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NONOSCILLATORY FUNCTIONAL DIFFERENTIAL
EQUATIONS

G. LADAS, Y. G. SFICAS AND I. P. STAVROULAKIS

Our aim in this paper is to obtain sufficient conditions under which
certain functional differential equations have a " large" number of non-
oscillatory solutions. Using the characteristic equation of a "majorant"
delay differential equation with constant coefficients and Schauder's
fixed point theorem, we obtain conditions under which the functional
differential equation in question has a nonoscillatory solution. Then a
known comparison theorem is employed as a tool to demonstrate that if
the functional differential equation has a nonoscillatory solution, then it
really has a "large" number of such solutions.

Our aim in this paper is to obtain sufficient conditions under which
the functional differential equation

(1) x'(t) + Σ P,(*)x(t - Φ)) - 0

has a "large" number of nonoscillatory solutions. It is to be noted that the
literature is scarce concerning conditions under which there exist nonoscil-
latory solutions. Using the characteristic equation of a "majorant" delay
differential equation with constant coefficients and Schauder's fixed point
theorem, we obtain conditions under which (1) has a nonoscillatory
solution. Then we employ a known comparison theorem [see 1, p. 224,
also 4, Ch. 6] as a tool to demonstrate that if (1) has a nonoscillatory
solution then it really has a "large" number of such solutions.

As it is customary, a solution is said to be oscillatory if it has
arbitrarily large zeros. A differential equation is called oscillatory if all of
its solutions oscillate; otherwise, it is called nonoscillatory. In this paper
we restrict our attention to real valued solutions x(t).

2. Non-oscillations.

THEOREM 1. Consider the differential equation

(i) χ'(t) + Σ p,(t)χ(t - τ,(ή) = o

391
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where pt(t) and τf (/) are continuous functions such that \Pj(t)\ < Pi9

MOI ^ Ti9 |/>ί(OI <A; and |τ/(OI < Bi9 i = 1,2 /i,
and Bt are positive constants. Assume that

λτ
(2) λ " ? P ' β

has a positive root. Then equation (1) has a nonoscillatory solution of the
form

(3) x(O

λ(t) is a bounded continuous function.

Proof. Suppose that λ 0 is a positive root of (2), i.e.,

λ 0 = Σ P,eλ°T'.

We will prove that (1) has a nonoscillatory solution of the form (3).
Substituuting (3) into (1) we obtain

(4) λ(0=ΣΛ(0«p(/' λ(s)ds).

It suffices to show that (4) has a bounded solution. We will employ
Schauder's fixed point theorem. Define the sets

X = {λ(/): bounded continuous functions mapping R into R}

with sup-norm, which is a Banach space, and

which is a closed and convex subset of X. Consider the mapping F on M
given by

Observe that

S Is r ι e ~" Λ0

Hence F: M -> M.
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To show that (4) has a solution it suffices to show that the mapping F
has a fixed point. To this end it remains to show that F is continuous and
that FM is a relatively compact subset of X.

We will show that F is continuous by showing that each of the
mappings

λ{s)ds), ι = l,2,.. .,/i,

is continuous. Let λn -> λ where λn, λ e M. Then

- 1

= F,λ(ί) exp f
Jt-τ,

ds\-\

But

ds
t-τ,(t)

^\\λu - λ|| 7; -> 0 asπ oo.

and because i^λ(/t) is bounded, it follows that Ft is continuous.
To prove that FM is a relatively compact subset of X it suffices to

prove that if AT is a positive constant and λ is a function in X such that
< K, then (Fλ(t)Y is uniformly bounded. We have

exp Γ λ(s) ds

and therefore

•exp

ί = l ι = l

Therefore Schauder's fixed point theorem applies and the proof is
complete.

Note that the r.h.s. of (2) is a positive convex function of λ and so (2)
has either two real roots, one real root, or no real root. Except in the case
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that all the Pt are zero, the roots are always positive. Thus (2) really just
means Tl9..., Tn, Pv...,i^n are fairly small.

For the delay differential equation

(i)' *'(0 +Σ/>,*('-η) = o
ι = l

whose coefficients and delays are positive constants, it has been proved
[5], see also [3], that every solution oscillates if and only if the characteris-
tic equation

(2)' λ+ £ Λ * - λ τ ' = 0
/=i

has no real roots. This is equivalent to saying that (1)' has a nonoscillatory
solution if and only if (2)' has a real root.

The following are immediate corollaries of Theorem 1.

COROLLARY 1. Equation (1) is nonoscillatory provided that the

"majorant" delay differential equation

(5) At) + t Piχ(t - Ά) = o,
/ = 1

where Pt and 7] are as defined in Theorem 1, is nonocillatory.

COROLLARY 2. The functional differential equation with constant coeffi-

cients and constant arguments

(6) At) + t PMt ~ r,) = 0
/ = 1

is nonoscillatory provided that the delay differential equation

(7) *'(O+ΣlflM'-kl)-o
/ = 1

is nonoscillatory.

3. A comparison theorem and its applications. Next we will demon-
strate how the following comparison result [see 1, p. 224, also 4, Ch. 6]
may be used as a tool to establish that if a functional differential equation
has a nonoscillatory solution then it has a "large" number of such
solutions in a sense that will be made clear below.
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THEOREM 2. (Comparison Theorem.) Consider the delay differential

equation

(*) At) + Σ Pi(t)x(t ~ T,) = 0, / > 0, Λ > 1,

where 0 = τ0 < τλ < < τn = τ are constants, pQ9 pv... 9pn are continu-

ous functions and pλ(t), Pι(t)9...9pn(t) positive on [ 0, oo). Let 0, 0:

[-τ,0) -^Rfce continuous and such that

(8) θ(t)<θ(t) O Λ [ - T , 0 ) and 0(0) = 0(0) > 0.

Let x and x be the unique solutions of (*) with initial functions θ and θ

respectively. Assume that

(9) j c ( ί ) > θ wi[0,oo).

Then

(10) J C ( / ) > J C ( O on{09 oo).

REMARK 1. If we denote by x(t, t0, 0) the unique solution of (*) with

initial function 0 at t = /0, then x(ί, ί0, - 0 ) = —x(t9 tθ9 0). From this

observation we obtain a dual to the above theorem by simply reversing the

signs of the inequalities in (8), (9), and (10). That is, under the hypotheses

of Theorem 2 we have, on (0, oo),

x(t,09θ) > x(t9θ99) > 0 a n d x(t9θ9 - 0 ) < x ( / , 0 - 0 ) < 0 .

Finally a close look at the proof of the comparison theorem [see 1, p.

224] shows that the functional arguments in (*) do not have to be

constants. The results is true if we assume tha η (ί) are continuous

function satisfiying the following condition

ί ( i)τ o (/) ^ 0 and φ) * 0 for j = 1,2,.. .,#i;

^ ' | ( i i ) 3 τ > 0 such that 0 < Tj(t) < T, j = l , 2 , . . . , π .

First we apply the comparison theorem to the delay differential

equation

7 = 1

where pt and r are positive constants. As discussed above (iy has a

nonoscillatory solution provided that the characteristic equation

(2)' i
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has a real root. The condition, for example,

/ \ 1
(12) Σpήp ^~ whereτ = max{τϊ, τ2,... ,τ j

implies that/(0)/( —1/τ) < 0 and therefore (2)' has a real (negative) root
in the interval ( - 1/τ, 0).

Now assume that (2)' has a real root λ0. Then (1)' has the nonoscilla-
tory solution

μeλot for any μ e R, μ φ 0.

But then, by the comparison theorem, any solution of (1)' with initial
function φ(t) satisfying

φ(t) < φ(0)eλ°r, -τ<t<0 and φ(0) > 0

and any solution of (l)r with initial function ψ(ί) satisfying

ψ(ί) > ψ(O)eλo/, - τ < ί < 0 and ψ(0) < 0

is nonoscillatory. In particular (and also when λ is not known) we have

the following result.

COROLLARY 3. Assume that (2)' has a real root. Then any solution of

(iy with initial function φ or ψ satisfying

φ(t)<φ(O)9 -r<t<0 and φ(0) > 0

or

ψ ( O > Ψ ( O ) , ~τ<t<0 and ψ(0) < 0

is nonoscillatory.

EXAMPLE 1. For the delay differential equation

(13) jc'(ί) + K 1 7 M ' - i ) + \e~x/1x(t - \) = 0

condition (12) is satisfied. Therefore its characteristic equation

(14) λ + l e - 1 / 3 " ^ 3 + l e - ^ - λ ^ = 0

has a real (negative) root in the interval (— 2, oo). Observe that λ = — 1 is
a root of (14). Thus (13) has the nonoscillatory solution μe~ι for any
μ e R, μ φ 0. Also, using the comparison theorem, any solution of (13)
with initial function φ or ψ satisfying

φ ( 0 < φ ( 0 ) e ~ ' , - τ < ί < 0 and φ(0) > 0

or

ψ(0>Ψ(0)eΓ' , - τ < / < 0 and ψ(0) < 0

is nonoscillatory.
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In view of Theorems 1 and 2 and Remark 1, we obtain the following
result equation (1).

COROLLARY 4. Consider the differential equation (1) subject to the
hypotheses of Theorem 1 and in addition assume that pt{t) > 0, / =
1,2,...,«, and condition (11) is satisfied. Then, any solution of (1) with
initial function φorψ satisfying

φ(t)<φ(O), -τ<t<0 and φ(0) > 0

or

ψ ( O > Ψ ( ° ) > - τ < / < 0 and ψ(0) < 0
is nonoscillatory.

Finally we apply the comparison theorem to the delay differential
equation

(15) x ' ( t ) + p ( t ) x ( t - τ ) = 09 t>tQ9

where τ is a positive constant andp(t) is a τ-periodic continuous function
with

(16) K=f p{s)ds<\.

With these hypotheses equation (15) has a nonoscillatory solution of the
form

(17) jc(ί) = explλf p(s)ds

with λ < 0. In fact, substituting (17) into (15), we obtain

l = 0.

It suffices to show that g(λ) has a negative root.

Case 1. K < 0. Then g ( - oo) = - oo and g(0) = 1. Therefore g(λ)
has a root in (-oo,0).

Case 2.K=0. Then λ = - 1 is a root

Case 3. K > 0. Then g(-l/K) = (Ae - 1)/Ae < 0 and g(0) = 1.
Therefore g(λ) has a root in [ - \/K, 0).

Thus in each case (15) has a nonoscillatory solution of the form given
by (17). If in addition to (16) we assume that/?(ί) > 0 then the compari-
son theorem applies and we have the following result.
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COROLLARY 5. Consider the differential equation (15) under the assump-

tions that p(t) > 0 and (16) holds. Then the solution of (15) with initial

function φ and ψ satisfying

Φ(O < Φ('o)> t o - τ < t < t o and φ(t0) > 0

or

/s nonoscillatory.

EXAMPLE 2. Consider the differential equation

x'(t) + (sin f )*(/ - 2ττ) = 0, / > 0.

Observe that sin t is a 2τr-periodic function and condition (15) is satisfied,
with K= 0. Note that ecost is a multiple of the nonoscillatory solution
given by (17).

REMARK 2. When p(t) > 0 the condition K > l/e implies, see [2],
that every solution of (15) oscillates. This is our motivation for the
following

Conjecture. If K > \/e then (15) is oscillatory.
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