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THE FEFFERMAN-STEIN DECOMPOSITION OF

SMOOTH FUNCTIONS

AND ITS APPLICATION TO Hp(Rn)

AKIHITO UCHIYAMA

We show the "Fefferman-Stein decomposition" of smooth hump
functions. As an application of this we get one result about the singular
integral characterization of HP(R"). Our method does not use sub-
harmonicity.
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1. Introduction. In this paper functions considered are complex-
valued unless otherwise explicitly stated. Cubes considered have sides
parallel to the coordinate axes. For a function/(x) E L\oc(Rn), let

where the supremum is taken over all cubes in R", | / | denotes the
Lebesgue measure of / and

f, = ff{x)dx/\l\.

A function/(x) is said to belong to BMO(R") if | | / | | B M O < + oo.

Let *,(«,... Λtf) e C*{Sn_x\ where

and
1/2

i€i=i(ίi..-.,«,)i=(Σί,2)

217
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Forh £L 2(R")let

KJh = (θJ{ξ/\ξ\)h(ξ)J, j = l , . . . , m ,

where and are the Fourier and inverse Fourier transforms. As is well

known [see Stein [29] p. 75], there exist α7 G C and ίlj(x) e C°°(Sn_x)

such that

/ Qj(χ) = o

>l=i

and

Kjh(x) = ajh{x) + P.V. fQj[ΛZlL}\x-y\-"h(y) dy

for any h E L2(R"). For g e L°°(R") let

Kjg(x) = <Xjg(x)

where χ £ denotes the characteristic function of a set E C R". In [32], the

author showed

THEOREM A. / /

(1.1) rank = 2

then for any f E B M O ( R " ) there exist gx,...,gm<Ξ L°°(R") such that

m

f— ^Kg- (modulo constants)

w/zere Cx 1 w Λ constant depending only on θu...9θm.

REMARK 1. The case when KX9...,Kn+ι are the Riesz transforms and

the identity operator is the case considered by C. Fefferman [13] and C.

Fefferman-Stein [14].
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REMARK 2. In [32] we assumed that / has compact support. But this
restriction can be removed.

Consequently, if (1.1) is satisfied, then the singular integral operators
Kx,... ,Km characterize H\Rn). In this paper, we continue this research.

In the following, f(x) = (fx(x)>... Jm(x)) and g(x) denote Cm-valued
functions. We use the following notations:

l

J

K

K*

lf(*)l =

• f(χ) =

j =

Ίζ

m

Σ J

7=1

• f(*) =
m

Σ i

where Kfh(x) = (θj(ξ/\ξ\)h(ξ))\x). /(JC, t) denotes a cube in R* with
center x and side length t.

DEFINITION 1.1. Let

S= {t eL 2 (R",C m ) :K* f(jc) Ξ O } ,

where L2(Rn,Cm) denotes the set of Cm-valued functions f(x) with
/,, . . . ,/ m eL 2 (R Λ ) .

DEFINITION l.A. [Coifman-Rochberg [9].] For a real-valued function
/ S L U R " ) , let

II/IIBLO = sup //(x) - inf /(^) dx/\I\,

where / is taken over all cubes in R". A function/(x) is said to belong to

BLO(R") if | |/| |BLO
 < + °° I N o t e t h a t II * IIBLO

 i s n o t a norm.]
Our main result is the following.

THEOREM 1. Suppose that (1.1) holds. Let f G C\W, Cm),

(1.2) |f(*)|<(l+|*lΓ~\
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and

(1.3)
v-«-2

Lei w( c) £e α nonnegatiυe function defined on W such that

(1-4) | | - l o g w | | B L O < c 0 .

ΓΛeπ ίλm? ejcwto g G L2(RΠ, C m ) sucΛ ίήαί

(1.5) f - g ε s

/ 1 £i\ \ ί W *r" f~^ ί \\ I / \ J /-• i^ I I \ n i / ώ

where c0 and Cλ2 ^ r e p o s i t i v e constants depending only on θ λ 9 . . . 9 θ m .

REMARK 3. If i(x) is Revalued and if 0y(ξ) = ^ ( - | ) for7 = 1,... ,m,
then we can take g(x) to be Rm-valued.

REMARK 4. If we apply Theorem 1 to the case when Kx — the identity
operator and f(jc) = (f(x)909... ,0), then (1.5) implies

This is the reason why we call Theorem 1 the Fefferman-Stein decomposi-
tion of smooth bump functions. The point is the fact that we can
dominate gl9...9gm pointwise by a "function" on the right-hand side of
(1.6).

The idea of this theorem comes from P. W. Jones's recent work "L°°
estimate for the 3 problem in a half-plane" [25]. We explain the relation
between Theorem 1 and Jones's result in §3.

The proof of Theorem 1 is given in §5. The Main Lemma in §4 is
crucial and is itself a partial result related to the Fefferman-Stein decom-
position of certain weighted BMO spaces in terms of singular integral
operators Kl9...,Km. The Main Lemma is proved in §§6-9. Its proof is a
refinement of the argument in [32].

As a corollary to Theorem 1, we get one result about the singular
integral characterization of Hp(Rn). Let ψ G ̂ (R") be a fixed real-valued
function satisfying /ψ(x) dx = 1. For h e S'(R"), let

Λ+(x) = sup|(**ψ,)(x) | ,
ί>0
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where ψ,(jc) = Γnψ(x/t). For +00 >p > 0, let

| | Λ | | / / P = | | Λ + | | L * .

For h = (A,,... , A J E S'(R") Θ ΘS'(RΠ), let

h + ( x ) = s u p | ( h * ψ , ) ( x ) | = s u p | ( ( / 2 1 * ψ / ) ( x ) , . . . , ( A m * ψ , ) ( x ) ) | .

It is known that || \\HP is essentially independent of the choice of ψ.

[See C. Fefferman-Stein [14].]

DEFINITION l.B. For q > 0 and for a measurable function/(x) let

where / is taken over all cubes containing x.

THEOREM 2. // (1.1) holds, then there exist p0 E (0,1) and C, 3 E R,

depending only on θ],..., θm, (

/or α«y x E R" α«ύ? any h E L2(R").

REMARK 5. For h e L2(R") and h e L2(R", C m ) , let

h++(x)= sup | (Λ*/»)(z) | ,
r>0,

z<=R": \χ—z\<t

= sup
ί>0,

where P r(x) is the Poisson kernel, that is,

P,(x) = cnr/(|x|2 + t2f+l)/2, cn = T((n

Then in the above inequality, we can replace (Kh)+ (x) by (K/z)

COROLLARY 1. //(l.l) Λoto β«ί///max(l/2, /?0) < p < 1,

(1.7) cj|/^<ΣIML^
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for any h E L2(R") and

(1.8) c,4||A|μ,< 2 / I lim Kj(h * P,)(x)f dx)
j=\ \JRn t-*+0 /

for any h E Hp(Rn), where cXΛ and cl5 are positive constants depending only

on θv...,θmandp.

REMARK 6. For h E Hp(Rn)9 p < 1, we define Λ * Pt by
which is known to belong to L\Rn) Π L°°(R") Π C(R"). It is also known
that for any h E Hp(Rn), hmt^+oKj(h * Pt)(x) exists almost everywhere.
[See Stein [29] p. 201.]

REMARK 7. Inequality (1.7) with p = 1 holds for any h E S^R"),
whose Fourier transform is an integrable function on some neighborhood
of the origin, if we define K-h = (θjh) in the sense of distributions and if
we define

for the distribution Kjh that does not belong to L\Rn). [In Corollary 1 of
[32], we showed the above. But the statement in [32] was somewhat
ambiguous.]

As another application of Theorem 2, we get the following extension
of the results of Csereteli, Gundy and Varopoulos. [See [12], [18] and [34].]

COROLLARY 2. Let

(1.9) 2 \θj(ξ)-θj(-ξ)\¥>0 foranyξ€ΞSn-x.

Let h be a finite complex measure on Rn and let dh — f dx + ds, where
f E Lι(Rn) and s is singular. Then

lim inf λ
λ-^+oo

xGR": 2 Km A\ (Λ*P,)(jc)|>λ
7=1 ^ + ° '

where C, 6 is a positive constant depending only on 0 1 ? . . . 9θm and where \\s\\M

is the total variation of s on R".
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REMARK 8. It is known that for any finite measure h

lim KXh*Pt){x)
r-» +0

exists almost everywhere.

Proofs of Theorem 2 and corollaries are given in §2.

NOTATION. A dyadic cube is a cube of the form

where kl9...9kn and k are integers. For a cube /, xn 1(1) and Q(I) denote
the center of /, the side length of / and

{(x9t)eR»+ι:xei,te(o9 /(/))},

respectively. For a > 0, α/ denotes a cube concentric with / and with
l(al) = al(I). Σ 2 m _, denotes {i> - (vl9...9vm) E C": 2^=, \vj\2 = 1}. M
denotes (ΣJL, | ^ | 2 ) ι / 2 . For f e Cm\{0}, U(v) denotes I > / | P | . [For the
sake of convenience, let (7(0) = (1,0,... ,0).] For v and μ E Cm, (i>, /A)
denotes ΣJL ̂ Re ^ Re μy + Im Vj Im μy ), i.e., the inner product in R2m. For
θ E C^iS^) and ξ E R"\{0}, β(O denotes >0(£/|||). The letter C
denotes various positive constants depending only onθl9...9θm.

Acknowledgements. The author would like to express his deep grati-
tude to Professor P. W. Jones and the Department of Mathematics at the
University of Chicago for their kindness during the academic year 1981—
1982.

2. Proofs of Theorem 2 and Corollaries.

LEMMA 2.A. [See Coifrnan-Rochberg [9].] //h(x) 2 0 and if Mxh(x) 2
+ oo, then

Proof of Theorem 2. By dilation and translation the proof of Theorem
2 can be reduced to the inequality

(2.1) fκh(x)rp(x)dx < C,.3Mjjlf1/2(|KA|))(0).
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Put ε = co/2C2 1. Take any v G Σ 2 m -i Applying Theorem 1 to f(x)
— ψ(x)v and w(x) — Mι/2(\ Kh \)(x)~\ we get g(x) such that

and such that

\g(x)\<CMW2(\Kh\)(xyε[f Mv2(\Kh\)(yΓ'dy) '
\Ji(o,]) I

x (l +\x\y"~]/2

< cMι/2(\κh\)(xy
eMi/2(\κh\)(oγ(ι + \x\y-ι/2.

Thus

dx v JKh(x) g(x) dx <f\Kh(x)\ \g(x)\dx

[In the first and the second formulae of the last string of inequalities,
denotes the inner product in Cm.] This concludes the proof of (2.1).
Remark 5 follows from the same argument. D

Proof of Corollary 1. Let h E L2 and max(l/2, p0) < p < 1. From
Theorem 2 and the Hardy-Littlewood maximal theorem, it follows that

(2.2)

where

From the boundedness of singular integral operators on Hp

y it follows
that

(2.3) \\Kh\\HP^cp\\h\\HP.

On the other hand, by (1.1) there exist multipliers homogeneous of degree
zero

such that

2 θj(ξ)θj(ζ) - 1
7 = 1
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So

(2-4) = I Σ
Thus, from (2.2)-(2.4), we get (1.7).

Let h G Hp. Applying (1.7) to h * Pn we get
m

(2.5) cXΛ\\h * Pt\\HP < Σ \\Kj(h * Pt)\\LP < ch5\\h *

It is known that

h* Pt-*h inHp as/ -» +0

and that

Thus by the Lebesgue dominated convergence theorem, we get

Therefore, letting t -» +0 in (2.5), we get (1.8). D

LEMMA 2.1. Let u(x,t) be a nonnegatiυe function defined on R" X
[0, +00) and continuous on W X (0, + 00). Let q> I. If

(2.6) u(x,0) = lim u{x, t) a.e.x

and if

(2.7)

for any λ > 0, then

(2.8)

x 6 R " :

lim Mλ(u( ,t)){x) = Mλ(u( 90))(x) a.e.x.

. Take any ε > 0. By (2.6) and (2.7) there exists t0 > 0 such that
ε, where

G= xER": sup \u(x, t) - u(x9θ)\ > εj.

Since

supw(;c, 0 ^ <
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by (2.7), there exists a measurable set E such that

for any x E Ec and any / E [0, t0]. Since ε > 0 is arbitrary, we get (2.8). D

Proof of Corollary 2. Put θ0 = 1 and Ko = the identity operator. By
the usual argument about maximal singular integral operators and the
Hardy-Littlewood maximal theorem, we get

JCER": 2 sup \Kj(h * Pt)(x)\> λ\ M

for any λ > 0 and

(2.9) limsupλ xER": 2 sup \Kj{h*Pt)(x)\>\\ ^ C\\s\\M.

It is also known that

K (x) = lim K:(h * Pt){x)

exists almost everywhere and that κo(x) — f(x) a.e. By (2.9)

(2.10) limsupλ \x e R": M1/2

7 = 0
^ C\\s\\M.

Applying Lemma 2.1 to

u(x,ί) =

and q — 2, we get

, 1/2

y=o
1/2

if/ = 0,

Ί / 2
7 - 0 7 = 0

ky

Similarly

(2 Π ) ^ o Σ
I 7 = 0

Ί / 2

as/-^ +0.

Σ kl W

a.e. x as t -» +0.
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Since 0,, . . . ,θm satisfy (1.9), θo,...,θm satisfy (1.1). By Remark 5,

<CM,
Pa M i/21 Σ \KA

J = 0

(x)

for any / > 0. Letting t -» + 0 , we get

(2.12) h+ + (x)^CMpo(Mι/2(2\ <J\))(x) a.e.

form (2.11).

On the other hand, [18] and [34] showed

(2.13) liminfλ|{x ε R":
λ ++oo

> c\\s\\M,

where c > 0 depends only on the dimension.Thus, for a sufficient large λ,

we have

{M1/1(2\KJ)(X)>\/2}
dx

by (2.10). Therefore

λ\{MV2(Σ\Kj\)(x)>λ}\>C\\s

Repeating the same argument, we get

M as λ -> + oc.

as λ o c .

ϋSince λ{| κo(x) | > λ} |-> 0 as λ -> + oo, we get Corollary 2.

3. Jones's formula. In this section, we explain the relation between

Theorem 1 and Jones's recent work [25].

DEFINITION 3. A. A complex measure on the upper half-plane R+ =

{(x9 t)\ x E R, ί > 0} is called a Carleson measure if

where \μ\ is the total variation of μ, / is taken over all intervals.
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Suppose that ||μ||c < 1. It has been shown by Carleson [3] [see also
Hόrmander [19]] that there exists F G L°°(R) such that

(3.1) \\F\\L^C

and such that

(3.2) fRf(x)F(x) dx = fff(x, t) dμ(x, t)

for any / E Lι(R) with supp/ C [0, + oo), where

f(x,t)=ίPt(y)f(χ-y)dy,
JR

Recently, Jones [25] gave an explicit formula for the construction of F.

DEFINITION 3.B. [Jones [25].] For a measure μ on R+ let

ίr\ s\\ f/ o\ *• Axil ^

( 3 3 ) A " Λ f ) = ϊ ( χ - f κ , - n

Xexp

where / = (— 1) I / 2, and ζ and η are complex numbers. [We identify TJ with
(Reη, Imη) ER2.]

THEOREM 3.A. [Jones [25].] Let \\μ\\c < 1. Set

F(x) = ffj(μtx,ξ)dμ(ξ).
Rϊ

Then,

and (3.2) holds.

Our Theorem 1 can be regarded as a generalization of the formula
(3.3). In Jones's argument, we can replace the formula (3.3) by Theorem 1.
In the following, we sketch it.

Let H be the Hubert transform, that is
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For t > 0 set

s-\\+\χ-y\/s)-'/2d\μ\{y,s).

LEMMA 3.A. [See [9] and [22].] Let \\μ\\c < 1. Then,

and

futdx<C3Λ\l\

for any cube I with 1(1) > t.

Set ε = co/Cxv Then e'
eu {x) satisfies (1.4) and

e~εu<M dx/t > C

y~t

for any j E R . So, by applying Theorem 1 and Remark 3 to Kλ = the
identity operator and K2— ~H and by using dilation and translation, for
each (y, t) e R+ we get real-valued functions gUyft)(x) and g2,(j,o(x)
such that

t(y - X) " gl,(>>,θ(X) ~~ HS2,(y,t)(X) = 0,

- χ\/t)
-3/2

0=1,2).

Set

Then

JJ 8i4y.t

\F{x)\<C jf e-*"^Γ\\ +\y - x\/t)~V2d\μ\{y,t)
R\

•Γ\\+\y-χ\/tyV2d\μ\{y,t)

I _ 1r=0

exp -ε II S-
ι{l+\x-v\/s)~3/2d\μ\(υ,s)<Cε

/= +00
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and

ff(x)F(x)dx = Jfdμ(y9 t)f{gUy,t){x) + ig2,iyA
x))f(x) dx

= ff dμ(y9 t)fpt(y - x)f(x) dx = fff(y, t) dμ(y91)

for any / G L\R) with supp / C [ 0, + oo).

4. Weighted BMO. In the following, we assume (1.4).

DEFINITION 4.1. For a measurable set E let

mw(E) = fw(x)dx
JE

and

w(E) — sup w(x).

DEFINITION 4.2. For t(x) G L\0C(R\ Cm), let

||f UBMOW = sup ί\f(x) - tr\dx/mw(I)9

where the supremum is taken over all cubes in R" and fr = jrf dx/\I\.

For the scalar-valued case, this definition is due to Muckenhoupt-
Wheeden [26]-[27].

We prepare some easy lemmas.

LEMMA 4.A. //||f | | B M O w < 1, then for any cube I and any λ > 0,

{x G /: |f(jc) - f,| > λ} |/ |/ | < CAΛe-c^^\

LEMMA 4.B. For any cube I and any λ > 0

\{x G/: -\ogw(x) > -logw(/) + λ}|/ |/ |< C4Λe~C4-2λ/c°.

These follow from [21], (1.4) and [9].

LEMMA 4.1. For any cubes I andJ and for any t > 0,

(4.1) |{x el:w(x) </
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(4.2) ίw(I)-w(x)dx/mw(l)<Cc0 i.e. (1 + Cco)mw{l)>w{l)\I\

(4.3) ifJDl,then w(J)/w(l) < C(|/|/|/|)c°/Q%

(4.4) if\I\ = \J\, then w(J)/W(l) < C(l +\xr - Xj\/l(l))c°n/C<\

LEMMA 4.2.

W ^ C c 0 .

The above two lemmas are easy consequences of Lemma 4.B.

DEFINITION 4.3. For 0 < ε < 1, let

Lipe- sup \f(x) - f(y)\/\x - y\\

Lip2 -
y = i a * . Lipl

LEMMA 4.3. 7/1 > e > C 0Λ/C4 - 2 β«<̂  */suρρ f c 7(0, 0>

Proof. We may assume ί = 1. Take any cube 7 in R". If 1(1) > 1 and
Id 7(0,1) ^ 0,then

- tr\dx/mw(I) < C||f |U»/mw(/) < C||f ||upe/)v(/(0,1)).

If /(/) < 1 and 7 Π 7(0,1)^=0, then

) - f/ldx/wj/) < C/(7)ε||f Hii < C||f H , 1))

by (4.3). D

MAIN LEMMA. Le/ co> 0 be small enough depending only on θx,... ,0m.
Lei r > 0. Suppose that (I A),

(4.5)

(4.6)

BMOW<C0

suppfC 7(0,0
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hold. Then there exists g(x) such that

(4.7) \g(x)\<w(x)(\+\x\/t)-"-V2

and

(4.8) f-ges.

We prove this Main Lemma in §9.

5. Proof of Theorem 1. Let h(t) e C°°([0, + oo)) be such that

(5.1)

and

where
(5.2)

Set

(5.3)

Then

h(t)>0,

00

k=\

hk{t)=h{2~kt)

ho(t) = 1

supp Ac [1/4,1],

1 on[l,+oo),

for k — 1,2,3,... .

y-lhk(t).

and

I M W ) * ( * ) | B M O * ^ C2*||AAf | | L φ l / W (/(0,2*)) < C2-*<-+')/W(/(0,1))

by (1.2), (1.3) and Lemma 4.3.
Applying the Main Lemma in §4 to each hki, we get gk such that

hki -g,εs,

Set

k=0

Then (1.5) is clear and (1.6) follows from

D
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6. The property of the space S. The hard part in our argument is

the problem, "What property does the space S have?" Since 0 1 ? . . .,0m

satisfy (1.1), θ}9... ,0m satisfy (1.1). Then by Lemma 2.2 of [32] there exist

functions

such that

Re

Im

7 = 1
m

Σ
7 = 1

This fact tells us that for any v EΣ2m-\ the set of real-valued functions

is a sufficiently large class of functions. More precisely, we obtain

LEMMA 6.1. Let v E Σ 2 m - i Let I be a cube. Let b(x) be a real-valued

function such that

(6.1) supp^C 3/,

(6.2) Jb(x)dx = 0,

(6.3) \\

Then there exists a Cm-valued function p(x) such that

(6.4) p E S,

(6.5) Jp(x)dx = 0,

(6.6) (p(x),v) = b(x),

( 6 . 7 ) | p ( x ) | < C ( l + | * - 1 *

(6.8) <C7(JΓ'(1+|*-*,
-n-2

7 = !,...,«.

. Set

-i(θj(ξ, w)(lm(K* •
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and

By the properties of {Θ7} and by the same argument as in Lemma 2.3 of
[32],

K* p = -K* (bp),

Set

p(x) = p(x) + b{x)v.

Then (6.4)-(6.6) hold. Since pj(x) can be written in the form of a linear
combination of b and its images by Calderon-Zygmund singular integral
operators with smooth kernels [see Stein [29] p. 75], (6.7)-(6.8) follow
from (6.1)-(6.3). See Lemma 2.3 of [32] for details. D

LEMMA 6.2. The function P(Λ ) of Lemma 6.1 can be decomposed as
follows:

p(x)= 1 2^"+%(x), supp^C 2>I,

dx = 0,

Proof. Let hk{x) be as in (5.2)-(5.3). Then

p(x) = ^ho(2'4\x\)p(x) +hM)j 2h{\y\)V{y) dy/fh4{\y\) dy\

oo Γ oo

+ 2 \hJ(\x\)p(x)-hJ_ι(\x\)j 2 hk{\y\)p(y)dy/jhr]{\y\)dy
k=j

k\h{\y\)\>(y)dy/fh,{\y\)dy\

gives the desired decomposition. See Lemma 3.5 of [32] for details. D
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7. Weighted Carleson measures. We continue to assume (1.4).

DEFINITION 7.1. For a measure μ defined on R++ 1, let

||/*IU = sup \μ\(Q(l))/mw(l),
I

where / is taken over all cubes in Rn.

We prepare some easy lemmas.

LEMMA 7.1. If\\μ\\c,w ^ 1, then for any cube I

jfw(l(x,t)yld\μ\(x,t)<C\l\.

Proof. [For the definition of w(I(x, t)) recall Definition 4.1.] We may
assume that / is a closed dyadic cube. Let {Ikj}°f=x be the maximal closed
dyadic subcubes of / such that

By (4.1)

So

//*(/(*, OΓ1 d |μ | : sc ! 2 // 2k+ιw(l)-] d\μ\
CO k = 0 J Q(h.j)

k j

DEFINITION 7.2. For nonnegative real numbers {λ7}/9 where / is taken
over all dyadic cubes, set

e(x)=yll\\ (x)
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LEMMA 7.2.

(7.1) \r^(l+2k\x-xff+\(x) !//(/) = 2-*,

(7.3) ek(x)<(\+2k\χ-y\y+lεk(y).

Since this is easy, we omit the proof.

LEMMA 7.3. Let c0 > 0 be small enough in (1.4). Let

(7.4) ||Σλ/l%,,/mJI ^ 1 .

Then

(Ί *>} ΎI ( r ) < F (x\
V / I k\ J k\ /

(7.6)
+ 00

Σ -
k = —oo

< c

where δ^x ̂  ώ ί/ze Dirac measure concentrated at the point (x, t) G R^+1 αŵ /
δ / = ί 7 denotes the measure induced from n-dimensional Lebesgue measure on
the hyperplane t — a in R^+ x.

. Since λ 7 < CW(/),

Λ(JC) < C 2

< C2( )

2* dist(x,

by (4.4)

So,

7 = 0

7 = 0

β}J2Mw{l(x92-k)) by (4.3)

Condition (7.6) follows from almost the same argument as Lemma 3.2
of [32] with slight additional estimates about the order of growth of w as
in the proof of (7.5). We omit the proof. D
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8. The decomposition of weighted BMO functions. We continue to
assume (1.4).

Following Chang-R. Fefferman [7], we decompose a weighted BMO
function f(x) and the weight function w(x).

LEMMA 8.1. Suppose that suppf C 7(0,1) and\\f \\BMOw ^ l Then there
exist Cm-υalued functions {br(x)}f and nonnegatiυe real numbers {λ/}/,
where I is taken over all dyadic cubes in R", such that

(8.1) f = ΣλΛ,

(8.2) λr = 0 if 3/Π 7(0,1) = 0 ,

(8.3) suppb, C 31,

(8.4)

(8.5)

(8.6)

Proof We use the idea of Chang-R. Fefferman [7]. Take a real-valued
function φ(x) E ^(R*) such that

suppφ C {x G Rn: \x\< 1},

\ φ(ξt)2ΓιΛ=l forany£eR"\{0}.
•'o

Set

f
nn

and

b/(*)= jfψt(χ-y)(ψt*f)(y)rιώdy/λι,
nn

where we define 0/0 = 0 and

Then (8.2) is clear. Conditions (8.3)—(8.5) follow from the same argument
as in Lemma 3.1 and Remark 3.1 of [32]. See [32] for details.
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Since

Q(J)

3/

for any dyadic cube / by Lemma 4.A, (8.6) holds. D

LEMMA 8.2. Let k>0.In Lemma 8.1 set

ik{x) = 2 λ,M*)

Then

(8.7) s u p p l e 7(0,3),

(8.8) |ft(χ) - ik(y)\<Cw(l(x,2-k))2k\x-y\

provided \x — y\ < 2~k.

Proof. Set

where δ0 is the dirac measure concentrated at the origin. Since

f̂  = f * 2 k n Φ { 2 k •),

(8.7) is clear. (8.8) follows from ||f | | B M O w < 1 and from

tk(x) - tk(y) = ff(z)2k"{φ{2k(x - z)) - Φ{2k{y - z))) dz. D

From Lemmas 8.1-8.2 we get

LEMMA 8.3. Let ||f||BMθw - <V L e t suppf C 7(0,1). Let M be a
positive integer. Then there exist fM(x), {b/(*)}/: dyadic an^ nonnegatiυe real
numbers {λf 7} / : d y a d i c such that

(8.9) ί
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(8.10) λ/f/ = 0 if 31 Π 7(0,1) = 0 or if 1(1) > 2~M,

(8-6)' | | } . U , ( »

(8.7)' suppf^C 7(0,3),

(8.8)' \tM(x) - iM(y)\ < Ccow(l(x, 2-»))2 x - y\

provided \x - y\<2~M.

LEMMA 8.4. Let c 0 > 0 be small enough in (1.4). Let M be a positive
integer. Then there exist real-valued functions wM{x), {br(x)}r. d y a d i c and
nonnegative real numbers {λw 7} / : d y a d i c such that

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

where k > M and

supp b, C 37,

jbjdx = 0,

^ C c 0

2 ,

Proof. Take the same ψ(x) as in the proof of Lemma 8.1. If 1(1) <
4, then set

1/2

and

- / / φ,(x ~ y)(φt * dt dy/\wI.
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If /(/) > 2~M, then set λwί = 0 and br(x) = 0. Set

w,M\ = w(x)- 2

Then (8-11)—(8.12) are clear. Conditions (8.13)-(8.16) follow from Lemma
4.2 and the same argument as in the proof of Lemma 8.1.

Let k> M. Take the same Φ as in the proof of Lemma 8.2. Then

wk = w*2knΦ(2k).

PutJ = I(x,2~k). Since

\w(j) - wk(x)\ = | / ( w ( / ) - w(y))2k"Φ(2k(x -y)) dy

< Cf \w(J) - w(y)\dy/\J\<Ccow(J)
J2J
J2J

by (4.2)-(4.3), we get (8.17). D

LEMMA 8.5. Letj be a positive integer. Assume that {br(x)}r. d y a d i c and
{λ/}/: dyadic Satisfy (8.4), (8.6),

(8.18)

and

(8-19)

Leta>0. Set

t(x)= Σ λ,b,(*)

(8.20)

where C is independent of α.

Proof. Take any cube / (not necessarily dyadic). Let 2~k < / ( / ) <
2^ + 1 .Se t

f = Σ λ 7b 7
/:/(/)>2- /-*+ 1

and

f = 2 λ7b7.
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Then

(8.21) f = f + f on/.

Note that

j+k-\

(8.22) \f(x)~f(y)\< Σ Σ λ7Mx) - b7

<2k\x ~ y\2jnw(l{x,2~k))

provided \x-y\< 2'k. By (8.4), (8.6), (8.18), (8.19) and by Lemma 3.3 of
[32] we get

/

(8.23) ||f|U2<C2H 2 λ2

r\I\

\

< CV"W(J)\J\X/2':

Thusby(8.21)-(8.23)

fjf(x) - ~f(Xj)\dx/mw{J)

< CΠ \f(x) - f(xj)\ dx/\J\\ /w{J)<CV". D

9. Proof of the Main Lemma in §4. We may assume t = 1 in (4.6)
and

(9.1) w(/(0,1)) = 1.

In this section C9, is a large constant depending only on θv..., θm. Let M
be a large integer depending only on 0,,... ,θm and C9,. Let c0 > 0 be
small enough depending only on 0,,... ,0m, C9, and M. In particular

(9.2) C 9 1 2 ~ W < 1 and Cl{2M(n+1kQ < \.

First, we give a rough explanation of the procedure to construct g(x).

We construct a sequence {gA}~=Λίsucn t f t a t

(ii) f ̂  — gk + (small errors) E 5.
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[For the definitions of wk and tk9 recall Lemmas 8.2 and 8.4.] Then by
letting k -» + oo, we get g such that

f — g + (small errors) E S.

Next we estimate the weighted BMO norms of the error terms and repeat
the same procedure for them.

In order to meet the condition (i), we must adjust the length of the
vector-valued function gk. We must do this adjustment under the restric-
tion (ii). Here we use the property of the space S that was proved in
Lemma 6.1.

Now we go into details.
By Lemmas 8.3-8.4, we get

{*>/(*)}/: dyadic

{*/(*)}/: dyadic (λM; 7 } / : d y a d i c

such that (8.9)-(8.10), (8.3)-(8.5), (8.6)'-(8.8)' and (8.11)-(8.17) hold.
Set

(9.3)

(9.4)

(9.5)
r = cow(I)

if

if

if

LEMMA 9.1.

/,/(/))

This is clear from (8.6)' and (8.16).
From these {λ,}j, we define ηk(x) and εk(x) by Definition 7.2. Then

by Lemmas 9.1 and 7.3 we get

LEMMA 9.2. Ifx e / and 1(1) = 2~Λ then

LEMMA 9.3.

k = —
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We inductively construct

with the following properties (C.1)-(C8). Put

(9.6) p Λ I ( Λ ) = Σ 2-*'+%.j(x),

(9-7) P / , 2 (* ) = 1 J

(9-8) gM(x) = fM(x),

(9.9) gk(x) = fk(x) + 2 2 λ,p/t l(x)- 2
h = M+\ / :/(/) = 2^Λ A = A/+1

ioτk = M + \,M + 2,... .

(C.I) suppβ7ij,. C 2 /̂, H/S J I ^ , < q . ^ - ^ / ) - 1 , fβίtjdx = 0,

(C.2) |J, i y (x)=0 if 7Π 7(0,4) = 0,

(C.3) p/;1 + P / 2 e 5,

(C.4) |φ,(x)|< C9

2,E t(Λ)22w<"+>(/(x,2-')) (

(C.5) |φA(Λ) - Vk(y)\ < C9

4,c02^«+2)ε,(x)2V - y\

provided \x — y\ < 2~k,

(C.6) suppφ^ Csuppg^ C/(θ,3 + 2" 1 + 2'2 + ••• +2~ / c + Λ / ) ,

(C.7) |g,(x) |<w,(x),

(C.8) |g,(x) - gk(y)\ < C 9 J ε , ( x ) 2 ^ - ^| provided \x - y\< 2~k.

The construction of the above functions is explained at the end of this
section. We accept this construction temporarily and prove the Main
Lemma. By the same argument as [32], we can show that g = li
exists in ZA By (C.6)-(C7), we get

(9.10) suppgC/(0,4)

and

(9.11) |g(x) |<w(x).

By (9.9)

(9.12) g(*) = f(*)+ 2 λ , p Λ 1 ( * ) - 1 ψh(x).
h = M+\
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Set

(9.13)

(9.14)

AKIHITO UCHIYAMA

v(χ) = Σ
h = M+\

f - (g + p2 + v) e 5.

Σ λ/(P/,i

LEMMA 9.4.

Proof. Since

by (9.12), the lemma follows from (C.3).

LEMMA 9.5.

(9.15) suppφC/(0,4),

(9.16)

D

Proof. Condition (9.15) is clear from (C.6). Take any / (not neces-
sarily dyadic). Then

Σ \φk(x)\dx/mjtl)
k:2-k<l(T)

'k:2-k<l(I)

[dx/mw(l)

by (C.4)

by Lemmas 9.3 and 7.1. On the other hand,

Σ
k:2~k>l
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if x, y E/by(C5). Thus

Σ
k=M+\

- Σ dx/mw(l) <

Set

245

n+2\ D

f 3 =
j=M+\

jj:l(ί) = 2

LEMMA 9.6.

00

Σ f* = <p
A;=2

LEMMA 9.7. For k > 3,

(9.17) suppf^C 7(0,2*),

(9.18)

(9-19)

Proo/. We show only (9.19). If k > 4, then

^ Σ Σ 2-

y /

If ifc = 3, then

Σ λ,ftj
/: BMOw

j=M+\
2~JCc0 < Cco2~M by Lemmas 8.5 and 9.1. D
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From Lemmas 9.4-9.7, we obtain the following.

LEMMA 9.8. Assume the hypothesis of the Main Lemma. Then there

exist g(x) and {fj(x)}f=2

 sucn tnat

(9.20) f - ( g + Σij) eS,

(9.21) suppf,C 7(0,24).

(9 2 2 ) «fyllBMθw^co«(^c0)

(9.23) \g(x)\<w(x),

(9.24) suppgC 7(0,4/),

where

Since we have assumed t = 1 at the beginning of this section, we
showed the above only for the case t — 1. But the general case follows
easily from the case t — 1.

Proof of the Main Lemma. We continue to assume t — 1. Take M and
cQ SO that

(9.25) 1 + α ( M , c o ) < 2 1 / 4 .

Applying Lemma 9.8 to f, we obtain g and {fj}%=2

 w i t h (9.20)-(9.24).
Next, applying Lemma 9.8 to each fy, we obtain gy and {f^/J^
Repeating this process, we obtain {g7i j} and {f̂ ...̂ } such that

k = 2

s u p p g y i , . . ^ C 7 ( 0 , 4 2 ^ + "••A).

Set
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Then

' - ( « ' + . Σ *,„...,

Set

g = Urn g\

Since Σ y lv><Λ+1fy b .>j/+1 tends to 0 in L 2 as i -» oo, g satisfies (4.8). On the
other hand,

00

g _ ~ , V V V Λ

HZ O —Γ" 7 7 7 O

S ' Zi Δi ΔA &jι,- Js

= g + 1 (9.26),

and

supp(9.26)ΛC 7(0,4

|(9.26)Λ| < 2-*<"+ 1Mx) Σ « f

^ 7

by (9.25). Thus, (4.7) holds. D

Construction of {β/y} and {φk}.
We construct these functions inductively. We define gM by (9.8). Then

(9-27) supp g Λ / C/(0,3)

by (8.7)'. Since

by (4.3) and (8.17) and since

\tM(x)\<CcQM,

we get

(9-28) \gM(x)\<wM(x)

if c0 > 0 is small enough depending on M. By (8.8)' and (9.4)

(9.29) \gM(x) - gM(y)\ < CεM{x)2M\x - y|

provided |x - y\< 2~M. [Recall that εfc(x) is defined by Definition 7.2
from {λ,} defined by (9.3)-(9.5).]
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Let k> M. Suppose that

have been constructed and that g ^ , defined by (9.8)-(9.9) satisfies

(C.6)' suppgΛ_, C 7(0,3 + 2" 1 + 2" 2 + +2~<*- 1 -" ) ) ,

.8)' \gk.x{x) ~ gk-i(y)\^ C9Λek^(x)2k-'\x - y \

provided \x -y\<2~k+λ.

Notice that by (9.27)-(9.29) gM satisfies the above (C.6)-(C8).

LEMMA 9.9. If \x - y\< 2M~k, then

This follows from (C.8)' and (7.3).
Set

(9.30) **(*)=ls*-i(*)l+ Σ K,Mχ)
/: (9.31)

where Σ is taken over all dyadic cubes / such that

2-/c and
K ' I n 7(0,3 + 2-' + 2~2 + +2-<*- ! - w >) Φ 0 .

[Recall that {br} and {b7} are defined by Lemmas 8.3-8.4.]

LEMMA 9.10. If\χ-y\< 2~k, then

l**(*) - *k(y)\^ CC9Λεk(x)2k\x -y\.

This follows from (C.8)', the first two inequalities in Lemma 9.2 and
(8.13M8.15).

From now we explain how to construct

For each / with (9.31) we apply Lemma 6.1 to

r=C/(g,_ 1 (x / )),

b(x) = KtMx)-(λ'fJbr(x),r),
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where

[For the sake of convenience, we define ί/(0) = (1,0,... ,0) and 0/0 = 0.]
Then we get pr(x) satisfying (6.4)-(6.5), (6.7)-(6.8) and

(6.6)' (Mχ)>u{gk-ιM)) = K,Mχ) ~ (K.Mχ)>u(uk-Aχi)))'

Applying Lemma 6.2 to pr(x), we get {βr j}JL4. Define p7 ,(x) and p / 2(x)
by (9.6)-(9.7). Then (C. 1)-(C3) are clear.'

Set

(9.32) q[(x) = pΛ 1(x) + λ'fJbr(x),

(9.33) h(x) = 2 λ,q/(*).
/: (9.31)

(9.34) k(x) = gk_1(x) + h(x).

Then

(9.35) suppq / C2 Λ / - 1 /,

(9.36) |q/U)|<C(l + 2^-x/|)-"-1,

(9.37) |q,(χ) - qr(y)\ < C2k\x - y\{\ + 2k\x - ^ | ) - " - 2

provided that \x — y\ < 2~k,

(9.38) |h(x) |< 2 KWr(x)\^Cηk(x) by (9.36),
/: (9.31)

(9.39) \h(x) - h(y)\ < 2 λr\qr(x) - qr(y)\ < Cτ,A(x)2A|x - y\

provided \x - y\ < 2~k by (9.37),

(9.40) suppk C 7(0,3 + 2" 1 + 2'2 + • • +2~k+M)

by (C.6)'and (9.35),

(9.41) |k(x) - k(y)\ <|g,_,(x) - g k_,(^)| + |h(x) - h(y)\

provided \x - y\ < 2~k by (C.8)' and (9.39)

since C9, is large enough.
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Set

(9.42) k,(x) = (k(x),U(gk^(x)))U(gk_i(x))

and

(9.43) k2(jc) = k(x) - k,(x)

= h(x) - (h(x)

Then kj and k2 are orthogonal. Set

(9.44) V/(x) = (qM

Then

(9.45) (qJ(x),U(gk_](x)))=

by (9.32) and (6.6)'. Thus

(9.46) k,(x) - gk_λ(x)

= wk(χ)u(gk-ι(χ))+ Σ λM
/: (9.31)

by (9.33), (9.45) and (9.30).

Take any dyadic cube / with /(/) = 2~k.

LEMMA 9.11. (i)//

(9-47) |g*-

(ϋ)//

(9.48)

then
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Proof. By (8.17) and Lemma 9.2,

wk(x) >(1 - CCO)WΛ_,(Λ).

By (9.38) and Lemma 9.2,

Thus (i) holds since c0 is small enough.
Let x,yE 2MJ. Then, by Lemmas 9.9 and 9.2

Since c0 is small enough depending on M and C9 1, (ii) follows from
(8.17). D

LEMMA 9.12. J/(9.48) Λo/ίfc am///I* - x y | , |j> - Xj\< 2M'k, then

(9.49) \U(gk.,(x)) -

(9.50) \U(k(x)) - U(k(y))\<CC9Λ2
M(n+i\(x)2k\x-y\/w(J).

The first inequality follows from Lemma 9.9 and part (ii) of Lemma
9.11. The second inequality follows from (9.41) and part (ii) of Lemma
9.11.

LEMMA 9.13. 7/(9.48) holds, then

(9.51) K ( x ) | < C C 9 . I 2 w ( « + 2 V l ( x ) ( l + 2 ^ - χ / j ) - π " 1 / H ' ( / ) onJ,

(9.52) M*)-0,001

2k\x - xr\)~n~]/w(j) onJ,

(9.53)
ί": (9.31)

(9.54)

onJ,

2 λ / 0 / (x)- 2 λ/0/
/: (9.31) /: (9.31)

2\_l(x)r1k(x)2/'\x - y\/w(j) onJ.

Proof. (9.51) follows from (9.35)-(9.36) and (9.49). Note that

vr(x) - v,{y) = (qr(x) - qr(y),
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Condition (9.35), (9.37) and (9.49) take care of the first term and condi-
tions (9.36) and (9.49) take care of the second term. Thus, (9.52) holds.
Conditions (9.53)-(9.54) follow from (9.51)-(9.52). D

LEMMA 9.14. 7/(9.48) holds, then

(9.55) |k2(x)|<CijΛ(jc) onJ,

(9.56) \k2(x)-k2(y)\<C7lk{x)2k\x-y\ onJ.

Proof. (9.55) follows from the last formula of (9.43) and (9.38). Note
that

(9-57) \U(gk^(x))-U(gk^(y))\<C2k-<\X-y\

by (9.49), Lemma 9.2 and (9.2). So, (9.56) follows from the last formula of
(9.43), (9.39), (9.38) and (9.57). D

LEMMA 9.15. 7/(9.48) holds, then

(9.58) I |k(x)| - wk(x)\ < CC9Λ2
M<"+2\(x)2/w(J) on J,

(9.59) \(\k(x)\-wk(x))-{\k(y)\-*k(y))\
2hk{xf2k\x - y\/w(J) onJ.

Proof. Set r,(ί) = (1 + t)λ/2 - 1. Then

(9.60) |k(x)| - wk(x) = (|k,(x)|2 + | k 2 ( x ) | 2 ) ' / 2 - wk(x)

= {(**(*)+ Σ λrV[(x))2+\k2(x)\2\ -wk(x) by (9.46)
l V /: (9.31) ' J

Then by (9.53) and (9.55)

(9.61) |r2(x)|

So, (9.58) holds.
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By (9.60), the left-hand side of (9.59)

253

- 2

Lemma 9.10 and (9.61) take care of the first term. Conditions (9.54),
(9.53), Lemma 9.10, (9.56) and (9.55) take care of the second term. D

Let tk(x) > 0 be such that

(9.62) tk(χ) = 0 if

(9.63) tk(x) = l if

\tk(x)-tk(y)\<2k\χ-y\.(9.64)

Set

Sk(x) = kW -<pk(x)

By (9.32)-(9.34) this definition of gΛ coincides with (9.9).
Condition (C.4) follows from (9.62) and (9.58). Condition (C.5)

follows from the inequality

l**(*) - ΨMI =s|ί*(*) - h(y)\ I |k(*)| - M*)\

+tk(y)\(\k(x)\ - Mx)) ~ {Hy)\ - My))\

+ \<Pk(y)\\U(k(x)) - U(k(y))\,

when combined with (9.62), (9.64), (9.58), (9.59), (C.4), (9.50), Lemma 9.2
and c o 2 M ( n + 1 ) < 1. Condition (C.6) follows from (C.6)', (9.62) and (9.40).
Condition (C.7) is clear from the definition of <pk(x), part (i) of Lemma
9.11 and (9.58). Condition (C.8) follows from (9.41) and (C.5) if c0 is small
enough depending on M and C9Λ.
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10. Proof of Remark 3. In the proof of Main Lemma, if f is
Revalued, then fM and {b7} are Revalued. By Remark 2.2 of [32], if
v ERm Π Σ 2 w - i and θj(ξ) = θj(-ξ) for j = I9...,m, then we can take
p(x) in Lemma 6.1 to be Revalued. Thus, if f is Rm-valued, then we can
take g and {tj} in Lemma 9.8 to be Revalued. Thus we can take g in
Main Lemma to be Revalued.
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