ,#£_! in R*~\ A function / in the space H of U is a function
from R with variables qk to L2(Rk~1) with variables q. We identify H to
L2(Rk). With this identification and the notations of the proof of Proposi-
tion 6.1, we have

[l/(exp Ai exp/Λo)/](^) = f/^expAdexp -q.X^X,)) f(qk - t)

= (multiplier)/([exp -Adexp - ^ X o ( ^ 1 ) ] ~ q,qk - t).

But we remark that

= [[exp -Adexp -qkX0(Xx)] ~q]j ifj < k

= qk~ t Ίίj = k.

These relations are proved fory = k, then fory = k — 1, k — 2,... ,1.
Up to the multiplier, (d) is proved. But the multiplier comes from Uv

Its form is

UΓΛ J αo J2[exp -^Adexp -qkX0(X1)}~q] dsj,

where, by definition, aoqk is the function of q:

«.J?i ? Λ - I ) = [Adexp -qkXo(Xi)](0,...,09ql9...9qk_l90)9

i.e. aoqk(q1,.. ,qk-l) = <*0(ql9...9qk). D

Now we define our intertwining operator T. Intuitively T "fixes
po/2λ = v ^ T and multiplies x by epq/λ ".

Let us introduce the spaces D and V of S and L2(R^) which are,
respectively, the domain of T and its range.
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LEMMA 9.1. Let Vbe the subspace ofL2(Rk) defined by

V = { / e L2(Rk): fis the restriction to ΈLk of an entire function FonCk).

Let VobeVΠ <¥>. Then

(a) Vand Vo are dense in L2(Rk).
(b) V and Vo are stable under the action of [/(exp X), VX e g.

(c) Vo is stable under the action ofdU(X), l e g , and dense in 9"for the

topology ofίf.

Proof, (a) is obvious. Now we extend the operators ί/(exp X) to

complex functions F by

(U(cxpX)F)(z) = e x p / / 1 1 ! / 1 α o ( 2 e x P ~ s X ' z) ds)F(exp -X z),

where exp — X~ z is the polynomial function extending q ^ exp — X~ q.

Then ί/(exp X)Fis entire if and only if Fis entire and

U(εxpX)F\R* = U(cxpX)( F\Rή.

This proves (b) for V\ for Vo, ^ i s stable since it is H°°.

(c) By construction the generator dU{ X) of the one parameter group

ί/(exp tx) is a differential operator with polynomial coefficients. Then

dU(X) leaves Vo invariant, and a classical result of Poulsen ([14]) proves

(c).

LEMMA 9.2. Let D (resp. Do) be the subspace of S defined by the

relations x e f l {resp. Do) if and only if there exists an integer n, xv...,xn

in S and Xι,...,Xn in g, such that:

( l ) x = ΣΓ=1x,,

(2)

irίexp*;)*,- e"" / λ Σ ««(«)(IΓΓ1'

where the polynomial functions ati are homogeneous with degree t.

(3) Σr>o(V — 1 Y+lati(z) is the development on Ck of an entire function

F^i = 1,...,A2.

(4) f = Fj\ k belongs to V (resp. Vo) Vi = 1,...,«. Then the vector of

L2(Rk),

depends on x only. In particular it does not depend on the chosen decomposi-

tion (1).
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Proof. Let us extend U to the representation U on S?' by putting

(t/(exp X)T9 f) = (7\ ί/(exp -Z)/> V/ e ^ , Γ e ^ ' .

For each function φ on R\ C00 with compact support, we have

Now U(exp XJφ has compact support, the development of f converges
uniformly on it, and we have

-X,)fltφ) = Σ Σ ((v^Γ)'+1α,, ί/(expX;)φ)
/ 0i r>0

But we know £/ and 7r (see Propositions 9.1 and 8.2). Thus

+ 1 - * , K ( < 7 ) = {f=l)t+lbXq) for all t,

where bt(q) is given by the development of x:

Thus (Σ/ ί/(exp --Sζ )fi,φ) depends only on x. D

Let us preserve our notations. We are now able to prove

THEOREM 9.1.

(a) D and Do are π stable subspaces of S.
(b) The operator T: D -> V9 defined by

i

is a linear intertwining ofπ and U:

Tτr(g) = U(g)T.

(c) The range of T is V.
(d) The conclusions of (b) and (c) hold with To = T\TQ9 DO and Vθ9

respectively.



• PRODUCTS AND REPRESENTATIONS OF NILPOTENT GROUPS 303

Proof. The restriction to Do is obvious,
(a) D is of course TΓ stable since if x is in D,

π(expX)x = Σπ(exp X)xl9
i

and the ττ(exp Xt exp -X)(7r(exp X)xt) satisfy conditions (2)-(4) of
Lemma 9.2.

(b) Lemma 9.2 defines T and, with that definition,

x =

= [/(exp JT)Γ;c

Γ is linear by construction.
(c) For each / i n V, f is the restriction to R* of Σ,>0 β/(z)(vΓ==T)r+1

and thus

f=Tx9

where x is the element of D:

x = e
— \

t>0

10. Unidty. Until now we only considered a given chart for W. In
this section we study the dependence of our construction on the choice of
the chart in Proposition 6.1. First, we prove that G* is, up to isomor-
phism, unique. More precisely:

PROPOSITION 10.1. Let ξ «-> (p,q) and ξ *-> (/?', q') be two charts of W
constructed as in Proposition 6.1, and let G* and G*' be the two groups
defined from these charts (see Theorem 7.2). Then the correspondence

is a group isomorphism.

Proof. Let us denote by Φ, π, U and T the same objects as in previous
sections for the first chart. In particular, Φ is the group morphism Φ:
G -• G* defined by Φ(exp X) = e * k / l λ .

Let us determine the kernel of Φ. If Φ(exp X) = 1 we can write



304 D. ARNAL

where x^t) is a polynomial function, since xt depends only on the first
terms of the expansion of Φ(exp X). For each integer m, x^m) vanishes,
since

Φ(expmX) =

Then Φ(exp tX) is identically equal to 1. Now for each x in D,

7V(exp tX)x = Γ(Φ(exp tX) * x) = Tx = t/(exp tX)Tx.

Thus 7JC belongs to the domain of dU(X) and dU(X)Tx vanishes. That
means, since Fis dense in L2(Rk) and dU(X) is a closed operator, that

Conversely, if dU(X) is the null operator, it vanishes identically on 5^ and
on £ff by duality. Concerning the function 1 e y , if X = Σ ai(q)pi, we
have

1 = αo

In the same way, concerning the function g, e y ' , / = 1,... ,/c, we find

X is the null function on W, and Φ(exp X) is the function 1. Let us now
consider the kernel of our representation U:

Kerί/ = ( g E C : t/(g) = Id}.

We saw that Ker Φ c Ker U. But the converse is also true since if g
belongs to Ker ί/, U(g) defined on<$ '̂ is the identity operator and

U(g) -1 = 1

means that our multiplier is 1.

means that g = exp X, where the vector field X~ vanishes identically.
Thus

g = exp X where X = 0.

We are now able to define an isomorphism Φ* from G/Ker U to G*. But
for our second chart, the same holds: there exists an isomorphism Φ*'
from G/Ker U to G*'. The proof is now complete since, by construction,

ψ = φ * Ό φ * - i t •
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The following example shows that π is not uniquely defined. Of

course the choice of a polarization in order to define S and π implies the

nonuniqueness.

LEMMA 10.1. Let g be the three-dimensional Heisenberg algebra: g is

generated by X, Y and Z with commutation relations [X,Y] = Z. Let W be

the two dimensional orbit in g* such that Z = 1. Then we choose the first

chart

and the second chart

X=q', Ϋ=-p\

We keep our above notations with "primes " for the second chart. Then if

x0 = e~pq/λp0/2λ e Swe have

π(exp tX)x0 = x0 for all t,

and in S' there does not exist an element x'o such that

π'(exptX)x'() = x'o (t Φ 0).

Thus there does not exist an isomorphism between S and S' intertwining π

andπ'.

Proof. We recall that

and

Thus

π(expτX)x = e-^Σ l^Γlat(q ~ τ),
r > 0 V Z A /

π'(expτX)x = e'^^λe

The stabilizer of x0 contains exp τX for each r, but the equation

τr'(exp T ^ ) * = x (T Φ 0)

implies

τX)x = x VT and ^-2q' x = 0. D
2Λ
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In fact the intertwining operator between U and Uf is the Fourier

transform and constants i n y are transformed in Dirac measures.

Nevertheless, we can define an intertwining operator between the two

g modules S and Sf. Indeed in VQ there exist some very particular

functions (see [1]). As usual, we denote by π, [/, S, Vo the representations

and space defined with a chart (p,q) and by ττ\ U\ S\ VQ those

associated to another chart (/?', q'). The representations U9 π, U\ π' give

rise by differentiation to representations dU, dπ,... of g and of its

enveloping algebra ^ ( g ) . We define

/Q is defined similarly in VQ with variables q\ x0 is the element of 5

defined by the development of the entire function / 0 : f0 = Tx0. xf

0 is in S'

with a similar definition.

PROPOSITION 10.2.

(a) The Q modules dU(^f(Q)) fQ and Δ o = dπ(W(Q)) x0 are isomorphic

to

(b) The operator

θ: Δo -> Δ'o, dπ(u)x0 <-> dπ'(u)x'o,

is an intertwining operator of g modules.

Proof, The proof is very easy. In fact in [1] it is proved that

dU(u)fQ = 0 implies dU{u) = 0.

Thus with Γ, the same property holds for x0 and dπ9 and of course for x'o
and dπ'. This proves that θ is a well-defined isomorphism between Δo and

Δ'o- •

Proposition 10.2 is somewhat unsatisfactory because as a g-module, S

is too rich. We can find in it many other g-submodules equivalent to the

corresponding submodule in S'.

Finally, let us remark that the notion of * product is a geometrical

one and depends essentially on W itself, not on the choice of the duality

which allows us to consider W as an orbit in g*. Thus the notion of the

group G* is the canonical one. Polarizations are introduced in this context

only in order to find (more or less) irreducible representations of G. As

usual, see [4] for instance, we are able from the orbit W to construct all
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unitary irreducible representations in L2(Rk) with the same kernel. More
precisely, let us choose such a representation U' induced by a character χ'
of the subgroup N'. Let W be the associated orbit, X' the function X
computed on W\ We have

the Lie algebra of N'. Since Ker U' = Ker U9 we see, as in the proof of
Proposition 10.1, that

{ l G 8 : I = 0 o n ^ } = {X e g: Xf Ξ= 0 on W'}.

Thus, the groups G* and G*' are isomorphic, and we define on W the
polarization

S" = [x (ΞB:X*x = X'(0,0)'xVX& n'}.

We define a representation π" on W and an intertwining operator
between π " and t/' as in §9.
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