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A NEW KIND OF EIGENFUNCTION EXPANSIONS
ON GROUPS

HORST LEPTIN

Let G be a locally compact group, C_(G) the Banach algebra of
C-valued continuous functions on G vanishing at infinity, and let 2 be a
translation-invariant dense *-subalgebra. We assume that 2 has its own
norm, such that it is a Banach G-algebra with involution. Then the
twisted convolution algebra = L'(G, 2) is simple and symmetric and
there exists — up to unitary equivalence — exactly one irreducible *-rep-
resentation A, mapping .% into the compact operators of L*(G). Thus for
hermitian f € £ one has the canonical spectral decomposition A(f) =
L,a;E; with {a } = Spec A(f) = Specy(f), E; finite-dimensional pro-
]ectlons in L? (G) It turns out that £, = A(e, ) for idempotent ¢; € Z,
hence every hermitian f/ € .Z defines umquely a Fourier series Za e, in
£ . Different convergence properties of such expansions are studied.

The main result states that for “radial functions” f the eigenfunc-
tions ¢, span a maximal commutative subalgebras of - and that there
exists a summation method for these f, generalizing the Fejer kernel for
periodic functions. More precisely: There exists a bounded approximate
identity for £, consisting of finite linear combinations of the e;. Applica-
tions are given to algebras L'(N) for nilpotent Lie groups N, in
particular all such /V are determined, on which a compact abelian group
K acts such that the subalgebra L. (N) of radial (i.e. K-invariant)
functions is commutative.

Let G be a locally compact group with a liminal C*-group-algebra.
Then every irreducible unitary representation 7 of G, resp. of L'(G), maps
L?*(G) into the compact operators of the Hilbert space 5 (7). Thus for a
hermitian function f € L'(G) the operator 7( f) has a spectral decomposi-
tion 7(f) = LFa,E; with orthogonal minimal projectors E; of 5#(w). It
can happen that also the E, are in the image 7 (L"), i.e. E; = m(e,) with
e; € L'(G). In this case it is reasonable to say that

(1) f~ i «.e; (modker )

is an eigenfunction expansion modulo 7 of f, and to ask in which sense the
series La e, converges to f.

To g1ve an example let us take for G the Mackey groupof H = T X Z,
T the circle group, with respect to the cocycle ¢((§, m), (¥, n)) = ¢™. Thus
G = H X T with product (x, a)(y, B) = (xy, ¢(x, y)aB). The group G is
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nilpotent of class 2 and has essentially one infinite dimensional irreducible
representation m with 5#(7) = L*(T), defined by

(m($, n, N)9)(§) = A(8€) "6 (8¢).
It is easy to see that the quotient L'(G)/ker 7 is isomorphic to L'( H, c),
i.e. the L'-algebra of H, but with the twisted convolution defined with the
aid of the cocycle c. This algebra in turn is isomorphic with the twisted
product algebra L'(T, A(T)), where A(T) is the Fourier algebra of T, i.e.
the algebra of all functions on T with absolutely convergent Fourier series.
The product is defined by

(f*g)(& 9) = /T F(38, 89) (&, 9) dt,

for details see e.g. [7] or [9]. Then 7 maps L'(T, A(T)) faithfully into the
compact operators of L*(T). Now C c A(T), hence LY(T) ¢ LY(T, A(T))
and actually the ordinary LY(T) is in this natural way a subalgebra of
LY(T, A(T)). It is not hard to see that for f € L*(T) the series (1) is exactly
the classical Fourier series of the function f. This example shows that
general nontrivial results about convergence questions of series (1) may be
difficult to obtain. In this paper we will mainly treat the case of the
algebras &= LY(G, 2) for2 c C_(G). These.#’s have been introduced in
[7] and extensively studied in [9], in particular [9] contains a complete
description of the ideal theory of £. Probably the most important cases of
these #’s are the algebras I'(R") = L'(R", A(R")), which are exactly the
primitive quotients of the group algebras L'(G) for nilpotent connected
Lie groups of class 2. In these cases there is a natural notion of radial
functions and it is this class of functions for which we can prove
satisfactory results. As an application of the results we will explicitly
determine all connected nilpotent groups G with a continuous action of a
torus K = T”, for which the invariant functions form a commutative
subalgebra L} (G). For G = H™, the 2m + 1 dimensional Heisenberg
group, these Ly (H"), K = T", have recently attracted some interest, see
e.g. [1], [4], [5], [13]. In [13] also more general nilpotent groups are studied.
It is not hard to see that at least some of the results in [13] are easy
consequences of this paper.

We are interested in the twisted algebras
£=1G, 2).
Here G is a locally compact group with left Haar measure dx and 2 a

subalgebra of C_(G), the algebra of all C-valued continuous functions on
G, vanishing at infinity, with the usual norm |f | . The algebra 2 is always
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assumed to be closed under complex conjugation f — f*, f*(x) = f(x),
and left translation and to have its own norm |f | with |f | > |f |, so that
2 is a Banach algebra with respect to |f |. Moreover, as in [8], §2, or [11],
Theorem 4, we assume that [f*| = |f |, | f| = |f,| = |f | (for f?(x) = f(zx),
f,(x) = f(xz)), z = f* is continuous from G into 2, the compactly sup-
ported functions 2, are dense in 2 and finally, the C*-hull 2* of 2
coincides naturally with C_(G). Under these conditions & is a simple and
symmetric involutive Banach algebra with essentially only one irreducible
unitary representation A, realized in L*(G) by

Nf)E(x) = f#£(x) = [ (o, y (™) @b,

Here we consider f € & as a function on G X G: f(x, y) = f(x)(y). The
same formula defines irreducible representations A? in L?(G) for all p
with1 < p < o0.

The finite rank elements form a two-sided dense ideal &. The elements
of rank 1 have been explicitly determined in [9], Theorems 1 and 2. They
are of the form f = a o b with some a, b € 2, for which a ° b is defined by
(see [9], p. 128)

(a°b)(x,y)=A(y)a(xy)b(y)

The subset 2, of all a € 2 with aoa € & is a Segal algebra in £ with
norm |la|| = |a°u|, for a fixed u € 2, with |u|, =1, on which G acts
continuously and isometrically. Moreover, for every real p, 1 < p < 00,4,
is contained in L?(G) and the injection £ — L? is bounded. One of the
results in [9] states that the closed left ideals in £ are in a canonic 1:1
correspondence with the closed subspaces of 2;.

Now let f be a hermitian element in . Then A(f) is a selfadjoined
compact operator, hence A(f) = X ;E; with pairwise orthogonal hermi-
tian projectors E; of finite rank and a = {a;} the spectrum of A(f). As &
is symmetric « is also the spectrum of f in &, hence if R({) is the
resolvent of f in &, and ¢ a circle with center « ! and so that no other
a, € aisinside c, then

1
Z—W‘;j; R($) d§ =,
defines an element f; in & with
1
MA) = 507 [MRE) & = E,
because A(R({)) is the resolvent of A( f). It follows that f; € &, thus

m,
fi= X vy
k=1
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with vy, €2,, {v°v,},, a system of pairwise orthogonal hermitian
idempotents of rank 1 in#. We have proved (see [10], “Satz” on p. 138):

PROPOSITION 1. Let f = f* be a hermitian element in & . The spectrum
of fin & is a real sequence { a;}, finite or converging to 0. There exists a
corresponding sequence { f;} of pairwise orthogonal hermitian idempotents in
& with

A(f)= Zaj}‘(fj)
in the compact operators X'( L*(G)).

Obviously the sequences {a;} and { f;} are uniquely defined by f,
therefore we define

DEFINITION. Let f be a normal element in Z (i.e. f * f* = f** f) with
spectrum { a;}. Let the sequence { f;} of finite rank idempotents in & be
defined by f as described in Proposition 1 (i.e. A(f) = Le;A(f), &, € C).
We write

f~ Z“jfj

and call Y, f; the Fourier series of f.

The example discussed in the introduction shows that this definition
indeed generalizes the classical notion of the Fourier series of a periodic
function.

We have norm convergence of the image Ya,A(f;) of the Fourier
series to A(f), but quite evidently we cannot expect the same for f and its
series in . So the problem arises to describe in reasonable terms the
convergence behavior of Fourier series in .#. Probably the best one can
expect for decent functions is the existence of a bounded approximate
identity, consisting of finite linear combinations of the f;, for the algebra
of all g € & with A(g) = Zv,A(f;). The Fejer kernel does exactly this for
the periodic functions.

Instead of studying individual functions it is more reasonable to
investigate commutative selfadjoint closed subalgebras of #. Recall that
2, is dense in L*(G), see [9), thus, if G is separable, 2, contains orthonor-
mal bases u = {u } of L?*(G). It is easy to see that for such a basis u the
set of elements f in Zhaving Fourier series Xa,u, > u; with u, € u form a
maximal selfadjoint commutative subalgebra & of £. Actually, what is
really needed for the maximality of & is the fact, that u is a maximal
orthonormal subset of 2,.
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DEFINITION. Let u = {u;} be a subset of 2,, orthonormal and maxi-
mal in 2, with respect to orthonormality and denote by % the family of all
these u. For u € # let #,(u) the closure in & of all finite linear
combinations of the e, = u;°u;, and #(u) the family of all functions
f€ £, for which A(f) = X{;A(e;), i.e. which have Fourier series Ya,f;
with f; € Z,(u). ‘

Clearly #, in the closed subalgebra generated by the e;. Moreover:

PROPOSITION 2. The correspondence u — % (u) is bijective between %
and the set of all maximal selfadjoint commutative subalgebras of £ .

Proof. Let u € % and assume that 4 € &, h = h*, commutes with
F(u). If h~ZXag;, then all g; commute with #(u). This implies
g, = g;+ g/ with g; € F(u), g/e; =0 for all ¢; = u,ou;, € F(u). I
g; # 0, then we could find some v € 2, with |v], = 1, vev < g7, hence
(vev)e, = 0, ie. v orthogonal to all ¥, € u, contradicting the maximality
of u. It follows that all g, are #(u) thus & € F (u).

Now let #be a maximal selfadjoint commutative subalgebra of L. If
f € & has the Fourier series La;f; then also all f; are in #. Let y = {g;}
be a maximal family of pairwise orthogonal hermitian idempotents g, € #
and minimal in #. If La;f; ~ f € #, then for every g € v and f; either
giefi=0orge°f =g, thus g;o f= g, for some § € C. Let e be an
idempotent of rank 1 with e < g;, hence e* g, = g, *e =e. Then e* f =
exgxf=§exg =fe=fx*efor all fEF; hence e€ F, g, =e. It
follows that all g; € y have rank 1. Moreover every hermitian idempotent
in % is a sum of some g; € v. If g; = u; o u;, then {u;} is an orthonormal
family of L?, contained in 2,. If it would not be maximal we could find a
u €2, |ul, =1, orthogonal to all u;. Then e = ucu is nonzero and
orthogonal on all g, € v, hence e* f=f*xe =0 for all f € %. This is
impossible, because % is maximal. It follows that {u;} = u is in % and
F=F(u).

The problem of convergence of Fourier series can now be stated in
different degrees of strength:

(C) Fo(u) = F(u).

(C,) #,(u) has a bounded approximate identity for # (u).

(C;) #,(u) contains a hermitian bounded approximate identity for 2.

REMARKS. (1) If (C;) holds for some u, then (see [6] Satz 1) 2 has to
have a bounded approximate identity. We will always assume that this is
the case.
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(2) In the general case, #;, = %#,(u) is always a closed ideal in
F = % (u) and the quotient #/%, is a radical algebra: Assume that ¢ is a
nonzero multiplicative bounded functional on #. As &, hence % is
symmetric, ¢, is hermitian, i.e. a character of #. Again by symmetry g,
extends to a positive hermitian form ¢ on .£. But these are continuous in
the C*-norm of &, thus ¢,(%#,) # 0, which proves our assertion.

(3) If #y(u) contains an approximate identity { 4}, then we can of
course assume that the 4, are hermitian and contained in the linear span
of the g; = u; e u;, u; € u, i.e. that h; = X, with n;; = 0 for almost all i
for each j. These { 4,} can be considered as special summation kernels, in
both cases (C,) and (C;). The Fejer kernel in the case of the family
u = {e*/*},., and the algebra L(T, A(T)), % (u) = F(u) = LY(T), is
an example. In this case # (u1) satisfies (C,).

For a fixed basis u in 2, let

Gjk = UpoUy, U U €U,
and denote by &(u) the subalgebra of &, generated by the g, i.e. the set
of all finite linear combinations of the g ;.

PROPOSITION 3. The algebra &(11) is dense in £ if and only if the linear
span {u) of u is dense in 2,.

Proof. Fix u € u with |ul, =1 and set p = uou, so that p is a
hermitian idempotent of rank 1 and for a closed left ideal »'C &
prxV=u°B(7)
where B(7") is a closed subspace of 2,. Moreover §: ¥"— B(#") maps the
lattice of closed left ideals in .Z bijectively onto the lattice of closed
subspaces of 2,, see [9], Theorem 3.
Now assume that &£(u) = .%. Then

ue 2, = po(6(u)) = (pr&(w) = (wo(u)) = ueluy

and consequently (1) is dense in2;.
On the other hand let U = (u) # 2,. Then again by [9], Theorem 3,
YU)= (L *(uoU)) + L. Asé&(u) C y(U) it follows that &£(u) # 2.

COROLLARY. If u satisfies (C;), then { ut) is dense in 2,.
Proof. As remarked before, (C,) implies that there exists a bounded

approximate identity for £ of finite sums of the g; = u, o u,. Because all g,
are in &(u), it follows that £(u) = £, hence (u) = 2,.
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It is easy to construct bases u in 2, for which {u) is not dense, one
only has to take a closed proper subspace U C 2,, which is dense in
L*(G), e.g. all a €2, which vanish on a fixed closed subset in G of
measure 0. Then clearly U contains a basis u for L? with (u) C U, thus
(u) +39,.

On the other hand if (1) is dense in 2,, then &(u) is dense in & and
consequently there exists a bounded approximate identity {e;} of the
form e; = £y}, g, with finite hermitian matrices v’ = (vj) - (C;) means
that we can choose real diagonal matrices for the y'.

Now we consider a connected compact abelian group K and assume
that K acts continuously on £, ie. we have a strongly continuous
homeomorphism from K into the group of isometric *-automorphism of
£. We denote this action by f — f* for f € &, k € K. Then the represen-
tations f — A(f*) for fixed k € K are equivalent to A, hence there exists a
projective unitary representation U: k — U, of K in L*(G) with

(2) A(f*) = BN,

for all f€ &, k € K and as K is connected, we can and will assume that
U is an ordinary continuous unitary representation of K. The representa-
tion U is uniquely defined by the action of K on .Z, up to a multiplication
by a unitary character of X.

Let a, b, ¢ be elements in 2,. Then a°b is a rank 1 element in &2,
consequently also (a o b)* for k € K, thus (a° b)* = a, o b, for some a,,
b, € 2,.Now A(a°b)c = (c|b)a, hence

Aag e b )Utc = UA(a°b)U, - Ufc = Uf(A(aeb)c)
= Ut((c|b)a) = (clb)Uga = (Ufclb,) a,
and (c|b)U¢a = (c|Uby)a,. Taking b = ¢, |b|, = |al, = 1, we see that
Ukta = (b|U,by)a,, thus, because also |a,|, = 1, U.b, = {b, a, = {Ufa
with { € C, [{]| = 1. It follows that
(3) (aob)* = (Ura)* (Upb);
in particular 2, is U-invariant.

PROPOSITION 4. The restriction of U onto 2, acts continuously on the
Banach space 2, i.e. 2, is a Banach K-module, in particular
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i.e. 2, is the closure of the direct sum of the eigenspaces
2 ={a€2;Ua=x(k)a}

of the characters x of K. We can choose U so that for the trivial character ¢
we have 2; # 0.

Proof. We have for & a corresponding decomposition into the

subspaces £ X and because K acts by *-automorphisms it follows that
Pxx PY Cc PxY (Lx)* = g%

hence £X *(£X)* C £ for every x € K. Thus £¢ # 0. If f = f* € &~
f~ Xa;f; with hermitian idempotents f;, then also the f; are invariant.
Now let f be an invariant hermitian idempotent of minimal rank m. Then
f*& * = is an invariant subalgebra of £, isomorphic to the m X m
matrixalgebra over C. As before, the invariant elements form a *-subalge-
bra.#; # 0. Then the minimality of m implies ¢ = %, = C,ie.m = 1.

Now let n € 2, be such that u o u is an invariant idempotent. Then, as

we have seen
Ufu = wu

with w, € T, i.e. u is an eigenvector for U and w: kK — w, a continuous
character. But then also U”: kK = w(k)U, implements the action of K on
£, so we can assume that U’ = U, w = ¢ and u € 2;. Finally for arbitrary
a € 2, and the invariant ¥ with |u|, = 1 we have a constant y > 0 with
Yllv]] = |v ° u};, hence

YlIUfa — a|| = ](U,;"a)ou —aculy = |Ufa°Usu — acul
=|(acu)* —(aou)),

which shows the continuity of kK — Ufa in the 2,-norm.
Fora € 27, b € 2} and k € K we obtain from (3):

(a2b)" = @(k)¥(k)(aob) = (97 ¥)(k)(a=b),
hence Proposition 4 has the

COROLLARY. The eigenspaces
Lx={fe; f*=x(k)f,k€K)
are the closures of the linear span of all functions a°b with a € 2§,
b € 2f%, ¢ € K, in short

Px = ( Zlﬂf’o,@fx)_,
pEK
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in particular, the subalgebra £ ° is the closure of the direct sum of the simple
subalgebras

(4) Zi={Yacb;a,beap)

Our next proposition holds also without the assumption that the
compact group K is commutative.

PROPOSITION 5. & contains a bounded approximate unit {h,}, of
K-invariant hermitian elements h, of finite rank.

Proof. Let { g, } be an approximate identity for £, bounded by C, i.e.
|g,| < C for all p. For f € £ let f* € 2* be defined by

ﬂ=4ﬁ&,

hence f — f* projects & onto £ and |f¥, < |f |,. We claim that { g¥} is
an approximate identity, also bounded by C. As the last assertion is

obvious it suffices to show that lim( g}f * f) = ffor all fin a total subset in
Z,eg forallfe Uy LY. Soletfe LY ie f* = ¥(k)f. Then

st s =l =| [ (st or=1) ] =|f (senr =)

1

| [ FEgr 1) ] slgs =11,

hence limn(g}f *f)=fund { gff }, i a bounded approximate identity in
L.

For every ¢ with 0 < 0 < 1 and every u we can choose a finite rank
element j, , in £* with [g}f = Juoh < o. If we order the pairs (u, o) by
(p,0) > (v, 7)if p > », 0 <, then also {j, ,},, is a bounded approxi-
mate identity and finally the family {4, ,},, with k, , = 3(j,, +J¥,)
has all the properties claimed in Proposition 3.

It is clear that the algebra #* of invariant elements is commutative if
and only if all &, ¢ € K, defined by (4), are zero- or one-dimensjonal,
which, in turn, is equivalent to the fact that dim 2f < 1forall p € K.

DAEFINITION. We say that K acts radially on &, if dim 2¢ < 1 for all
¢ € K. A function f € Zis called radial (with respect to K) if it is
invariant under KX, i.e. if f € Z°.

So K acts radially on £ if and only if the multiplicities of the
implementing representation U of K in L?*(G) are all at most 1. From our
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previous results we conclude:

THEOREM 1. If the commutative compact group K acts radially on &
then the radial functions form a maximal commutative subalgebra, i.e.
L =F(u), where u = {u, } and the u, are eigenfunctions of the represen-
tation U of K in 2, for the character x of K. ¢ satisfies condition (C,), i.e.
Fo (1) contains a hermitian bounded approximate identity for Z.

REMARKS. In the radial case the u, in u generate the non-zero primary
eigenspaces of the K-module 2,, i.e. 2§ = C - u,, if 2§ # 0. Of course it is
possible that 2X = 0 for some x € K, moreover whlle the family { 2{; u,
# 0, x € K} is uniquely defined by the action of K on .2, the actual
application x — 2{ depends also on the choice of U.

As a consequence of the theorem we see that for radial functions in
Z° there exists a summation method Let us assume that u = {u;} is
countable, e.g. K = {x;} u VA N. Then the approximate unit
{h,}, of radial finite rank functions h, can be taken countable. With
e; = u,°u;we have

h, = an,,

with positive real s, ;. Now let f € ,5” ¢ have the Fourier series La;e,. Then
h,* f=X" o8, e and we have

nj=jcJ
li Z.
nLIBO(anI @ j) f in
Our first example will show that the Fejer kernel for periodic L'-func-
tions is a special case of such an approximate identity.
Assume that K is a central subgroup of G. Then we define the action
of K onZ by

(5) FA)(r) = F() (y) = f(x, ky),

i.e. we extend the natural action of K on 2, defined by ¢ — g%, ¢*(y) =
q(ky) = q(yk) for g € 2, to Z. It is clear that . is a K-algebra with this
action. Moreover it follows immediately from (5), that f € % is invariant
if and only if all values f(x) as functions in Z depend only on the cosets
y = yK € G/K. Let 2 be the subalgebra of all K-invariant functions in 2.
Then we can consider £ canonically as a subalgebra of C_(G/K) and we
have

Zc=I1G,2)c 2.
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Algebras of this type have been studied in [9]. Clearly the action of K on .Z
is radially if and only if G = K. In this case £ = L'(K) and the Fourier
series for f € #¢ is just the usual one: Tz f(x) - x.

Our next example is more important and more involved. Let H, be
the (2n + 1)-dimensional Heisenberg group. As usually we can write
H, = R*” X R with product

(6) (5, 8)(r, ) = (x +y, s+ 1+ (x,))

with a bilinear form (x, y) on R*" for which the difference (x, y)
— (y, x) is nondegenerate. Different forms (x, y) correspond to differ-
ent sections R*"=H,/Z - H,, Z =R the center of H,. Most fre-
quently used are the isotropic and the polarized sections with the corre-
sponding form, see [2]: The isotropic section is the natural one in the
complex parametrisation of H,. We identify R*” with C" and denote the
usual positive definite inner product by (x]y), ie. (x|y) = Xix;y; Then
the isotropic form is defined by

(x,y); = 3 Im(x|y).
The polarized form comes from the usual representation of H, by lower
triangular real n X n-matrices and is defined by
<X, y>p — x//yf
if x = (x’, x"), x’, x” € R”, similarly y = (y’, y”) and wo = X}_,u,v; for
u,v e R.If
B(x) = B(x', x") = 3x'x"

then the two forms are related by
(%, 3, = (%, 2, = B(x +y) = B(x) = B(y)-

For the rest of the paper let K = T". Then K acts by multiplication
isometrically on C" and leaves (x|y) fixed. Using ( , ), in (6) for defining
the product in H,, we see that

(7) {(x,5)=($x,5), §(€K,(x,5)€C"XR

defines an automorphism «; of H,, leaving the center elementwise fixed.
It is clear that a: { — a, has all the necessary continuity properties, hence
a acts continuously on L'(H,) and likewise on all infinite-dimensional
primitive quotients L\(H,) = L'(H,)/ker 7, where m, is the irreducible
representation of L' in L*(R"), corresponding to A € R*. Now all these
quotients are isomorphic to

I'(R") = L'(R", 4(R")),
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where A(R") = #(L'(R")) is the Fourier algebra of R” and R” acts on
A(R") by translation, see [7]. The isomorphism is established by using the
polarized form for the product and applying Fourier transformation to
x”. Unfortunately there is no simple formula for the action of K on
L'(H,) in terms of the polarized form, thus it seems not to be possible to
give a short explicit expression for the image /¢ of a function f € T'(R")
for { € K. But using the fact that

Bxy) = 3= 3 1m( X, + 1))

J

and the relationship between the parametrisations of H, corresponding to
(,);and (, ), one sees that the formula for the action of K with respect
to the polarized form is given by

(8) ¢(x,8) = ($x, 5 + $ Im(($x)* — x211))
where of course C” is considered as the direct sum algebraC & --- & C,
n times, 1 = (1,1,...,1), and x = (x’, x”") € R*" is identified with x = x’
+ ix” € C".

The primitive quotient LA\(H,) = L} is obtained by partial Fourier
transform of f € L'(H,,):

Hlx) = ff(x, s)e A dgs,
Thus the action of K on L} is given by

f(x) = (/)}(x) = eNImEO D27, ($x)

and g € L} is K-invariant if and only if
eﬂ)\ilm(lel)/2g(x) - e'lr)\ilm((fx)z|1)/2g(§x),

i.e. if the left-hand side function is (poly-) radial on C” in the ordinary
sense. Thus, writing |x| = (|x},...,|x,]) for x = (x,...,x,) € C", the
general invariant function g € L} is given by

(9) g(x) = e7mNImCD/2g, (1x])
with a function g, € L'(C"), depending only on |x|.

Now we want to switch from L} to T,\(R"), with T,(R") =
LYR", A(R™)), but action u*(y) = u(y + Ax) for x € R". So I}(R") is
our “old” T'(R"), corresponding to A = 1. Therefore we change the nota-
tion and write (x, y) instead of x = (x’, x”), resp. x = x” + ix”. Then the
isomorphism from L} onto T')(R") is a Fourier transform with respect to
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y, furthermore, Im(x2|1) becomes 2xy = 2Yx ,y; and (9) implies that
(10) g(x, y) = [ h(x? + £2)e 20200 gy
R"

defines a radial function in T',(R"), whenever %4 is a sufficiently well
behaved function on (R*)" with x* + 1> = (x? + t,...,x2 + t2) € (RH)".
It is easy to see that g is hermitian if and only if 4 is real valued. To keep
matters simple we restrict our computations to the case A = 1, hence
T, = I. Taking hA(x>+ t?) = e "***/2 jn (10) we obtain a radial
function f with

f(x -y, y) — e-w(x—y)z/Zf e—ﬂt2/2—7ri(x+y)t dr.

Substituting v2 ¢ for ¢ and observing that the Gauss-function e~ *is fixed
under Fourier transform we obtain

f()C -y, y) — 2n/26—'n(x—y)2/2e—ﬂ(x+y)2/2 — 2n/Ze—mcze—7ry2.
Hence we see that for the normalized Gauss-function
UO(X) — 2—n/4e-1m2
the minimal hermitian idempotent
Do = Ug°Ug
is K-invariant, in particular we have u, € A(R"){, if the representation U
is properly normalized, see Proposition 4.

Next we will compute the action of K on the Lie algebra ), of H,, or
more exactly on the image of §), under the infinitesimal representation of
h, in L*(R") corresponding to m;. In coincidence with our previous
notations we will write A for the representation m; of I'(R") and also for

the corresponding representations of H, and b,. Then for (x, y, t) € H,
the unitary operator A(x, y, t) in L?(R") is given by

(11) (A(x, y, 1)§)(w) = e 27 Dg(y — x)

for £ € L*(R"). Let { X, Y., Z } be the usual basis of §),,, corresponding to
the one-parameter subgroups {(ze;,0,0), (0, ze,,0),(0,0, 7)}, € R, ¢, the
Jjth unit vector in R”. As is well known one obtains the images
Aj=}\()(j)’ B, = A(Y,), C=A(2)
by differentiating (11):
A = —a——, B, = -27iM,, C=-27il

J .
axj
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with (M, €)(x) = x,£(x), x € R". In order to determine the images Xf
etc. for { € K one has to compute the images of the corresponding
one-parameter subgroups. Putting { =c¢ +is for { € K (hence ¢ =
cos(arg {), s = sin(arg {)) one obtains

{(tej,0,0) = (tcjej, 15;¢;, %tzcjsj)

¢(0, tej,O) = (~tsjej, tcjej,—%tzcjsj).
Inserting this in (11) and differentiating yields
¢ = -
A =4, + 5,8, = A XF),
{ — — .
Bf = —5,4; + ¢,B, = MYf);
hence for

. 0
C}~=Aj+lBj=—§; +2‘77]Wj

J
we have, with C, = 4, — iB,,
G356, T-4G.
For a multi-index ¢ = (¢, ¢5,...,9,) with g; € N (0 € N!) we set
ci=TIcy, ¢ =TIy, x=Tlxp,

hence C? is a differential operator of degree |[g| = Lg; and {7 € T, x7 a
monomial of degree |q|. Applying C? to u, and multiplying with a factor
Y, We obtain the hermitian functions

u, =v,Cluy = hq(x)e"”‘2
with |u |, = 1, h, the qth hermitian polynomial in x = (x,,...,x,). From
g’;kuq = -Yq(cq)f(]{*u() = ‘qu'chuo = {quq

we see that u, is an eigenfunction of U for the eigenvalue {?. As all u, are
contained in A(R"), (see e.g. [12]) and {u,}, = u is an orthonormal base
of L*(R"), we see that u , generates the eigenspace A(R"){ for the character
¢ — {7of K. Consequently we have proved the following

THEOREM 2. The group K = T" acts radially on I'(R"), in particular

AR, = ( 5 (u,,>)—

quH

where u,, is the qth Hermite function on R".
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COROLLARY. The radial functions T#* form a maximal commutative
* -subalgebra of I'(R"), containing a bounded approximate identity of finite
rank elements.

As a fairly immediate consequence of the corollary one can prove that
also the subalgebra L} (H") of radial functions in L'(H") is a maximal
commutative *-subalgebra, because a subalgebra # c L'(H") is com-
mutative if and only if all images %, of % in the primitive quotients L}
are commutative. More generally one can consider the situation in which
K = T" acts on a connected nilpotent Lie group G. Then again K acts on
L}(G) and the functions invariant under this action form a subalgebra
L} (G).

Problem. Find necessary and sufficient conditions for the commuta-
tivity of L} (G). We will solve this problem for nilpotent groups. We
assume first that G is of class 2.

The first step is a reduction: Instead of studying G we consider the
Lie algebra g of G and assume that K acts on g. Let 3 be the center of g
and g’ = [g, g] the derived algebra. Clearly 3 and g’ are invariant and
g’ C 3, thus one can directly decompose g into invariant subspaces:

g=e®qg ®a, 3=g ®a.

It follows that g; = e ® g’ is an invariant subalgebra with g; = ¢’ = 3, =
center of g,;, and g is the algebra-direct sum of g, and the commutative
algebra a. Correspondingly G = G, X 4 with 4 = R, LYG) = LNG,) ®
L'(A). Now one can prove that L% (G) is commutative if and only if
L% (G,) is commutative. This reduces the problem to the case

(12) g’ =3,

resp. G’ = Z for the group G. So from now on we will assume that G is
connected, simply connected with algebra g and such that (12) is satisfied.
Under these assumptions we will prove

THEOREM 3. The subalgebra LY (G) of invariant functions is commuta-
tive if and only if the following conditions are fulfilled.

(1) K acts trivially on 3 (resp. Z);

(ii) n (= dim K) = 4 dim(g/3).
Under these conditions G is a quotient of the direct product H' X H* X
- X H' = (H"Y)™", with the obvious action of K = T" on (H")*".
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We start the proof with some simple lemmas.

(13) Let Ej j=1,...,n, be n Banach spaces, on which the compact
groups K, j = 1,...,n, act strongly continuous and isometrically. Then
the dlrect product K=K, XK, X --- XK, acts strongly continuous
and isometrically on the pro;ecuve tensor product E = E; ® E,®---®
E, and the tensor product (E;)x, ® - - ®(E,)g of the subspaces (E ) )k,
of K -invariants in E; is dense in the subspace Ej of K-invariants in E.

Proof. For x € E;, { € K, let x° be the image of x with respect to .
Then x¥ = fK x‘ d§ i 1s 1nvanant and P;: x — x*¥ projects E; onto (E)) K-
Forx—x1® -®x,€E, {= ({1, H$)EK= K><- - X K, we
have x! = x{1® --- ® xf,". Thus P =P, ® --- ® P, projects E onto Ey.
Now let z =1lim,z, € E¢, z, €E; ® --- ® E,, the algebraic tensor
product. Then clearly

Pz, € P(E;® ---®E,) =(PE)® ---®(P,E,)

= (E)k, ® - ®(E,)x,
hence z = Pz = lim Pz, € {(E))x, ® - ®(E,), } "

COROLLARY. Let T" act on (H')*" in the obvious way, i.e. component-
wise. Then L'.((H*)*") is a commutative subalgebra of L*((H)*").

REMARK. It is not hard to see that L’ is even maximal commutative.

(14) Let the compact group K act continuously on G and let N be a
closed K-invariant subgroup of G; thus K acts also on G/N. Then the
canonic surjection T: L'(G) —» L'(G/N) maps L% (G) onto Ly (G/N).

This is clear, because 7' commutes with the action of K, hence in
particular with the projections f — f*, f* = [ f{d¢.

Next we observe that the action of K on G defines also an action on
the algebra ./ (G) of all bounded Borel measures on G.

(15) The subalgebra A ,(G) of all K-invariant measures in /#(G) is
commutative if and only if L} (G) is commutative.

Proof. As L (G) C M (G), we have only to show that the commuta-
tivity of L} implies the commutativity of # x(G). Let f and g be in L} and
pin A . As L is an ideal in # , we have

grpxf=frgrp=gxf*py,
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hence g *(p* f — f*p) = 0 for all g € L} and consequently u * f = f * u.
Now let also » € A ;. Then p*v* f=p* fxp=p*pu=fforall f € L,
thus p*» = »*p.

COROLLARY. For x € G let x* = {x%;{ € K} be the K-orbit in G. If
L (G) is commutative, then xXy* = yXxX forall x, y € G.

Proof. For x € G define u, € #(G) by
ma(f) = [1(x5) dg

for f € %,(G). Then p, is a K-invariant probability measure on G with
support x*. Hence supp(, *p,) = x*y*. Now the commutativity of
L (G) implies p * p, = p, * i, thus x¥y* = yFx ¥,

The following example will be used in the proof of Theorem 3: Let
HL = C® be the complex 3-dimensional Heisenberg group with multiplica-
tion

(%15 %25 %3) (V15 Y25 13) = (%1 + 01, X5 + 35 X3 + 3 + X2 01)
and define an action of T? on HZ by

(x1, x4, x3)(§1,§z) = (§1x1, %, §i85%3)

(16) L*2(H¢) is not commutative.

Proof. Let x =(1,0,0), y =(0,1,0). Hence x* =(T,0,0), y* =
(0,T,0), x*yX = (T, T, 0), but y*x¥ 3 (0,1,0)(1,0,0) = (1,1,1) & x*y¥X,
hence y*x* # xXyX and (16) follows from the last corollary.

Now we turn to the proof of Theorem 3. We consider the Lie algebra
g of G as a K-module and choose some positive definite K-invariant
bilinear form on g. As 3 = g’ is K-invariant we can decompose g into an
orthogonal sum: g = e ® 3, with K-invariant complement e of 3. Clearly
also the complexification g is a K-module and

(17) dc=¢ec®3c
with 3¢ = [ec, ec]. Let dimg e = dim¢ e = m and let
(18) ec=(z)e(z)® - &(z,)

be a decomposition of e into invariant one-dimensional subspaces, hence
zf = x,(§)z; for some x ; € K, the character group of K = T". As e is
K-invariant it follows that with z; = x; + iy; also Z; = x, — iy; is K-in-
variant, with character x o hence z =2 for some j. Moreover, if x | and Y
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are linearly independent, then (x;) + ();) = e; is an invariant irreducible
subspace of e. If on the other hand y; = 0, then necessarily x ; = &, the
trivial character, and z =X, Ee is K-invariant. Finally, [z s Il =W, €
3¢ is 0 or eigenvector for the character x ;-

(19) Assume that w; , # 0 and x ;x, # € for some j, k. Then Ly (G)is
not commutative.

Proof. Let us assume that z; = x; + iy, z, = x, + iy, and x;, X, are
not trivial. Then

w= [z, z,] = ([xla x2] - [)’u }’2]) + i([xl, )’2] + [}’p xz])
=u+iv#0

and because x;x, # ¢ we see that v and v are independent elements in 3.
Thus
h=(x1) ®(») &(x;) ®(y,) ®(u) ®(v)

is a K-invariant subalgebra of g, isomorphic to the algebra of H.. The
corresponding subgroup H in G is K-invariant and isomorphic with HE.,
moreover, the action of K on H corresponds to the action of a subgroup
T c T? of T? on HE.. As L} (HL) is not commutative, see (16), L}-(H{)
and L (H) are not commutative. But Ly (H) C # (G), thus Ly (G) is
not commutative, see (15).

If x, = ¢, one can assume z; = x € g. In this case x, # & 2z, = x, +
iy, & g, and

f=(x)o(x;)@(x)e() e

is invariant. The corresponding subgroup F C G is isomorphic to the
subgroup

J ={(z, z,, z,) € Ht; z; € R}

with action (z;, z,, 2;)° = (z,, {z,, {z;) for ¢ € T. Analogously to (16)
one proves that L':(J), hence L (F) and again L% (G) are not commuta-
tive.

Now we will study the case in which T” acts trivially on the center
3 =g’ of g and 2n < dim(g/3). We will show that in this case L'.(G) is
not commutative by reducing the problem to the special case in which T”
acts on h™, m > n, as a subgroup of the “standard action” of T™ on §™,
resp. H™ as defined in (7) or (8), orn = 1, m = 2.

(20) If 3 =g’ and dim(g/3) = d = 4, then g has a quotient g/f
isomorphic to §/ forj > 2.
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Proof. Let 3, be a subspace of 3 of codimension 1, thus 3 = (z) ® 3,
with some z # 0 in 3. As 3 = g’ we can assume that z = [x, y] for x,
y € g. This implies that § = g/3, has one dimensional center, conse-
quently § = h/ ® a with / > 1 and central ideal a. It follows in particular
that (20) is true if dim 3 = 1. Now let us assume that dim 3 > 1. In this
case we can find x;, y,, x, y in g with [x;, ;] = z;, [X, y] =z, z, and 2
independent in 3.

If x;, y;, x and y are linearly independent modulo 3 we set x = x,,
Y=, 2=z, and 3 =(2;) ®(2,) ® 3,. If x5, y;, x and y are not
independent modulo 3, then dim(x,, y;, x, y)/3 = 3 and it is easy to see
that in this case one can assume x = x;. By hypothesis there exists g € g,
independent (mod 3) of x;, y;, y.

If[g, y] & (z;) weset x, = ¢, y, = y and z, = [X;, y,].

If [g, y] = az;, « €R, we set x, = x, + ¢, y, =), 2, =[x3, ] =
[xy, 1 +1q, y] =z + az; € (2).

Again 3 = (z;) ® (2,) ® 3., thus in all cases the quotient g/3, con-
tains a 6-dimensional ideal f, generated by the cosets x;, y, mod 3, which
we denote also by x;, yy, with [x;, ;] = 23, [x,, »,] = z,, 3 (= center of )
= (z1) ® (2,).

As above we see that f/(z;) = b @ a; with central a,. If /; = 2 or
I, = 2, f, and consequently g, has a quotient isomorphic to )’ with / > 2.
Otherwise the projections

pit/(z;)=p"@a;, > b}
define homomorphisms P;: { — h' with (ker P;) N3 = (z;), hence ker P,
N ker P, = 0. It follows that

P=P ®P:f->h op
is injective. As dim f = dim(}! @ h?) it also follows that P is an isomor-
phism. Let (c,) @ (c,) be the center of h* @ h*. Then (§* & b')/(¢; — ¢,)
= b2, hence also f has a quotient isomorphic to 2. This proves (20).

(21) Let T act faithfully on §2. There exists a basis { X1, y;, X5, V5, 2}
of h? with [x s Vil = 02, such that the action of T on §? is defined either
by

() 28 = ¢%z;, 25 =z with z; = x; + iy, € h¢, and r; EZ, 1, # 0, or
by

(i) (x; + ixy)" = £7(x, + ix), (g + )5 = ¢'()y + iy,) with non-
zeror € Z.

Proof. As T acts nontrivially on 2, hence also on the complexifica-
tion h2, the latter contains an @ = u + iv with a* = {’a for some r € Z,
r+ 0. Then @ = u — iv satisfies @ = {~'a. Lete, = (u) ® (v) C h2.
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(i) Assume that there exists a T-invariant subspace e, in h? with
h2=¢e, ® e, ® (z) and [e;, e,] = 0. Then obviously [e, e;] = [e,, €,] =
(z), hence e, ® (z) = h' and we can find x,, y, in e, with [x,, y,] = z,
(x, + i9,)¢ = ¢2(x, + ip,), r, € Z. Now also [e,, ;] = (z), thus we can
normalize u and v so that [u,v] = ez with ¢ = +1. Putting x; = u,
y, = €v, r; = er we see that we have case (1).

(ii) In the other case there exists b € h2, linearly independent of a
and a, with [a, b] = z, b’ = ¢"b. As z¥ = z it follows that 7 = —r. Hence
b # b,[a,b]=[a, b]=0and {a, a, b, b, z} is a basis for hZ.

Let [a, @] = az. Then ¢ = a — ab also satisfies ¢ = {7 'c, [a, c] = 0,
[@, c] = 0. But this implies [e,, e,] = 0 for e, = ((¢) + (¢)) N b2, which is
excluded in case (ii), unless @ = 0. Thus [a, @] = 0 and similarly [b, b] =
Putting 2a = (x; + ix,), b = (y, + iy,), we see that (20)(ii) holds.

Now we return to the general case and consider again the decomposi-
tions (17) and (18). Moreover we assume that K = T” acts trivially on 3. If
fx = Zy,=x(2)) C ec, we have

=Z*’fx, [fy-fe] =0 forx # ¥,

andf #* Olmphesax [fx,f INng+#0
(22) If dim¢ f, > 2 for some x € K, then L} (G) is not commutative.

Proof. Assume e.g. that f, = (z) @ (z,) with z; = x, + iy;, z} =

x(§)z;,j = 1,2. Then
=(fx@f>‘c®5x)ng

is an invariant ideal in g with g} =3,. Let G, be the corresponding
invariant normal subgroup in G. If x = e, then K acts trivially on G,
hence Ly (G,) = L'(G,) is not commutative. If x # ¢, then K/ker x = T
acts on G,. It follows from (20) that G, has a T-invariant normal
subgroup N with G, /N = F = H? and T acts on F as described in (21).
We will show that this implies the noncommutativity of LY (F) = L% (F),
hence also of L}((G ) and L% (G). To realize (21)(ii) on the group level let
H? = C? X R with multiplication

(y, uy, ) (0, 05, 8) = (uy + vy, uy + vy, 7 + 5 + 3 Re(u,0, — u,0,))

and action (uy, u,, r)* = ($uy, {u,, r). Let x;, = (1,0,0) and x, = (0, 1, 0).
Then

x1x2 {({p{z» 2 Re{lfz)} ( %)
xle = {({29§1’_7 Refzfl)} ? (1’1,%)
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i.e. the orbits of x; and x, don’t commute. As before this implies that
L'+ (H?), hence L} (G) is not commutative.

The case (21)(i) is covered by the more general following lemma (23).
Let T” act on H” as defined by (6) or (7). If K is a closed proper subgroup
of T”, then L% (H") is not commutative.

Proof. We identify the character group T” with Z” and write § =
(41,---+9,) € Z" for the character §(§) = IT7{}. As K # T" there exists
someqaée—(O O)w1thq(K)—-{1} Letq—a—bwuha beN"
Then a|, = b, = \If e K.

After Theorem 2 we have A(R"), = (XR-(u )~ with respect to the
action of T” on A(R"),. If A is the x-primary component of A(R"), with
respect to the action of K it follows that 4 contains u, and u;, thus
dim A} > 1. Now (4) implies that T(R")¥ and L% (H") are not commuta-
tive. This also proves (23).

Now assume that L} (G) is commutative, K = T". Then (22) implies
that dim f, <1 for all x € K, thus f,=1(z) with z, =x, +1iy,e, =
(x,) ® (¥,)s w, = [x,> », ] € 3, [e,, eg] = 0 for x # ¥. This implies f, =
0, because f, = f,, hence e, = (x,) C 3, thus e, = 0. The same argument
shows that w, # 0 if e, # 0. Now it is clear that G has a quotient
isomorphic to H™, where m = % dim(g/3). Let x;,...,X,, be the char-
acters of K for whiche, = e, # 0 Then «: ¢ — {xl(f) ,xm(f)} e T
is an injection from K 1nto T”’ and if x — x{ is the given action of K on
G, resp. the quotient H” of G, and x — x°¢, £ € T™, is the standard
action, we clearly have x¢ = x"“©. It follows now from (23) that «(K) =
T™, hence n = m. Thus we have shown the necessity of the conditions in
Theorem 3.

Now let K = T" and dim(g/3) = 2n. We consider again the decom-
position of ec into primary components f,, x € K=17" As f 70
always implies f, # 0 we can write

©Y i, @ X" f, f,#0.
j=1 j=1

J

As MV_jker x; = {1} it follows that the x; generate Z", hence r = n,
fo= O f, = (z;). Moreover, { = {x;1(£), X2()s...,x,(§)} is an auto-
morphlsm of T” and consequently we can assume that x ;(§) = §; for

= {$1, $5,- .58, } € T This means that z¥ = {;z,. If z; = x, + iy, then
[xj, yl=w#0,(x)®(y)e(w) =D, 1s an 1deal 1somorphic with !
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and g is canonically an image of the direct sum (§))®" =5, @ 5, ®
-+~ @ b,. Correspondingly G is a quotient of (H')*" = H' X H' X
-+ X H!. Moreover, the epimorphism (H')*" - G commutes with the
“canonic” action of T” on (H')*" and the given action of T” on G.
Because L' ((H')*") is commutative (corollary of (13)), (14) yields that
also LY»(G) is commutative. Thus Theorem 3 is completely proved.

It is now easy to prove that L (G) for connected compact abelian K
and connected nilpotent G is never commutative if G is of class greater
than 2:

THEOREM 4. If G is a connected nilpotent Lie group and K connected
compact abelian, such that Ly (G) is commutative, then G is at most of class
2, hence of the form described in Theorem 3.

Proof. A similar argument as the one before Theorem 3 shows that we
may assume 3 C g’. Then instead of (17) we have the K-invariant decom-
position g = e @ g¢ and for e, again the decomposition (18). More-
over, also (19) holds: Let p be minimal such that w; , = w = u + iv is not
contained in the pth term g’ of the lower central series. Then with the
notation of (19), b is an invariant subalgebra modulo g#’, hence the
quotient G, of G modulo exp g” contains an K-invariant subgroup
isomorphic with H¢ or with J in the second case of (19). But then (15)
implies that L}(Gp) is not commutative and from (14) the same follows
for Ly (G). Thus if Ly (G) is commutative we have [z, z;] = 0 for all z;,
z; € ec which transform under K with characters x ;, x, With x, # X .
But this implies that K acts trivially on all [x, y] with x, y € ec. As e¢
generates g ¢ it follows that K acts trivially on g¢.

From 3 C g’ we conclude as above that e cannot contain nonzero
K-fixed elements, in particular the x ; € K, corresponding to z ;in (1) is
not trivial. This implies [z;, w] = 0 for all w € g, because K is trivial on
gc- We conclude that [ec, g¢] = 0, thus [e, g’] = 0 and as e generates g,
finally also [g, g’] = 0, which finishes the proof of Theorem 4.
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