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Let G be a locally compact group, €^(0) the Banach algebra of
C-valued continuous functions on G vanishing at infinity, and let J be a
translation-invariant dense *-subalgebra. We assume that £ has its own
norm, such that it is a Banach G-algebra with involution. Then the
twisted convolution algebra «£?= Lι(G, £) is simple and symmetric and
there exists — up to unitary equivalence — exactly one irreducible * -rep-
resentation λ, mapping i f into the compact operators of L2(G). Thus for
hermitian / e i ^ o n e has the canonical spectral decomposition λ ( / ) =
ΣjOίjEj with {<Xj} = Spec λ ( / ) = Sρecg»(/), Ej finite-dimensional pro-
jections in L2(G). It turns out that E} = λ(ej) for idempotent e} e jgP,
hence every hermitian / e i?defines uniquely a Fourier series Σαy cy in
oδf. Different convergence properties of such expansions are studied.

The main result states that for "radial functions'9 / the eigenfunc-
tions e} span a maximal commutative subalgebras of «£? and that there
exists a summation method for these /, generalizing the Fejer kernel for
periodic functions. More precisely: There exists a bounded approximate
identity for if, consisting of finite linear combinations of the ej. Applica-
tions are given to algebras LX(N) for nilpotent Lie groups N9 in
particular all such N are determined, on which a compact abelian group
K acts such that the subalgebra Lι

κ(N) of radial (i.e. X-invariant)
functions is commutative.

Let G be a locally compact group with a liminal C*-grouρ-algebra.
Then every irreducible unitary representation π of G, resp. of Lι{G), maps
L2(G) into the compact operators of the Hubert space Jf(π). Thus for a
hermitian function/ Ξ Lι(G) the operator π(f) has a spectral decomposi-
tion τr(/) = Σ^oίjEj with orthogonal minimal projectors Ej of 3f(π). It
can happen that also the Ei are in the image ^(L1), i.e. Et = 7τ(e,) with
e{ e I}(G). In this case it is reasonable to say that

00

( l ) / ~ Σ <*i *i ( m o d k e r π)

is an eigenfunction expansion modulo π of/, and to ask in which sense the
series Σαyey converges to/.

To give an example let us take for G the Mackey group of H = T X Z,
T the circle group, with respect to the cocycle c((f, m), (#, n)) = # m . Thus
G = H X T with product O, α)(j>, β) = (xy, c(x, ^)ai8). The group G is
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nilpotent of class 2 and has essentially one infinite dimensional irreducible
representation π wi th^(π) = L2(T), defined by

It is easy to see that the quotient L\G)/keτπ is isomorphic to L\H9 c),
i.e. the Z^-algebra of i/, but with the twisted convolution defined with the
aid of the cocycle c. This algebra in turn is isomorphic with the twisted
product algebra Lι(Ύ9 A(ϊ)), where ^4(T) is the Fourier algebra of T, i.e.
the algebra of all functions on T with absolutely convergent Fourier series.
The product is defined by

for details see e.g. [7] or [9]. Then m maps LX(T, A(Ύ)) faithfully into the
compact operators of L2(T). Now C c A(Ύ), hence Lι(Ύ) c L\Ύ, A(Ύ))
and actually the ordinary Lι(Ύ) is in this natural way a subalgebra of
L\Ύ9 A(Ύ)). It is not hard to see that for/ e L\Ύ) the series (1) is exactly
the classical Fourier series of the function /. This example shows that
general nontrivial results about convergence questions of series (1) may be
difficult to obtain. In this paper we will mainly treat the case of the
algebrasoέ?= I}(G, 2.) ίoxΆ c CJG). TheseJ^'s have been introduced in
[7] and extensively studied in [9], in particular [9] contains a complete
description of the ideal theory of «£?. Probably the most important cases of
these JSΓs are the algebras Γ(Rn) = L\Rn

9 A(Rn))9 which are exactly the
primitive quotients of the group algebras L\G) for nilpotent connected
Lie groups of class 2. In these cases there is a natural notion of radial
functions and it is this class of functions for which we can prove
satisfactory results. As an application of the results we will explicitly
determine all connected nilpotent groups G with a continuous action of a
torus K = TΛ, for which the invariant functions form a commutative
subalgebra Lι

κ(G). For G = H m , the 2m + 1 dimensional Heisenberg
group, these l}κ{Άn)9 K = T", have recently attracted some interest, see
e.g. [1], [4], [5], [13]. In [13] also more general nilpotent groups are studied.
It is not hard to see that at least some of the results in [13] are easy
consequences of this paper.

We are interested in the twisted algebras

<e=L\G, £).

Here G is a locally compact group with left Haar measure dx and £ a
subalgebra of CJ^G), the algebra of all C-valued continuous functions on
G, vanishing at infinity, with the usual norm \f 1̂ . The algebra i? is always
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assumed to be closed under complex conjugation / -» /*, /*(*) = / ( * ) ,
and left translation and to have its own norm \f | with \f \ > |/ 1̂ , so that
& is a Banach algebra with respect to \f |. Moreover, as in [8], §2, or [11],
Theorem 4, we assume that |/*| = \f |, \fz\ = |/z | = \f \ (forfz(x) = f(zx\
fz(x) = f(xz)), z -* fz is continuous from G into £, the compactly sup-
ported functions i?0 are dense in Q and finally, the C*-hull J2* of i?
coincides naturally with Q^G). Under these conditions^ is a simple and
symmetric involutive Banach algebra with essentially only one irreducible
unitary representation λ, realized in L2{G) by

Here we consider / e cS? as a function on G X G: f(x, y) = f(x)(y) The
same formula defines irreducible representations λp in LP(G) for all /?
withl </? < oo.

The finite rank elements form a two-sided dense ideal i. The elements
of rank 1 have been exphcitly determined in [9], Theorems 1 and 2. They
are of the form/ = a ° b with some a, b ^ J2, for which a° bis defined by
(see [9], p. 128)

The subset Stx of all a e 2, with α ° <z e jg? is a Segal algebra in i? with
norm ||α|| = 1^°^^ for a fixed u^£λ with |w|2 = 1, on which G acts
continuously and isometrically. Moreover, for every real/?, 1 < p < oo9£λ

is contained in LP(G) and the injection 2 -> Lp is bounded. One of the
results in [9] states that the closed left ideals in JSfare in a canonic 1:1
correspondence with the closed subspaces of Άv

Now let / be a hermitian element in oέP. Then λ(/) is a selfadjoined
compact operator, hence λ(/) = ΣoίjEj with pairwise orthogonal hermi-
tian projectors Ej of finite rank and a = {αy} the spectrum of λ(/). AsJSf
is symmetric a is also the spectrum of / in JS?, hence if R(ξ) is the
resolvent of / in cSf, and c a circle with center αy and so that no other
ak e a is inside c, then

defines an element/^ inJS? with

because λ(R(ξ)) is the resolvent of λ(/). It follows that/^ ^ <?, thus

/7 = Σ Vjk ° VJk
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with VjkeJ2l9 {Vjk° Vjk)j,k a system of pairwise orthogonal hermitian
idempotents of rank 1 in j?. We have proved (see [10], "Satz" on p. 138):

PROPOSITION 1. Let f = f* be a hermitian element in £έ\ The spectrum
of f in 3? is a real sequence {<Xj}> finite or converging to 0. There exists a
corresponding sequence [fj] ofpairwise orthogonal hermitian idempotents in
Swith

in the compact operators Jf(L2(G)).

Obviously the sequences {α,} and {fj} are uniquely defined by /,
therefore we define

DEFINITION. Let/be a normal element in JS? (i.e. / * /* = / * * / ) with
spectrum {αy }. Let the sequence {fj} of finite rank idempotents in3? be
defined by /as described in Proposition 1 (i.e. λ(/) = Σαy λ(^), αy e C).
We write

f~Σ«jfj

and call Σoίjfj the Fourier series off.

The example discussed in the introduction shows that this definition
indeed generalizes the classical notion of the Fourier series of a periodic
function.

We have norm convergence of the image Σα,λ(/) of the Fourier
series to λ(/), but quite evidently we cannot expect the same for/and its
series in Jέf. So the problem arises to describe in reasonable terms the
convergence behavior of Fourier series in <£?. Probably the best one can
expect for decent functions is the existence of a bounded approximate
identity, consisting of finite linear combinations of the/^ , for the algebra
of all g e <£? with λ(g) = Σγ yλ(^) The Fejer kernel does exactly this for
the periodic functions.

Instead of studying individual functions it is more reasonable to
investigate commutative self adjoint closed subalgebras of JSf. Recall that
Άx is dense in L2(G), see [9], thus, if G is separable, £γ contains orthonor-
mal bases u = {u}} of L2(G). It is easy to see that for such a basis u the
set of elements / in Shaving Fourier series ΣotjUj ° UJ with wy e u form a
maximal self adjoint commutative subalgebra ϊF of oS?. Actually, what is
really needed for the maximality of JΠs the fact, that u is a maximal
orthonormal subset
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DEFINITION. Let u = {uj} be a subset of i? l s orthonormal and maxi-
mal ini?! with respect to orthonormality and denote by ^the family of all
these u. For u e °U let i^ (u) the closure in if of all finite linear
combinations of the ey = Uj ° wy, and J^(u) the family of all functions
/e<5?, for which λ(/) = Σf/λ(ey), i.e. which have Fourier series Σ α ^
with/y e ^ 0 ( u ) .

Clearly^ in the closed subalgebra generated by the ey . Moreover:

PROPOSITION 2. 77*e correspondence u -> i ^ ( u ) w bijective between <%

and the set of all maximal self adjoint commutative subalgebras of ££.

Proof. Let u e ^ and assume that h ^Jf, h = h*, commutes with
J^(u). If h ~ Σotjgj, then all gj commute with ^ ( u ) . This implies
2/ = 8'j + #7 w i t h ZJ e ^ ( u ) , g"*, = 0 for all ef. = u, o W/ e ^ 0 ( u ) . If
gj/ =£ 0, then we could find some v e ^ with |y|2 = 1, 0 ° y < g", hence
(ί; ° ί;)e/ = 0, i.e. y orthogonal to all «,• e u, contradicting the maximality
of u. It follows that all gy are^ 0 (u) thus Λ G J^(W).

Now let J^be a maximal selfadjoint commutative subalgebra of L. If
/ 6 , f has the Fourier series Σoίjfj then also all /̂  are in &. Let γ = {g,}
be a maximal family of pairwise orthogonal hermitian idempotents gi ^ IF
and minimal in J*\ If Σαy/) - / e Ĵ "9 then for every g, e γ and fj either
ftof. = 0 or ft o/y. = gi9 thus ft ° / = ί/ft for some {,. e C. Let e be an
idempotent of rank 1 with e < ft, hence e * g,- = ft * e = e. Then e*f =
e* gi*f= iie * ft = £, e = / * ^ f o r all / G ^" hence e e ^ , ft = e. It
follows that all gi e γ have rank 1. Moreover every hermitian idempotent
i n ^ is a sum of some g, e γ. If gf. = wz o w.? then {wz} is an orthonormal
family of L2, contained in Stv If it would not be maximal we could find a
« e i 1 ; |w|2 = 1, orthogonal to all uv Then e = u°u is nonzero and
orthogonal on all ft e γ, hence e * / = / * e = 0 for all / e Ĵ *. This is
impossible, because J^is maximal. It follows that {ut) = u is in % and

The problem of convergence of Fourier series can now be stated in
different degrees of strength:

(C2) J^(u) has a bounded approximate identity for J^(u).
(C3) ^o(n) contains a hermitian bounded approximate identity foroSf.

REMARKS. (1) If (C3) holds for some u, then (see [6] Satz 1) & has to
have a bounded approximate identity. We will always assume that this is
the case.
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(2) In the general case, J ? Q = J ? Q ( U ) is always a closed ideal in
d*"= J^(u) and the quotient &/&§ is a radical algebra: Assume that φ0 is a
nonzero multiplicative bounded functional on IF. As J§f, hence IF is
symmetric, φ0 is hermitian, i.e. a character of J^. Again by symmetry φ0

extends to a positive hermitian form φ on 3?. But these are continuous in
the C*-norm of <£?, thus φo(<Fo) t 0, which proves our assertion.

(3) If «^(u) contains an approximate identity {λy }y, then we can of
course assume that the hj are hermitian and contained in the linear span
of the g, = ut o Uj, ut e u, i.e. that h} = Ση^ g/ with ηy/ = 0 for almost all /
for eachy. These {ht} can be considered as special summation kernels, in
both cases (C2) and (C3). The Fejer kernel in the case of the family
u = {e2«iJX}jGZ and the algebra L\Ύ9 A(Ύ))9 JF0(u) = ̂ ( u ) = L\Ύ)9 is
an example. In this case ̂ ( u ) satisfies (C3).

For a fixed basis u 'm£λ let

and denote by <f (u) the subalgebra of $, generated by the gjk9 i.e. the set
of all finite linear combinations of the gJk.

PROPOSITION 3. The algebra ${u) is dense in & if and only if the linear
span (u) ofu is dense in£v

Proof. Fix u e u with \u\2 = 1 and set p = u ° w, so that p is a
hermitian idempotent of rank 1 and for a closed left ideal

where β(i^) is a closed subspace of Άv Moreover β: iΓ-* β^) maps the
lattice of closed left ideals in «£? bijectively onto the lattice of closed
subspaces of £l9 see [9], Theorem 3.

Now assume that ${ u)"= JS?. Then

)y= (p*£>(U))-= (Uo(u>)~= M

and consequently (u) is dense i
On the other hand let U = (u) # c2x. Then again by [9], Theorem 3,

γ(J7) = (oS? *(w o £/))-# &m As#(u) c γ(f/) it follows that^(u)"# Se.

COROLLARY. // u satisfies (C3), ίΛeπ ( u) w ̂ π^e m 2lβ

Proof. As remarked before, (C3) implies that there exists a bounded
approximate identity for Jδ? of finite sums of the gi = ui ° ut. Because all gi

are in ̂ (u), it follows that «f(u)~= .5?, hence (u)" = ^ ^
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It is easy to construct bases u in Άx for which (u) is not dense, one
only has to take a closed proper subspace U c£tl9 which is dense in
L2(G), e.g. all a^Άx which vanish on a fixed closed subset in G of
measure 0. Then clearly U contains a basis u for L2 with (it) c U, thus

On the other hand if (u) is dense i n ^ , then #(u) is dense ini? and
consequently there exists a bounded approximate identity {et} of the
form et = Σyjkgjk with finite hermitian matrices γ1' = (Ίjk)jk. (C3) means
that we can choose real diagonal matrices for the γ1'.

Now we consider a connected compact abelian group K and assume
that K acts continuously on if, i.e. we have a strongly continuous
homeomorphism from K into the group of isometric * -automoφhism of
g. We denote this action by/ -> /* for/ e «£?, k e # . Then the represen-
tations/ -> λ(/*) for fixed fc e jRΓ are equivalent to λ, hence there exists a
projective unitary representation U: k -> UkoίK in L2(G) with

(2) λ(/*) = £4*λ(/)i4

for all / e 3?, k e i ί and as Jί is connected, we can and will assume that
U is an ordinary continuous unitary representation of K. The representa-
tion U is uniquely defined by the action of K on JS?, up to a multiplication
by a unitary character of K.

Let 0, b, c be elements in Άv Then α ° Z> is a rank 1 element in «£?,
consequently also (α ° 6)* for k <E K, thus (α o ft)fc = ak°bk for some α^,
6̂  e «2X. Now λ(α o &)c = (c\b)a, hence

α = (Uΐc\bk)ak

and (c\b)U*a = (c\Ukbk)ak. Taking 6 = c, |6 | 2 = \a\2 = 1? we see that
U*a = (b\Ukbk)ak, thus, because also \ak\2 = 1, Ukbk = f6, β^ = ξU*a
with f e C , |f I = 1. It follows that

(3) (a*b)k = (U£a)

in particular <2λ is [/-invariant.

PROPOSITION 4. ΓΛe restriction of U onto Άx acts continuously on the
Banach space £l9 i.e.£ι is a Banach K-module, in particular

*x = ί Σ 2f\
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i.e. <2λ is the closure of the direct sum of the eigenspaces

of the characters χ of K. We can choose U so that for the trivial character e
we have &{ Φ 0.

Proof. We have for Jέf a corresponding decomposition into the
subspaces«£?x and because K acts by * -automorphisms it follows that

hence &x *{& *)* c &ε for every χ e ί Thus £?z Φ 0. If / = /* e &\
f ~ Σoίjfj with hermitian idempotents fj9 then also the fj are invariant.
Now let/be an invariant hermitian idempotent of minimal rank m. Then
/*<5?*/ = i ^ i s a n invariant subalgebra of «£?, isomorphic to the m X m
matrixalgebra over C As before, the invariant elements form a * -subalge-
bra JS^ε Φ 0. Then the minimality of m implies^6 = J?f = C, i.e. m = 1.

Now let « e ^ be such that u ° w is an invariant idempotent. Then, as
we have seen

Vku = ω ^ w

with ωk e T, i.e. u is an eigenvector for U and ω: A: -> ωk a continuous
character. But then also U': k -> ω{k)Uk implements the action of K on
j£\ so we can assume that £/' = ί/, co = ε and w ̂  c2j. Finally for arbitrary
flGij and the invariant u with |w|2 = 1 we have a constant γ > 0 with
γ||ι?|| = \v o u\v hence

which shows the continuity of k -> ί/*a in thec21-norm.
For a e «gf, fe e £* and A: e ϋ: we obtain from (3):

(a o fc)Λ

hence Proposition 4 has the

COROLLARY. The eigenspaces

are the closures of the linear span of all functions a° b with « G if,
b e 9%x, φ e i [ , in short

I tmmi 1
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in particular, the subalgebra £fε is the closure of the direct sum of the simple
subalgebras

( 4 ) < ^

Our next proposition holds also without the assumption that the
compact group K is commutative.

PROPOSITION 5. J? contains a bounded approximate unit {hμ}μ of
K-invariant hermitian elements hμ of finite rank.

Proof. Let {gμ} be an approximate identity foroSf, bounded by C, i.e.
\gμ\ <, C for all μ. For/ e & let/# e X* be defined by

/* = ί fk dk9Jκ

hence / -> /* projects αS? onto o^ε and \f\ ^ |/ |x. We claim that {gj] is
an approximate identity, also bounded by C. As the last assertion is
obvious it suffices to show that lim(g* */) = /for all/in a total subset in
if, e.g. for all/ e U Ψ e J ^ * . So let/ e JS?*, i.e./* = Ψ(k)f. Then

hence limμ(g**/) = / u n d {g$}μ is a bounded approximate identity in

For every σ with 0 < σ < 1 and every μ we can choose a finite rank
element j μ σ in oSfε with |g* — j^Jx < σ. If we order the pairs (μ, σ) by
(μ, σ) > (v9 T) if μ > v, σ < T, then also {yμ>σ}μ>σ is a bounded approxi-
mate identity and finally the family {Λμ,σ}μ>σ with hμσ = \{jμσ +j*σ)
has all the properties claimed in Proposition 3.

It is clear that the algebra i ? 8 of invariant elements is commutative if
and only if all i?φ

ε, φ e ί , defined by (4), are zero- or one-dimensional,
which, in turn, is equivalent to the fact that dim J f ^ 1 for all φ e ί

DEFINITION. We say that K acts radially on X, if dim ϋf <; 1 for all
φ G K. A function f^J? is called radial (with respect to K) if it is
invariant under K, i.e. if/ e jg?ε.

So ίΓ acts radially on X if and only if the multiplicities of the
implementing representation U of K in L2(G) are all at most 1. From our
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previous results we conclude:

THEOREM 1. If the commutative compact group K acts radially on &
then the radial functions form a maximal commutative subalgebra, i.e.
J5?ε = ^"(u), where u = {uχ} and the uχ are eigenfunctions of the represen-
tation U of K in Slx for the character χof K.J?ε satisfies condition (C3), i.e.
&Ό(VL) contains a hermitian bounded approximate identity for ££'.

REMARKS. In the radial case the uχ in u generate the non-zero primary
eigenspaces of the ^-module J l 9 i.e. ££ = C uχ, iΐ£? Φ 0. Of course it is
possible that £$• = 0 for some χ G K, moreover, while the family {2% uχ

Φ 0, χ G K} is uniquely defined by the action of K on <£?, the actual
application χ -> £f depends also on the choice of U.

As a consequence of the theorem we see that for radial functions in
J£?ε there exists a summation method: Let us assume that u = {Uj} is
countable, e.g. K = {χy }, u}f = uχ , j G N. Then the approximate unit
(Λn}n of radial finite rank functions Λπ can be taken countable. With
e} = Uj ° Uj we have

hn=
n 7 = 0

with positive real snj. Now l e t / e i ? ε have the Fourier series Σα7e7. Then
hn*f= Σrμosnjajej and we have

lim EVΛ =/ in^

Our first example will show that the Fejer kernel for periodic ^-func-
tions is a special case of such an approximate identity.

Assume that K is a central subgroup of G. Then we define the action
of K on Se by

(5) /*(*)(>)-/(*)*ω-/(*,*v),
i.e. we extend the natural action of K on J , defined by q -> #*, ?*(>0 =
#(/c>0 = #(.y/0 for ^ e i , tocS?. It is clear thatoSf is a ^-algebra with this
action. Moreover it follows immediately from (5), that / G J? is invariant
if and only if all values f(x) as functions in J depend only on the cosets
y = yK ^ G/K. Let & be the subalgebra of all ίf-invariant functions in JH.
Then we can consider^ canonically as a subalgebra of C^(G/K) and we
have
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Algebras of this type have been studied in [9]. Clearly the action of
is radially if and only if G = K. In this casec£?ε = Lι(K) and the Fourier
series for/ e j§?ε is just the usual one: Σχf(χ) χ.

Our next example is more important and more involved. Let Hw be
the (2n + l)-dimensional Heisenberg group. As usually we can write
Hn = R2" X R with product

(6) (x,s)(y9t) = (x+y9s + t + (x9 y))

with a bilinear form (x9 y) on R2" for which the difference (x9 y)
— (y9x) is nondegenerate. Different forms (x9 y) correspond to differ-
ent sections R2n = Hn/Z -> H n , Z = R the center of Hn. Most fre-
quently used are the isotropic and the polarized sections with the corre-
sponding form, see [2]: The isotropic section is the natural one in the
complex parametrisation of H n . We identify R2" with Cn and denote the
usual positive definite inner product by (x\y)9 i.e. (x\y) = Σ%xβ?j. Then
the isotropic form is defined by

The polarized form comes from the usual representation of Hn by lower
triangular real n X ^-matrices and is defined by

(x9 y)p = x"y>

if x = (x\ x")9 x'9 x" e Rn, similarly^ = (y\ y") and uv = ΣJ^UJUJ for
ii, v e Rn. If

β(x) = β{x\ x") = \xfx"

then the two forms are related by

(x9 y)p - (x9 y)t = β(x +y)- β(x) - β(y).

For the rest of the paper let K = Tn. Then K acts by multiplication
isometrically on C" and leaves (x\y) fixed. Using ( , )/ in (6) for defining
the product in Hn we see that

(7) f(x, s) = (ζx9 s)9 ς e K9 (JC, ί ) e C " X R

defines an automorphism aζ of H π , leaving the center elementwise fixed.
It is clear that α: ζ -> aζ has all the necessary continuity properties, hence
a acts continuously on Lι(Hn) and likewise on all infinite-dimensional
primitive quotients L\(Hn) = L1(Hn)/ker7rλ, where πλ is the irreducible
representation of L1 in L2(R"), corresponding t o λ e R x. Now all these
quotients are isomorphic to
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where A(Rn) = ^(L\Rn)) is the Fourier algebra of R" and R" acts on
A(Rn) by translation, see [7]. The isomorphism is established by using the
polarized form for the product and applying Fourier transformation to
x". Unfortunately there is no simple formula for the action of K on
L1(Hn) in terms of the polarized form, thus it seems not to be possible to
give a short explicit expression for the image fζ of a function / e Γ(RW)
for ζ e K. But using the fact that

/?(*, y) = ^χy = 4 I m ( Σ{*j + tyf

and the relationship between the parametrisations of Hn corresponding to
( , )z and ( , ) p one sees that the formula for the action of K with respect
to the polarized form is given by

(8) ξ(x9 s) = (ξx9 s + \ lm({ζxf - x2\\))

where of course C" is considered as the direct sum algebra C Θ Θ C,
n times, 1 = (1,1,... ,1), and x = (x\ x") e R2n is identified with x = x'
+ ix" e Cn.

The primitive quotient L\(Άn) = L\ is obtained by partial Fourier
transform of/ e L1(HΠ):

Thus the action of K on L\ is given by

/if(*) = (Λ) f (*) =
and g e L\ is JSΓ-invariant if and only if

i.e. if the left-hand side function is (poly-) radial on Cn in the ordinary
sense. Thus, writing \x\ = (|x1|,...,|xn|) for x = (xl9...9xn) e Cn, the
general invariant function g e L\ is given by

(9) g(x) = e

with a function g0 e Lx(Cn), depending only on |x|.
Now we want to switch from L\ to Γλ(R"), with Γλ(Rπ) =

L\R\ A(Rn)), but action ux(y) = u(y + λx) for x e Rn. So Γ^R") is
our "old" Γ(RΛ), corresponding to λ = 1. Therefore we change the nota-
tion and write (x, y) instead of x = (x\ * " ) , resp. x = x' + ix". Then the
isomorphism from L\ onto Γλ(R") is a Fourier transform with respect to
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2|y9 furthermore, Im(x2 | 1) becomes 2xy = TLx^j and (9) implies that

(10) g(x, y) = [ h(x2 + t

2)e-2^λx/2+y)t dt

defines a radial function in Γλ(R"), whenever h is a sufficiently well
behaved function on (R+)n withx2 + t2 = (xf + t\9... ,x

2 + t2) e (R+)rt.
It is easy to see that g is hermitian if and only if h is real valued. To keep
matters simple we restrict our computations to the case λ = 1, hence
Γλ = Γ. Taking h(x2 + t2) = <r*(*2+'2)/2 i n ( 1 0) w e o b t a i n a r a d i a l

function/with

fίχ _ y y\ = e-π{x-yΫ/Ί f e-πt2/2-πi(x+y)t ^

Substituting /21 for t and observing that the Gauss-function e~mtl is fixed
under Fourier transform we obtain

f^x - y^ y} = 2n/2e~π{x~y)2/2e~π{x+y)2/2 = 2n/2e~πχ2e~my2.

Hence we see that for the normalized Gauss-function

uo{x) = 2-"/4e-™2

the minimal hermitian idempotent
Pθ = UQo UQ

is ^-invariant, in particular we have u0 e A(W)l, if the representation U
is properly normalized, see Proposition 4.

Next we will compute the action of K on the Lie algebra ϊ)n of Hn, or
more exactly on the image of ί) n under the infinitesimal representation of
i)n in L2(Rn) corresponding to πτ. In coincidence with our previous
notations we will write λ for the representation 7rx of Γ(R") and also for
the corresponding representations of Hn and ί)w. Then for (x, y91) G Hn

the unitary operator λ(λ:, y91) in L2(R") is given by

(11) (λ(x, y, t)ζ)(w) = e " 2 ^ + ^ - ^ | ( > v - x)

for ξ e L2(R"). Let {Xj9Yk,Z}be the usual basis of ί)π, corresponding to
the one-parameter subgroups {(tej9090)9 (0, /e^,0),(0,0, 0}. ̂  G R9 ̂  the
yth unit vector in Rn. As is well known one obtains the images

Aj = λ(Xj)9 Bk = λ(Yk), C = λ(Z)

by differentiating (11):

Λj=-fo> Bk = -2πiMk, C = -277/1



58 HORST LEPTIN

with (Mkξ)(x) = xk£(x), x ^ R". In order to determine the images Xj
etc. for f e l one has to compute the images of the corresponding
one-parameter subgroups. Putting ξ = c + is for ξ e K (hence c =
cos(arg {), ,y = sin(arg f)) one obtains

(*?,.,0,0) = (fc,.*,., tSjβj

θ, te,,θ) = (-tye,., tCjej,

Inserting this in (11) and differentiating yields

A< - CJAJ + SJBJ - \(

B} --SJAJ + CJBJ - λ(Yf);

hence for

j - Aj + iBj --£- + 2*Mj

we have, with Cy = Aj - iBj9

Cj = hcj> CJ = £jcj

For a multi-index q = (qvq2,... 9qn) with ^ G N ( 0 G N!) we set

hence C^ is a differential operator of degree \q\ = Σqj and ^ G T , ! ^

monomial of degree \q\. Applying Cq to uQ and multiplying with a factor
γ^ we obtain the hermitian functions

with \uq\2 = 1, hq the qth hermitian polynomial in x = (xx,... ,JCΠ). From

we see that uq is an eigenfunction of U for the eigenvalue f *. As all uq are
contained in A(Rn)1 (see e.g. [12]) and {uq}q = u is an orthonormal base
of L2(RM), we see that M̂  generates the eigenspace A(Rn)f for the character
ξ -+ ζq oΐ K. Consequently we have proved the following

THEOREM 2. The group K = Ύn acts radially on Γ(RW), in particular

vvΛere ŵ  ί*y the qth Hermite function on Rn.
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COROLLARY. The radial functions Γ# form a maximal commutative

*-subalgebra of Γ(R"), containing a bounded approximate identity of finite

rank elements.

As a fairly immediate consequence of the corollary one can prove that

also the subalgebra Lι

κ(JΆn) of radial functions in L\Hn) is a maximal

commutative *-subalgebra, because a subalgebra 39 a l}{Άn) is com-

mutative if and only if all images &λ of 39 in the primitive quotients L\

are commutative. More generally one can consider the situation in which

K = Ίn acts on a connected nilpotent Lie group G. Then again K acts on

Lι(G) and the functions invariant under this action form a subalgebra

L\(G).

Problem. Find necessary and sufficient conditions for the commuta-

tivity of Lι

κ(G). We will solve this problem for nilpotent groups. We

assume first that G is of class 2.

The first step is a reduction: Instead of studying G we consider the

Lie algebra g of G and assume that K acts on g. Let 3 be the center of g

and g' = [g, g] the derived algebra. Clearly 3 and g' are invariant and

g ' C j , thus one can directly decompose g into invariant subspaces:

g = e Θ g' Θ α, 3 = g' Θ α.

It follows that gx = e Θ g' is an invariant subalgebra with g( = g' = ιx =

center of g1> and g is the algebra-direct sum of QX and the commutative

algebra α. Correspondingly G = Gλ X A with A = Rα, LX(G) = Lι(Gλ) d

Lx(^4). Now one can prove that Z^(G) is commutative if and only if

L}κ{Gλ) is commutative. This reduces the problem to the case

(12) g' = 8,

resp. Gr = Z for the group G. So from now on we will assume that G is

connected, simply connected with algebra g and such that (12) is satisfied.

Under these assumptions we will prove

THEOREM 3. The subalgebra Lι

κ(G) of invariant functions is commuta-

tive if and only if the following conditions are fulfilled'.

(i) Kacts trivially on 3 (resp. Z);

(ii) n (= dim K) = \ dim(g/a).
Under these conditions G is a quotient of the direct product H 1 X H 1 X

• X H 1 = ( H 1 ) x " , with the obvious action of K = Ύn on ( H 1 ) x " .
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We start the proof with some simple lemmas.

(13) Let Ep j = 1,...,«, be n Banach spaces, on which the compact
groups Kj9j= l,...,/i, act strongly continuous and isometrically. Then
the direct product K = Kλ X K2 X X Kn acts strongly continuous
and isometrically on the projective tensor product E = Ex ® E2 ® ®
/?„ and the tensor product (Eλ)Kι ® ®(JB Λ )^ of the subspaces (£,)#.
of ^-invariants in Ej is dense in the subspace Eκ of ^-invariants in E.

Proof. For x e 2̂ ., £ e ^ let Λ^ be the image of * with respect to ζ.
Then x# = j κ xζ dζ is invariant and Py. x -> x# projects 2?y onto (Ej)κ_.
For x = xx6 -"Θxn^E, ξ = (ξv...,ξn)(ΞK=K1X - X Kn we
have x r = xf1 ® ® xζ

n

n. Thus P = Pλ <S> ® Pπ projects £ onto i ^ .
Now let z = limμ zμ^ Eκ, zμ^ Eλ 9 - ® En, the algebraic tensor
product. Then clearly

9(En)

hencez = Pz = lim Pzμ e

COROLLARY. Let Ύn act on ( H 1 ) X w in the obvious way, i.e. component-
wise. Then L1

T«((H1)X Λ) is a commutative subalgebra of Lι{{Άι)Xn).

REMARK. It is not hard to see that Lι

Ύn is even maximal commutative.

(14) Let the compact group K act continuously on G and let N be a
closed ^-invariant subgroup of G\ thus K acts also on G/N. Then the
canonic surjection T: U(G) -> L\G/N) maps Lι

κ(G) onto L\(G/N).

This is clear, because T commutes with the action of K, hence in
particular with the projections/ -> / # ,p = jκf

ξ dξ.
Next we observe that the action of K on G defines also an action on

the algebra J?(G) of all bounded Borel measures on G.
(15) The subalgebra Jίκ(G) of all ^-invariant measures in^#(G) is

commutative if and only if I}K{G) is commutative.

Proof. As Lι

κ(G) c J?K(G), we have only to show that the commuta-
tivity of Uκ implies the commutativity of Jtκ(Gί). Let/and g be in l}κ and
μ in Jf κ. As Uκ is an ideal in Jίκ we have
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hence g * (μ * / - / * μ) = 0 for all g e Lι

κ and consequently μ*f = f*μ.
Now let also v e Jίκ% Then μ * p * / = p * / * j u = * ' * μ * / f o r a l l / e Uκ,
thus μ*v = v*μ.

COROLLARY. For x e G let xκ = {xξ; ζ <Ξ K] be the K-orbit in G. If
Lι

κ(G) is commutative, then xκyκ = yκxκ for all x,y e G.

Proof. For x e G define μx e ΛT(G) by

for / e #0((7). Then μ̂  is a if-invariant probability measure on G with
support xκ. Hence supp(μx * μy) = xκyκ. Now the commutativity of
Lι

κ(G) implies μx * μy = μy * μx, thus xκyκ = j ^x^.
The following example will be used in the proof of Theorem 3: Let

H^ = C3 be the complex 3-dimensional Heisenberg group with multiplica-
tion

^2>ty3) = (*! +yl9x2 +y2,*3 + Λ

and define an action of T 2 on H^ by

(Xl9 X2, X^) ' = (Si^i j *2X>2> *U1XΊ>)

is not commutative.

Let x = (1,0,0), y = (0,1,0). Hence xΛ :=(T,0,0), y^ =
(0, T, 0), JC V = (T, T, 0), but yκxκ ^ (0,1, θχi, 0,0) = (1,1,1) € x ^ ^ ,
hencey κ x κ Φ xκyκ and (16) follows from the last corollary.

Now we turn to the proof of Theorem 3. We consider the Lie algebra
g of G as a X-module and choose some positive definite X-invariant
bilinear form on g. As 3 = gr is A^-invariant we can decompose g into an
orthogonal sum: g = e θ 3, with X-invariant complement e of 3. Clearly
also the complexification g c is a AΓ-module and

(17) g c = e c θ 3c

with 3C = [ e o e c ]. Let dimR e = dimc e c = m and let

(18) e c = ( z 1 ) θ ( z 2 ) θ •• θ ( z j

be a decomposition of e c into invariant one-dimensional subspaces, hence
zζj = Xj(ζ)zj for some χ 7 e if, the character group of K = Tn. As e is
ΛT-invariant it follows that with zy = x} + iy} also zy = xy - /yy is ^-in-
variant, with character χ y, hence zy = z; for somey. Moreover, if Xj and y}
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are linearly independent, then (*,) + (.fy) = ey is an invariant irreducible
subspace of e. If on the other hand y^ = 0, then necessarily χ 7 = ε, the
trivial character, and z} = Xj? e e is ^-invariant. Finally, \zp zk] = wjk e
3C is 0 or eigenvector for the character χjχk.

(19) Assume that wjk φ 0 and XjXk Φ ε for some7, k. Then L^(G) is
not commutative.

Proof. Let us assume that zx = xx + (yx, z2 = x2 + />2 and χ1? χ 2 are
not trivial. Then

W= [Z19Z2] = ([X1?X2] - [ Λ , ^ 2 ] ) + '([^1^2] +bl>*2])

= W + W Φ 0

and because χ x χ 2 Φ e we see that w and t; are independent elements in 5.
Thus

ί) = (xx) Θ ( Λ ) Θ(x 2) Θ ( Λ ) Θ(iι) Θ(ϋ)

is a ίΓ-invariant subalgebra of g, isomorphic to the algebra of H^. The
corresponding subgroup H in G is ^-invariant and isomorphic with H^,
moreover, the action of K on H corresponds to the action of a subgroup
T c T 2 of T 2 on H^. As Lι

Ύi(Hι

c) is not commutative, see (16), Lι

τ(Ή}c)
and L\{H) are not commutative. But Lι

κ(H) <zJίκ(G), thus L^(G) is
not commutative, see (15).

If χx = ε, one can assume z1 = x e g. In this case χ 2 ^ ε, z2 = x2 +

% * β > a n d

f = (x)θ(x2)Θ(Λ)Θ(M)Θ(ι;)

is invariant. The corresponding subgroup F c G is isomorphic to the
subgroup

/=

with action (^^2,^3)^ = (zl9 ζz2, ζz3) for f e T , Analogously to (16)
one proves that L\(J)9 hence Lι

κ(F) and again Lι

κ(G) are not commuta-
tive.

Now we will study the case in which T" acts trivially on the center
3 = g' of g and In < dim(g/3). We will show that in this case L\n(G) is
not commutative by reducing the problem to the special case in which Ύn

acts on f)w, m > n, as a subgroup of the "standard action" of T m on ί)w,
resp. H m as defined in (7) or (8), or n = 1, m = 2.

(20) If 3 = g' and dim(g/a) = d ;> 4, then g has a quotient g/f
isomorphic to ί)y fory > 2.
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Proof. Let 30 be a subspace of 3 of codimension 1, thus 3 = ( z ) Θ 3 0

with some z Φ 0 in 3. As 3 = g' we can assume that z = [x, y] for x,
j e g . This implies that g = g/30 has one dimensional center, conse-
quently g s ^ θ α with / > 1 and central ideal α. It follows in particular
that (20) is true if dim 3 = 1. Now let us assume that dim 3 > 1. In this
case we can find xl9 y2, x9 y in g with [xl9 yλ] = zl9 [x9 y] = z, zx and z
independent in 3.

If xv yl9 x and y are linearly independent modulo 3 we set x = xl9

y = y2, z = z2 and 3 = (zλ) θ (z2) θ 30. If x p j>l5 x and y are not
independent modulo 3, then dim(x1? j>l5 x9 y)/% = 3 and it is easy to see
that in this case one can assume x = xv By hypothesis there exists q ^ g,
independent (mod 3) of xv yl9 y.

If [q, y] & (*i) we set x2 = ί9 j 2 = y and z2 = [x2, y2].
If [9, j ] = azv α e R , w e set x2 = xx + ήr, y2 = y, z2 = [x2, ^2] =

Again 3 = ( z 1 ) θ ( z 2 ) θ 3 0 , thus in all cases the quotient g/30 con-
tains a 6-dimensional ideal f, generated by the cosets xJ9 j^mod 3, which
we denote also by xj9 yk9 with [xl9 yλ] = zl9 [x2> y2] = z2, 3 (= center of f)
= (zτ) Φ (z2).

As above we see that f/(zy ) S ^ Θ αy with central αy. If /x = 2 or
/2 = 2, f, and consequently g, has a quotient isomorphic to i)1 with / > 2.
Otherwise the projections

^ : f/(z7.) s ^ θ aj - ί)1

define homomorphisms Py. f -> l̂ 1 with (kerP,) 0 3 = (z7), hence
Π kerP2 = 0. It follows that

is injective. As dim f = dimίί)1 θ ί)1) it also follows that P is an isomor-
phism. Let (q) Φ (c2) be the center of f)1 Φ ί)1. Then (l^1 Φ ί j^Aq - c2)
= ί)2, hence also f has a quotient isomorphic to ί)2. This proves (20).

(21) Let T act faithfully on ϊ)2. There exists a basis {xl9 yv x29 y29 z)
of ί)2 with [Xj, yk] = δ^z, such that the action of T on ί)2 is defined either
by

(i) zj = f zy, z f = z with zy = x̂  + iyj ^ ί)^, and η e Z , rx # 0, or
by

(ii) (*! + /x2)
f = ξr(Xι + w2)» (Λ + % ) * = f r(Λ + %) w i t h

zero r e Z .

. As T acts nontrivially on ί)2, hence also on the complexifica-
tion ί)̂ > the latter contains an a = u + /i; with α̂  = £rtf for some r e Z ,
r ^ 0. Then a = u — iv satisfies α̂  = ζ~rά. Let ex = (u) © (y) c ί)2.
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(i) Assume that there exists a T-invariant subspace e2 in ί)2 with
I)2 = ex Θ e2 θ (z) and [e1? e2] = 0. Then obviously [e1? e j = [e2, e2] =
(z), hence e2 Φ (z) = f)1 and we can find x2, 2̂ i*1 e2 w ^ h [χ2> J^l = z>
(x2 + iy2Ϋ = Γ2(*2 + fyi\ ri G Z. Now also [e l5 e j = (z), thus we can
normalize u and Ϊ; SO that [w, *;] = εz with ε = ± 1 . Putting xx = w,
j ^ = εy, rx = εr we see that we have case (i).

(ii) In the other case there exists 6 e ^ , linearly independent of a
and δ, with [a, b] = z, bζ = ζr'b. As zζ = z it follows that r' = -r. Hence
b ΦΊ>, [a, Ί>] = [ά> 6] = 0 and {a, a, b, Ί>, z) is a basis for ί)£

Let [a, a] = az. Then c = a — ab also satisfies ĉ  = f ~rc, [β, c] = 0,
[a, c] = 0. But this implies [e1? e2] = 0 for e2 = ((c) + (c)) Π ί)2, which is
excluded in case (ii), unless a = 0. Thus [0, a] = 0 and similarly [&> &] = 0.
Putting 2a = (x1 + IJC2)> T> = (Λ + % ) ' w e s e e ^ a t (20)(ii) holds.

Now we return to the general case and consider again the decomposi-
tions (17) and (18). Moreover we assume that K = Tn acts trivially on 3. If
fχ = ΣXJ=X(ZJ) c e c , we have

x
and f χ Φ 0 implies 3 χ = [f χ , f ̂ ] n g #^0

(22) If dimc f χ > 2 for some χ ^ K, then L^(G) is not commutative.

f. Assume e.g. that fχ = (z^ Φ (z2) with z} = Xj + iyJf zj =
χ ( O ^ J = 1,2. Then

is an invariant ideal in g with g χ = gχ. Let Gχ be the corresponding
invariant normal subgroup in G. If χ = ε, then K acts trivially on Gχ,
hence L^(Gχ) = ^(Gg) is n o t commutative. If χ # ε, then ίΓ/kerχ = T
acts on Gχ. It follows from (20) that Gχ has a T-invariant normal
subgroup iV with Gχ/N = F = H 2 and T acts on F as described in (21).
We will show that this implies the noncommutativity of L\{F) = Lι

Ύ(F),
hence also of Lι

κ(Gχ) and L^(G). To realize (21)(ii) on the group level let
H 2 = C 2 X R with multiplication

(w1? w2, r)(ι; l 5 v29 s) = (wx + υl9 u2 + ϋ2, r + s + | Reίw^ - u2vι))

and action (w1? w2, r ) r = (̂ w1? f w2, r). Let xx = (1,0,0) and x2 = (0,1,0).
Then
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i.e. the orbits of xx and x2 don't commute. As before this implies that
L\(JΆ2), hence Lι

κ(G) is not commutative.
The case (21)(i) is covered by the more general following lemma (23).

Let T n act on H" as defined by (6) or (7). If K is a closed proper subgroup
of T", then L^(HΛ) is not commutative.

Proof. We identify the character group Ύn with Zn and write q =
(ft, ><ln) G z " f o r t h e character q(ξ) = Π"ty. As K Φ Ύn there exists
some q Φ e = (0,... ,0) with q(K) = {1}. Let q = a - b with α, 6 e N".

After Theorem 2 we have ^ ( R ^ = (L%n(u~q))~ with respect to the
action of T" on ^ί(R/1)1. If 4f is the χ-primary component of A(Rn)ι with
respect to the action of K it follows that Af contains uά and uy9 thus
dim Af > 1. Now (4) implies that Γ(Rw)tf and Uκ(JΆn) are not commuta-
tive. This also proves (23).

Now assume that I}K{G) is commutative, K = Ύn. Then (22) implies
that dim f χ < 1 for all χ e K, thus f χ = (zχ) with zχ = xχ + iyχ, e χ =
(*x) Φ (jχ). >̂ x = [ x̂> J x ] ^ 5, [eχ, eΫ] = 0 for χ ^ Ψ. This implies fe =
0, because f€ = fg, hence e£ = ( x j c j , thus eε = 0. The same argument
shows that H> =£ 0 if e γ ^ 0. Now it is clear that G has a quotient
isomorphic to H m , where m = idim(g/δ). Let χ 1 ? . . . ,χ m be the char-
acters of K for which e, = eXy ^ 0. Then ι: f -> {x^f ), .. ,χm(ί)} e T m

is an injection from i£ into T m and if x -* x^ is the given action of A' on
G, resp. the quotient H m of G, and x -> x'ξ, | e T m

? is the standard
action, we clearly have x* = jc**^. It follows now from (23) that ι(K) =
T m , hence « = m. Thus we have shown the necessity of the conditions in
Theorem 3.

Now let K = Ύn and dim(g/a) = 2n. We consider again the decom-
position of e c into primary components fχ, χ ^ K= Zn. As f x ^ 0
always implies f χ Φ 0 we can write

As Πy= 1kerχ 7 = {1} it follows that the χ 7 generate Zπ, hence r = «,
fe = 0, fχ. = (zj). Moreover, ξ -> {xtf), χ2(ί)» »XΛ(O} is an auto-
morphism of T" and consequently we can assume that χ y(£) = £y for
? = {ζv f2> »fn}

 G Tw This means that z] = ^z y. If zy = xy + />y, then
[χj9 yj\ = ^ ^ 0, (Xy) Φ (jy) Φ (wj) = ί)7 is an ideal, isomoφhic with ΐ)1
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and g is canonically an image of the direct sum ({)1)θ'2 = f)1 θ f ) 2 θ

•• θ ή Λ . Correspondingly G is a quotient of ( H 1 ) x " = H 1 X H 1 X

•••XH1. Moreover, the epimorphism ( H 1 ) x " -» G commutes with the

"canonic" action of Ύn on ( H 1 ) * " and the given action of Ίn on G.

Because L 1

T«((H 1)X n) is commutative (corollary of (13)), (14) yields that

also L}Ίn(G) is commutative. Thus Theorem 3 is completely proved.

It is now easy to prove that Lι

κ(G) for connected compact abelian K

and connected nilpotent G is never commutative if G is of class greater

than 2:

THEOREM 4. If G is a connected nilpotent Lie group and K connected

compact abelian, such that Lλ

κ(G) is commutative, then G is at most of class

2, hence of the form described in Theorem 3.

Proof. A similar argument as the one before Theorem 3 shows that we

may assume j c g ' . Then instead of (17) we have the X-invariant decom-

position 8c = e c θ 9 c a n d ^ 0 Γ e c again the decomposition (18). More-

over, also (19) holds: Let/? be minimal such that wjk = w = u + iv is not

contained in the pth term g£f} of the lower central series. Then with the

notation of (19), Ij is an invariant subalgebra modulo Q(P\ hence the

quotient Gp of G modulo expg ( / > ) contains an ^-invariant subgroup

isomorphic with HQ or with / in the second case of (19). But then (15)

implies that l}κ{Gp) is not commutative and from (14) the same follows

for Lι

κ{G). Thus if l}κ{G) is commutative we have [z7, zk] = 0 for all zJ9
zk e e c which transform under K with characters χj9 χk with χkΦχj.

But this implies that K acts trivially on all [x, y] with x9 y e e c . As e c

generates g c it follows that K acts trivially on g^

From 3 c g' we conclude as above that e c cannot contain nonzero

.fiΓ-fixed elements, in particular the χ y G K, corresponding to Zj in (18) is

not trivial. This implies [zj9 w] = 0 for all w e q'C9 because K is trivial on

Q'C. We conclude that [ e c , g^] = 0, thus [e, gr] = 0 and as e generates g,

finally also [g, g'] = 0, which finishes the proof of Theorem 4.

REFERENCES

[1] D. Geller, Fourier analysis on the Heisenberg group. I, Schwartz space, J. Funct.
Anal., 36 (1980), 205-254.

[2] R. Howe, Quantum mechanics and partial differential equations, J. Funct. Anal., 38
(1980), 188-254.

[3] , On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math.
Soα, (N.S.) 3 (1980), 821-843.

[4] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for
bounded harmonic functions on balls in Cn, Inventiones Math., 62 (1980), 325-331.



EIGENFUNCTION EXPANSIONS ON GROUPS 67

[5] A. Koranyi, Some applications of Gelfand pairs in classical analysis, Harmonic

analysis and group representations, C.I.M.E., 1980, Liguori Editore, Napoli (1982),
333-348.

[6] H. Leptin, Darstellungen υerallgemeinerter l}-Algebren, Inventiones Math., 5 (1968),
192-215.

[7] , On group algebras of nilpotent groups, Studia Math., 47 (1973), 37-49.
[8] , Ideal theory in group algebras of locally compact groups, Inventiones Math.,

31 (1976), 259-278.
[9] , On onesided harmonic analysis in noncommutatiυe locally compact groups, J.

Reine u. Angewandte Math., 306 (1979), 122-153.
[10] , Bemerkungen uber Linksideale in Gruppenalgebrenι, Lecture Notes in

Mathematics, 781 (1980), 121-141.
[11] H. Leptin and D. Poguntke, Symmetry and nonsymmetry for locally compact groups,

J. Funct. Anal., 33 (1979), 119-134.
[12] D. Poguntke, Gewisse Segalsche Algebren auf lokal kompakten Gruppen, Archiv

Math., 33 (1979), 454-460.
[13] F. Ricci, Harmonic analysis on generalized Heisenberg groups, preprint Torino (1982).

Received February 23,1983.

UNIVERSITAT BIELEFELD

UNIVERSITATSSTRABE

4800 BIELEFELD, FED. REP. GERMANY






