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p-ADIC OSCILLATORY INTEGRALS
AND WAVE FRONT SETS

D. B. HEIFETZ

For K a p-adic field, we examine oscillatory integrals
1(9,2)(A) = [ $(x)¥(Ap(x)) ax

where ¢ is a Schwartz function on K", ¥ is an additive character,
A € K*, and p: K" — K is locally analytic. f Dp # 0 on the support of
¢, A = I(¢, p)(A) has bounded support. If Dp(x,) = O at exactly one
point x, in the support of ¢ but D?p(x,) is non-degenerate, then
I($, p)(A) = N2y ¥ ( p(xo)) et D2p(x0) |76 (xo)

for sufficiently large |A|, where v is a complex eighth root of unity. An
invariant definition of wave front set, WF, (u), for distributions u relative
to an open subgroup A of K* is proved to exist, analogous to the
classical case, with “rapidly decreasing” replaced by “bounded support”.
Definitions of pull backs and push forwards of distributions, distribution
products, and kernel maps are made, again similar to the classical case,
and their wave front sets computed. Wave front sets WF,(p) of repre-
sentations p of p-adic groups are also defined (cf. Howe, Automorphic
forms, representation theory, and arithmetic, Tata Inst., 1979, for the Lie
group analogue). For admissible representations p of, say, a semi-simple
group G, with character x,, we show that WF(p) = WF(x,), where
WFQ(-) € Lie(G) is WF,(-) above the identity element. Functorial
properties of WF,(p) are developed and examples computed.

Introduction. The motivation for this work is to apply to p-adic
groups the approach of Howe [H] who has applied classical wave front set
theory to Lie group representations. Chapter I develops a stationary phase
formula for p-adic oscillatory integrals. In Chapter II, p-adic wave front
sets are defined, relative to multiplicative subgroups of the multiplicative
group of a p-adic field. The wave front set of a representation of a p-adic
group is then defined and developed in Chapter I11.

We denote by K a locally compact field of characteristic 0 with
valuation | - |, Oy its ring of integers, and P, the unique maximal prime
ideal of Og. Denote by @ a fixed uniformizing element. If ||, = g7,
define Ord(x), x € K*, by |x| = g~ °™*®, On the n-dimensional space K",
we use the norm |(x,,...,x,)|x» = max{|x,| g }. The unit sphere is denoted
=771 Identify K" with its dual (K™)* by the symmetric bilinear form
{x, y} = 2/~ ,x;y;. Fix an additive character ¥ of K with conductor O.
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Any additive character of K" is then of the form x — ¥({x, y)). Taking
dx to be a Haar measure on K", the Fourier transform is defined by

B = [ o(x)¥((x. ) ds

for ¢ € LY(K™), and can be extended to L*(K™) where, if [, dx =1, we
have ¢(x) = ¢(x) = ¢(-x).

For X an analytic n-dimensional K manifold, let H( X) denote the set
of locally analytic functions on X. By C*(X), we denote the space of
locally constant complex valued functions on X, S(X) the subspace of
compactly supported functions in C*(X), and S’(X) the space of all
linear functionals on S( X). If w is a fixed strictly positive smooth density
on X, C*( X) is then identified with a subset of S'( X) by f — fw. By T*X
we denote the analytic co-tangent space on X.

1. p-adic oscillatory integrals. For ¢ € S(X), X € K" open, and
p € HXXK")let

I,(p, $)(A):= fX ¢(x)¥(Ap(x,1)) dx, Ae KX

We compute asymptotic expansions for A = I,( p, ¢)(A) in the two cases
where grad, p is non-zero on supp(¢), and where p has one non-degener-
ate critical point on supp(¢).

PROPOSITION 1.1. Let X C K" and V C K" be open. Suppose that
pEHXXYV), ¢ €S8(X), and |grad, p(x,m)| =86 >0 for (x,m) €
supp(¢) X V. Suppose further that |R(x, y,n)| is bounded for x, x +y €
supp(¢), and n € V, where R is defined by

p(x+y,m)=p(x,n) +(grad, p(x,7n), y) +{R(x, y,n)y, y).

Then A — I,(p, $)(\) has bounded support on K*, with bound independent
ofn e V.

Proof. Assume n = 1, the proof for n > 1 being analogous. Since
U = supp(¢) is open-compact, there is an integer N such thatif m > N,
U= Ux, +P¢
iel
for some finite set { x,},c; C supp(¢). Suppose
b= sup lR(xa Y ")l’

xeU,nevV
x+yelU

g°= inf Vlgradxp(x,n)l, q

xeU,ne

and let MU = qmax(b—Za,ZN—b}.
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If |A\| > M, then
—-Ord(A) > b —2a and -Ord(A) +a > (-Ord(A) + b) /2.
Choose m,, such that —-Ord(A) + a > m, > (-Ord(A) + b) /2. Note that
mgq > N, since —Ord(A) > 2N — b.
Supposing ¢ = 1 on U, we have

L, )N =X [ ¥(Ap(x; +x,m)) d,

iel Ik

for a finite set { x,},c; € U. Now for each i € I,

(1.1) j;;(no Y(Ap(x;, + x, 1)) dx
= [ (M PG + i) + ROx xm)a )

= ¥(p(xm) [ ¥(N G )x) - ¥(ARCx,,x,0)) d.

For x € P2, |AR(x,, x, 1)x?| < |[A\|]g~?™*® < 1, hence ¥(ARx?) = 1. If
|x] = g~"™° then

ap
‘)\ dx (xis TI)X

> [A|ge™™e > 1,

thus x — W(A dp(x;, n)x/dx) is a non-trivial character on Pg’. Return-
ing to (1.1), if |[A\| > M, foranyn € V,

_ ap _
fP’?o Y(Ap(x; + x,7)) dx = ¥(Ap(x,, n))fpp ‘I’(A 2 (% n)X) dx = 0,
hence I,(p, ¢)(x) = 0. O

Now suppose p € H(X) (we drop the parameter in K" for the
moment), ¢ € S(X), and grad p(x,) =0 for some x, € supp(¢). If
D?p(x,) is non-degenerate, we have a p-adic stationary phase formula,
analogous to the classical case [G-S, p. 6].

PROPOSITION 1.2. Let X C K" be open, p € H(X), and ¢ € S(X).
Suppose { x,} <, is the set of critical points of p in supp(¢), and D*p(x,) is
non-degenerate for each i € I. Then if |\| is sufficiently large,

-n/2
(1.2) I(p,o)(N) =A™ X e(p, x;)9(x,)
iel
for X € (K™)?, where
-1/2

c(p,x) =v¥(p(x,)|det(D?p(x))| ",
Y a complex eighth root of unity.
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Proof. First note that the Morse Lemma holds true for p-adic locally
analytic functions (cf. [L, p. 174]).

Thus assuming p has only one critical point x, € U = supp(¢), if
D?p(x,) is non-degenerate, by the Morse Lemma (and reducing supp(¢)
is necessary), there is a coordinate system y on U such that

p(x) = p(x,) +{4y(x), y(x)), xe€U,

where A = D?p(x,) is symmetric, non-degenerate. Thus

1.3) I(p,¢)(\) = /X $(x)¥[A(p(xo) +(Ay(x), y(x)))] dx

= \P(Ap(xo))fx 0(y)¥(A(4y, y)) dy

where 8 = ¢|det(dx/dy)| € S(X).
By [W, p. 161}, if ¥, ,(x):= ¥({ 4V x, VX x)), then

(Ty.0)"(») = yvldet 4]\ H (A, (A7) p)),

where vy is a complex eighth root of 1.
Applying the Fourier multiplication formula to (1.3), we then have

I(P’ ¢)(>\) = \P(}‘P(xo))ﬂdetA|—1/2})\|’”/2

~fX B8(»)¥(~y Yy, (A7) y)) dy.

To evaluate the integral, note that y » ¥(-A"( y,(47") y)) is identically
1 on supp(8) for |A| sufficiently large. Thus

1(p, $)(A) = ¥(Ap(xo))vldet 4] A" fX 8(y) dy

-1/2y (~n/2
= ¥(Ap(x,))vldet 4] "I\ o(x,),
proving the proposition. O

2. P-adic wave front sets. We first define the notion of wave front
set for open subsets of K" (c.f. [Ho, p. 119-133] for the classical case).

DErFINITION. Let X C K" be open, u € S’(X), and A be an open
subgroup of K* with [K*:A] < co. We say that u is A-smooth at
(xg, &5) € X X (K" — {0}) if there are open neighborhods U of x, and V'
of £, such that for any ¢ € S(U) there is a N, > 0 for which |A| > N,
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implies that (¢u) (A£) = 0 for any £ € V. The complement of the set of
smooth directions of u is called the A-wave front set of u, denoted
WE,(u).

The local nature of WF,(u) is shown by the p-adic version of [Ho,
Prop. 2.5.4].

PROPOSITION 2.1. Let X C K” and U C X be open. Then for any
u € §'(X),

WEF,(u|U) = WEF,(u) N7 (U),

where my: X X (K" — {0}) is the projection onto X.
The following lemma notes a useful computational simplification.

LEMMA 2.2. Let X C K" be open and u € S'(X). Suppose U C X is
open, ¢, is the characteristic function on U, and A — (¢Uu)A(}\§) has
bounded support on A, uniformly for ¢ € V, V some open-compact subset of
K" — {0}. Then A — (¢pu) (AE) has bounded support on A, uniformly for
§ €V, forany ¢ € S(U).

Proof. By hypothesis there is an N, > 0 such that when A € A,
|A] > N, implies (¢,u) (A£) = 0 for any £ € V. If ¢ € S(U), supp(¢) is
compact, so since ¥V is compact, there is an N, > 0 such that |[A| > N,,
implies X'y + £ € ¥V for 1 € supp($), £ € V. Thus N, = max{ Ny, N, }
and || > N, implies (dyu) (m + AE) = (pyu) (A(X'n + £)) =0 for
1 € supp(¢), £ € V. Hence

(¢u) (A&) = (¢ - pyu) (A&) = [ (-n)(#4)"(n + X&) dn = 0

proving the lemma. O

ExaMpPLE. Suppose the residual characteristic of K is not 2, let
g, € OF be an element of order ¢ — 1, A the image of K(\/g)x in K*
under the map N,: K(fe,) > K, x + /ey = x> — £5y°, and H, the
characteristic function of A. If @ is the characteristic function on Oy and
u= (1~ ®)H,) , then WFy(u) = {(0,£) € K X (K — {0}): £ € A}.

The invariance of the definition of wave front set is a consequence of
the following proposition.



290 D. B. HEIFETZ

PROPOSITION 2.3. Let p € H(X X K") and X C K" be open. Suppose
grad  p(xq,my) = &, # 0 for some n, € K’, and (x, &,) is smooth for
u € S'(X). Then there are neighborhood U, of x, and W, of 1, such that for
any ¢ € S(U,) there exists an N, > 0 for which |[\| > N,, A € A, implies

(u, 6% (Ap(-,m))) =0
foranyn € W,

Proof. (After [D], Prop. 1.3.2.) Suppose u € S'(K") is smooth on the
neighborhood U, X V of (x,, ;) € T*K", and p € H(X X K") satisfies
grad  p(x4,m,) = &, for some n, € K". Let ¢ € S(U,) and ¢’ € S(K")
be 1 on supp(¢). Then

(21) (0¥ (p(,m)) =N f  (61)"(A8)

Xf}(qb'(x)‘l'(’\(p(x, n) = (& x))) dx dé.

By hypothesis there is a M, > 0 such that for A € A, |A| > M, implies
(¢u) (A&) = 0 for £ € V. So suppose £ & V. Since grad . p(x,, 1,) = &o»
by shrinking U, if necessary, we have

lgrad, p(x,n) — £/ 28>0

when x € U,, and 7 is close to n,. Applying Proposition 1.1 shows that
A= [0/ (x)T(A(p(x, 1) — (£, x))) dx has bounded support, and we are
done. a

A well defined wave front set for a distribution on an analytic
manifold X can thus be determined using any coordinate system on X.
Note that Proposition 2.1 and Lemma 2.2 are valid for analytic manifolds.

DEFINITION. For § € K", an S-cone is a set I' € K" X (K" — {0})
satisfying (x, s§) € T’ whenever (x, §) € I" and s € S. S-cones on mani-
folds are defined analogously.

The proof of the next theorem is straightforward.

THEOREM 24. Let u € S'(X), X be an n-dimensional analytic K
manifold, and A be an open subgroup of finite index in K*. Then
(1) WF,(u) is a closed A-cone in T*X — {0},
(i) If A’ is a open subgroup of A with [A:A'] < oo, then WF,(u) =
U,ca ™ - WE(u), where - WF(u):= {(x, 7€) € T*X: (x,§) €
WEF,(u)}.
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(iii) Sing supp(u) = 7x(WF,(u)), where my is the projection T*X — X.
(iv) WF,(u, + u,) € WFA(yl) U WEF,(u,), for u;, u, € S'(X).

We now develop functorial properties of WF,. First we derive some
lemmas on the geometry of A-cones. For S € K* and T C K" — {0} let
I(T):= {sé§:5€8,£€T).

If T is open then I'g(T) is open since s - U is a neighborhood of s§ in
I's(T) when U is a neighborhood of £ € T. Further, if T is compact and S
closed then I'y(T) is closed in K" — {0}.

DEFINITION. Let A be a subgroup of K* with [K*:A] < oo and
suppose the order of @A in K*/A is I. Set

l
Srli= Yo' -2l
i=0

LeMMA 2.5. If T C K" is a A-cone and T* =T N 227!, then T =
T, ().

Proof. That T,(TY) c T is clear. If £ €T there is an integer m
such that ¢ = (@)™t €T. Since @' €A, ¢=(a) ™' €T, and T =
T, (Th. O

LEMMA 2.6. Let I'| and T', be A-cones, closed in K" — {0}, and suppose
I'' NI, = &. Then there exists a A-cone V, open in K" and closed in
K" — {0}, suchthatT, C VandT,C V' = K" - V.

Proof. Let I} =T, N =371 Since I'} is compact and I'} € K" — T},
an open set, there is a finite set {V; },, of open-closed balls V; such that
T cV'=U,V;,and V' NT,= @. Let V=T (V"). Then since V' is
open, V is an open cone, and it is also closed, since A is. By Lemma 2.5,
I =r,IHch(VH)=V, and VNT,=T,(V)NT,= &. Hence T,
C V' = K" — Vand V’ is open. O

LEMMA 2.7. Let X be an open subset of K", u € S'(X), and x, € X.
Suppose V is an open-closed A-cone containing
I'={¢(e K"—(0}: (xo, &) € WE,(u)},

and set V' = (K" — {0}) — V. Take p € H(X X K") with grad, p(x,, 1)
€ V', for m in some open W, C K’. Then there is an open neighborhood
U C X of x, such that ¢ € S(U) implies there is an M, > 0 for which, if
Inl > M,,n € V', then (u, $¥(p(-,n))) = 0.
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Proof. Assume that X, u, x, V, and V” are as in the hypothesis, and
that p(x, n) = (x,n), the proof for arbitrary p following from Prop-
osition 2.3.

Let ¥V, = VN 227 Now V; is open-closed so V] = 2271 — V] is
open-closed, hence compact. Since V] is contained in K" — T, there exists
a finite set {V; },c; of open-closed balls such that (i) Each V; is an
open-closed neighborhood of some £, € V] for which there exists a
neighborhood Us of x, such that 1f ¢ € S(U;), there is an M, > 0 for
which |A| > M, implies that (¢u) "(A&) =0, for any ¢ € Vs, and (ii)
V, < Uzel Vf

LetU = ﬂ,e,Us,qseS(U)CS(Uf) M, = Max;.,{M,},andi € I.
If§=A§, ¢ € V,,and |A\| = M,, then (¢u) (g) = (¢u) (}\g’) = 0. Hence
(¢u)” restricted to T A(V;) has bounded support. By (ii), V" = I'\(¥]) is
contained in U, ,I',(V;,). Hence (¢u)” has bounded support in V. O

A locally analytic map f: X — Y between analytic K manifolds X and
Y induces a pull back f*: C®(Y) = C®(X), ¢ — ¢ o f. If f is also proper
(f ! (compact) is compact), then the push forward f,: S(X) - S(Y) of
fis defined by {f,u, o) = (u, f*¢), u € S'(X), € S(Y). We want to
compute relations between WF,(u), WF,( f*u) and WF,(f ,u).

We have so far defined f* only on C*(Y), where WF,(f*u) = &, an
uninteresting case. So we next extend the definition of f*.

DEFINITION. For any closed A-cone I' € T*X — {0}, let S;.(X) de-
note the set {u € S'(X): WF,(u) c T}.

THEOREM 2.8. Let X and Y be analytic m- and n-dimensional K-mani-
folds respectively, and suppose f: X — Y is locally analytic. Let N, = {(y, n)
€ T*Y — {0}: y = f(x) for some x € X and 'Df(x)n = 0}. Let I'” be a
closed A-cone in T*Y — {0} with N NT'=@. If T =
¥ = {(x,'Df(x)n) € T*X: there is ay € Y with y = f(x) and (y,n)
€ I''}, then f*: C*(Y) —» C*(X) has a unique continuous extension to a
map f*: St(Y) = St(X). Moreover

WE(f*v) € f<(WF\(v))
when v € St.(Y).

Proof. By Proposition 2.1 we may assume X € K™ and Y C K" are
open and supp(v) is compact, v € St.(Y).
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Now N, and I" are closed cones, so if NN I'" = &, by Lemma 2.6
there exists an open-closed A-cone V' C K" — 0 such that N, C V and
IMcV =(K"-0)—-V.

If v € ST(Y), by Lemma 2.7 for each y € Y, there is an open-com-
pact neighborhood U, such that x € S(U,) implies n - (xv)A(n) has
bounded support when restricted to V. Thus [,(xv) (n)I(¢)(n)dn
converges, where

L(¢)(n):= /X ¢ (x)¥((f(x),-n)) dx.

Assume supp(v) € U, for somey, € Y.
Now let V] = V" N 231 Since N, N V' = &, there is a § such that

[(f(x),-n)|=|"Df(x)n|= 8 >0

for(x,n) € UX V], U =f‘1(Uyo). By Proposition 1.1, if ¢ € S(U), there
is a M, > 0 such that |\| > M,, A € A, implies I,(¢)(An) = 0 for any
n € V. So if £ = An is an element of V' = I'\(V]), A € A, n € V], then
[A| > M, implies |[A\| > M, and I.(¢)(§) = I,(¢)(An) = 0. Hence n —
I,(¢(n)) has bounded support on V’, and [,.0(n)1,($)(n) dn converges.

Thus [x»0(n)I(¢)(n) dn exists and defines an extension of /* from
C*(Y) to Sp(Y).

To show that we have really extended f* to a map Sp.(Y) — S'(X)
and that this extension is unique, take v € S(Y) (C Sp(Y) for any T,
using the standard identification). Then & € S(Y),

an 8(m)1;(¢)(n) dn =fX [[K \I'((f(x),—n))z‘)(n)dn].p(x)dx

converges for any ¢ € S(X), and

L[ ¥ 00 anfoio as

= fx o(f(x))o(x) dx = fX Fro(x)é(x) dx = (f*v, ¢).

Uniqueness comes from the fact that C*(Y) is dense in S7(Y), proved by
using an approximate identity as in the classical case.

Next we show that f* maps St.(Y) into Sp(X) by proving that
WE,(f*v) € f*WEF,(v) for v € S;.(Y). So suppose that (x,, &), &, =
'Df (x4)1M0, is not an element of f¥*WF,(v), that is, (f(x,), 19) = (¥o> Mo)
& WEF,(v). Let U, and V, be open-closed neighborhoods of y, and 7,,
respectively, such that for any x € S(U, ), A = (xv)(An) has bounded
support on A, uniformly for n € V. We may assume that supp(v) C U, .
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Now for any ¢ € S(X),

(22) (ar%0) (A = [ | ﬁ(n)[ J #GIT((f(x),=n) +(x, \8) dx] dn
= 50w [ o(IEN(A(x). )+ (x 9)] d| dn

=W [ 0O, (A, & 7) dn,

where

L& m)i= [ o()¥(Ap(x, & m) ax,
with
p(x, & m)= (f(x),-n) +(x, &).
Let T denote the subset of K™*",

{(&:m): Df(x)n=¢meV,f(x) e U}.

For any A-conic open-closed neighborhood @ of T there exists a § > 0
such that

lgrad, p(x, & n)| =|Df (x)n — £/ = 8 > 0,

if x € f4(U) and (&, 1) is not in Q. Hence by Proposition 1.1, A —
I,(A, & m) has bounded support on A, uniformly for (§, n) & Q. However
ifnev, A = 9(A, n) has bounded support for A € A. Hence (2.2) does
too, (x,, &,) &€ WF,(f*v), and the theorem is proved. |

Next we examine WF,(f ,u).

THEOREM 2.9. If u € S'(X) and f: X — Y is a locally analytic proper
map on supp(u), then f , u is defined and

WE,\(fsu) € fo(WF\(u)) U N,
where f(WEFy(u)):= {(y,m) € T*Y: y = f(x) for some x € X and
(x,'Df(x)n) € WFy(u)}.
Proof. See [G, Theorem 2]. O

In the classical case distribution products can be shown to exist,
assuming certain criteria on wave front sets [Ho, Theorem 2.5.10]. The
same is true in the p-adic case.
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THEOREM 2.10. Let X be an n-dimensional analytic K-manifold, and T',,
I, € T*X — 0 be closed A-cones with I}, N -I', = &. Then there is a
unique continuous extension of the product on S(X) X S(X) to a product on
St (X) X Sp(X). If u; € Sp(X), i = 1,2, then

(2.3) supp(u; - u,) C supp(u;) N supp(u,)
and
(2~4) WFA(“l : “2) c (WFA(ul) + WFA(“z)) v WFA(ul) U WFA(“z)-

Proof. The proof is analogous to the classical case. We assume
X € K" open. If the closed cones I'; and -T, are disjoint, by Lemma 2.6
there is an open-closed A-cone V such that I € V and -I, C V' =
(K" —-0) - V.

Take u, € St.(X), u, € Sr(X), and ¢ € S(X). Since WFy(u;) NV’
= @, by Lemma 2.7 and assuming supp(¢) sufficiently small, §—
(¢*%u;)” (£) has bounded support in V. Similarly, £ — (¢/%u,) (-£) has
bounded support in V. Thus the integral

[ (8720)" (6)(¢77u,)"(-£) d

converges, defining (u, - u,, ¢).

Now suppose x, & supp(u,). Let U C X be an open-closed ball with
x, € Uand U N supp(u,) = &. Set W = X — U and suppose x,, is the
characteristic function on W. Pick {v,} and {v,} to be sequences of C*
functions convergent to u; and u,, respectively, in S’(X). Note that
XwUn, = 4. Letw, = (x0,) Vs, SOW, = u, - u,. Then if ¢ € S(U),

(u - uy, ¢) = lim (w,¢) = lim (0,0}, x$) =0,

SO xo & supp(u; - u,). Similarly, supp(u, - u,) C supp(u,), proving (2.3).
For the proof of (2.4) see [G, pp. 241-242], whose functorial approach
we have now proved to be valid for the p-adic case. O

As noted at the end of the proof of Theorem 2.10, Theorems 2.8-2.9
on the wave front sets of pull-backs and push-forwards give us p-adic
versions of the basic functorial machinery in [G]. The following two
results on kernel maps, which we just state, can then be proved as in [G].

THEOREM 2.11. Let X and Y be analytic K manifolds.
(i) Suppose k € S'(X X Y) is properly supported (m K is defined for
both projections m =my: XX Y > X and m=7my: XX Y —>Y), and
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v € S(Y). Then the product Ly = k - (1 ® v) is defined, inducing a map
L: S(Y) - S(X), where (Lp,¢)=(xk-(1®0),6®1), and
WE\(Lp) < 7y (WF\(x)).

(ii) If I' € T*Y — 0 is a closed A-cone and -T is disjoint from {(y, 1)
€ T*Y: ((x, y),(0,n)) € WF,(x)for somex € X}, then L, can be uniquely
extended from S(Y') to a continuous map L : St(Y) — S'(X). Ifv € Si(Y),
WF,(L,v) € RY(WF,(v)) U 7y (WF,(k)), where

R::*(WFA(U)):= {(X, 5) € T*X: ((xa y)7(£9 —77)) € WFA(K)

for some (y,m) € WF,(v)}.
Further, if my (WF,(x)) = @, then by Theorem 2.4(iii), Sing supp(L,v) is
contained in

{x € X: (x, y) € singsupp(k) for some y € singsupp(v)}.
THEOREM 2.12. Let X,Y, and Z be analytic K-manifolds, x, €
S(X X Y),k, € S(Y X Z) be properly supported, and suppose WF,(k,) X

0 is disjoint from —(0 X WF,(k,)). Then
(i) The composition

KoKy i= myyz ((k ® 1) (1 ® ,))

exists.
(i) WF,(k, ° k,) is contained in the set

WEF{(x,) e WEy(k,) U(RE(0y) X 07) U(Ox X R, (0y)),
where
WE{(k):= {((x, y),(§,m)) € TH(X X Y):
((x, ¥), (¢, —m)) € WF,(x,)},
R:(0y):= {(x,¢) € T*X: ((x, y),(£,0)) € WFy(x,) for somey € Y},
and
R, (0y):= {(z,%) € T*Z: (¥, 2),(0,¢)) € WF,(k,) for somey € Y }.

Here Oy, Oy, and O, are the zero sections in T*X, T*Y, and T*Z
respectively.

(ii) supp(k; © ;) S supp(k;) ° supp(k,).

3. P-adic wave front sets of group representations. In this section

we turn to representations p of p-adic groups, defining the notion of the
wave front set of p similar to that of [H] for Lie groups. Our novelty
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consists not of formulation of results, but in placement of emphasis, and
verification of the p-adic case.

As usual, K is a locally compact field with discrete valuation and A is
an open subgroup of K* with [K*:A] < o0. Let G be a unimodular
closed subgroup of GL (X)), closed in K »* and dx be a Haar measure on
G. We consider only unitary representations (p, H,) of G on the Hilbert
space H,. (Our results are valid for a wider range of representations, but
for concreteness we take p unitary.)

Our first definition generalizes that of WF, given in Chapter 2 to
operator valued distributions.

DEFINITION. We say that p is A-smooth at (g, §,) € T*G if for any
locally analytic function p on G X K’, there are neighborhoods U, of g,
and W, € K" — {0} of £, such that ¢ € S(Uj,) implies that

(p, ¥ (Ap(-,n))) = fG ¢(x)¥(Ap(x,1))p(x) dx =0,

for any n € W, when |A| > M,, A € A, for some M, > 0. The set of
(x, §) € T*G where p is not smooth at (x, §) is denoted WF,(p) and
called the A-wave front set of the representation p.

If L(x):= g 'x and R, (x):= xgfor g, x € G, then L;(WF\(p)) =
R%(WEF,(p)) = WF(p). Forif ¢ € S(G), and p € H(G X K"), we have

(p,¢\P(>\p(-,n))>=fG¢(g'1x)‘l’(>\p(g‘1x,n))p(g'lx)dx

=p(g™)(p, L2s¥(Ap(-,m))),

and similarly for R}. Thus WF,(p) can be identified with an AdG
invariant subset of the dual g* of the Lie algebra g of G:

WFX(p) = {¢ € g*: (e, &) € WF(p)},

where we identify T*G = G X g*. If £ € g* — WF,(p), we say that p is
A-smooth at £.

We give three equivalent conditions for p-smoothness, which are the
p-adic versions of [H, Theorem 1.4 i, vi, vii].

LEMMA 3.1. Let (p, H,) be a unitary representation of the unimodular
p-adic group G and suppose that V C g* is open. Then the following
statements are equivalent:

() VN WFE(p) = 2.
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(i) If ¢ € S(G) and p € H(G X K") satisfies grad , p(nm)(supp(¢)) C
V for all n in some open subset W, of K’', then the operator
{p, o¥(Ap(-,n))) is O for large enough ||, uniformly forn € W,

(iii) There is a neighborhood U of the identity element e such that
whenever ¢ € S(U), p € H(G X K"), and grad, p(n)(supp(¢)) C V for
n € W,, W, an open subset of K", then {p, $¥(Ap(-,n))) = O when || is
sufficiently large, uniformly for n € W,,.

Next we examine the collective behavior of the scalar distributions
defined by the matrix coefficients of p. Denote by T(H,), or just T,, the
set of trace class operators on H,. For any g€ G and T€ T,, p(g)T is
of trace class, and g — Tr (T)(g) = tr(p(g)T) defines a bounded con-
tinuous function on G. Let TWF,(p) denote the closed A-cone in T*G:

c1[ U WF,(Tr,(T))| (Cl= closure).

TeT,

We show that TWF,(p) = WF,(p). The first step is to note that
TWEF,(p) is invariant under L¥ and R7%. This is proved for the p-adic case
analogously to the classical proof [H, Prop. 1.1]. We may then identify
TWF,(p) with an AdG invariant subset of g*:

TWE(p) = {¢ € g*: (e, ) € TWF,(p)}.

Again it is useful to have various equivalent criteria for A “TWF?(p)”
smoothness. \

LEMMA 3.2. Let (p, H,) be a unitary representation of the unimodular
p-adic group G, and V be an open subset of g*. Then the following are
equivalent:

G) VN TWEX(p) = @.

(@) If TeT, and p € H(G X K") satisfies grad, p(e,m) € V for
n € W,, W, an open subset of K", then there is an open neighborhood U of e
such that for any ¢ € S(U) there exists an M, > 0 for which |\| > M,
A € A, implies <Trp(T), oV (Ap(-, 11))> = 0 foranyn € W,

(i) If TeT,, ¢ € S(G), and p € H(G X K") with grad, p(n) -
(supp(¢)) C V for n € W,,, W, an open subset of K", then A — (Tr(T),
¥ (Ap(-, n))) has bounded support on A, uniformly forn € W,.

(iv) Same as (iii) except that we require only ¢ € S(U) for some fixed
neighborhood U of e.

(v) Same as (i) except that the support of A — (Tr(T),
o¥(Ap(-,m))) for fixed ¢ and p is independent of T.
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Again the proof for the p-adic case is analogous to the classical [H,
Theorem 2.4i—v].
Lemmas 3.1 and 3.2 now imply that WF,(p) = TWEF,(p).

THEOREM 3.3. WF(p) = TWF_(p) for any unitary representation p of
a unimodular p-adic group G.

Proof. (After [H].) Let V C g* be open. We must show that V' N
TWFX(p) = @ iff ¥ N WF,{’(p)

So suppose V and TWF)(p) are d1s_]o1nt To show that V' N WFQ(p)
= &, suppose ¢ € S(G), p € H(G X K"), and grad, p(n) (supp(¢)) € V
for all n € W, for some open W, C K". By Lemma 3.1(ii) it suffices
to show that for some M, >0, |A|> M,, A € A, implies that
{p,¢¥(Ap(-,n))) = 0foranyq € W,

Now by Lemma 3.2(v), there is a M, > 0 such that [A\| > M,,A € A,
implies that for all T € T, and n € W,

<TI' (T)a ¢\I’(}\p(’ 77))> = tI‘[(p-, ¢\P()\p("’7))>T] = 0.

Let {e;},c; be any orthonormal basis of H,. For i, j € I define 7,, € T,
by setting T, v: <v e>e forve H,. Thenlfl}\l > M,,

t[(p, s¥(Ap(-,m)NT,] = X ({p, s¥(Ap(-, 1)) T, e, €;)

kel
= ((p,8¥(Ap(-,m)))esr ;) =

Hence (p, ¥ (Ap(-,n))) = O when |A\| > M,, and V N WF(p) =
Conversely, suppose V N WF(p) = &. By Lemma 3.1(ii), assuming
grad . p(n)(supp(¢)) € V for ¢ € S(G), n € W,, W, open in K, there is
a M, >0 for which [\| > M,, A € A, implies (p, o¥(Ap(-,n))
when 1 € W,. But then (7,(T), $¥(Ap(-,n))) = tr(OT) =0 for [A| >
M,, for any T € T,. Hence by Lemma 3.2(v), V N TWE, V(p) = &, and
theorem is proved. O

Some representations have a natural distribution and wave front set
associated with them. For example, take G to be semi-simple and (p, H,)
to be a unitary representation of G. We say that p is admissible if (i) every
element of H,, is fixed by some open subgroup of G, and (ii) the subspace
of H, fixed by any open subgroup of G is finite dimensional [Go, p. 1.2]. It
follows from (ii) that for any ¢ € S(G), {p, ¢) is a finite rank operator.
Hence

(X0 9) = tr({p, $))
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defines a distribution x, on G called the character of p, which is
conjugation invariant. Denote by WF(x ,) the AdG invariant A-conical
subset of g*:

{§€g*:(e,8) € WFi(x,)}-

THEOREM 3.4. If G is a unimodular semi-simple p-adic group and p is a
unitary admissible representation of G, then WF(x,) = WF{(p).

Proof. That WF(p) € WF(x,) is proved analogously to the Lie
group case [H, Theorem 1.8].

To show the converse suppose that p is smooth at §,, p € H(G X K")
satisfies grad, p(e, n,) = &,, and U, X W, is a neighborhood of (e, 1)
such that if ¢ € U, (p,o¥(Ap(-,7m))) =0 for any n € W,, when
Al > M,, A € A, for some M, > 0. Then |A| > M, implies that for all
nE W,

(x,. ¥ (Ap(-.m))) = tr[ [ $0IH P m)p() i

= tr[{p, 9¥(Ap(-, m)))] = t(0) = 0.
Hence x , is smooth at £, O

Not surprisingly WF,(p) obeys the same elementary properties as the
scalar wave front set. Proposition 2.1, Lemma 2.2, and Theorem 2.4 (i—ii)
hold true with “X” replaced by “G”, and “WF,(u)” replaced by
“WFE\(p).”

The result on sums of representations is actually stronger than in the
case of sums of distributions on manifolds (Theorem 2.4iv).

THEOREM 3.5. Let (py, H,) and (p,, H,,)) be unitary representation of
the unimodular p-adic group G, and (p, ® p,, H, ® H, ) their direct sum.
Then

WF(p, ® p,) = WF(p,) U WF(p,).

Proof. 1t suffices to show that WFX(p,) € WFQ(p, ® p,), i = 1,2,
containment in the converse being implied by Theorem 2.4(iv).
Now T, can be included in T, 5, by identifying

T(—-)(T O)ET

0 0 nOpy° Te TPl'
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Then
WE\(Tt, 6, (T)) = WE,(Tr, (T)),
foranyT€ T, c T, ,,. Hence TWF,(p,) € TWF,(p; ® p,), 0
WE(p,) € WE{(p, @ p,)
by Theorem 3.3. Similarly WF?(p,) € WF2(p, ® p,), proving the theo-

rem. O

The wave front set of an outer tensor product behaves as the scalar
case [G, Theorem 3].

THEOREM 3.6. Let (py, H, ) and (p,, H,,) be unitary representations of
the unimodular p-adic group G, and suppose (p; ® p,, H, &, ) is their outer
Kronecker product. Then

WFAO(P1 ® p,) C WFAO(pl) X WF)(p,) U(O X WFAO(PZ))
U(WFAO(P1) XO)'

Next suppose G = G, = G,. The inner Kronecker product p; X p, on
G is given by p; X p,(g):= p,(8) ® p,(g). It is tempting to postulate that

WF(p, X p;) C (WFA(pl) + WFA(Pz)) U WF,(p,) U WE(p,).
Computing coefficients of { p; ® p,, $¥(Ap(-,n))) we have formally

(3.1) {((p; ® py, d¥(Ap(-,m)))u® w,u’ ® ')

- < [ (30w ® (X wo (x) ¥ (Ap(x, ) dr. ' @ w'>
= [ (ei)w @) (oa(x)w, w)o(x) ¥ (Ap (x, m) dx

= ./;;Trpl(S)(x) 'Trpz(T)(x)¢(x)‘I’(>\P(x,ﬂ)) dx,

where S(v) == (v, u')u and T(v):= (v, w’)w, foru € H,,weH,,ue
HY,and w' € H}.

If WF(Tr,(S)) and -WF,(Tr,(T)) are disjoint, (3.1) converges,
as in Theorem 2.10. However, if p=p, =p,, S=T, -1 € A, and
WEF\(Tr,(S)) = 9, then

WEF,(Tr, (S)) N WE,(Tr,(T)) = WE,(Tr,(S)) # 2,
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and we do not know if (3.1) converges. So, in general, it is not clear how
to compute WF,(p, ® p,).

If (p, H,) is a unitary representation of a group G, and H is a
subgroup of G, then (p|H, H,) is a unitary representation of H. A natural
question is to ask what is the relation between WF,(p) and WF,(p|H)
when G is a unimodular p-adic group.

THEOREM 3.7. Let H be a closed subgroup of the unimodular p-adic
group G, and Y) denote the Lie algebra of H. If .: H — G is the inclusion
map and p|H is the restriction to H of the unitary representation (p, H,) of
G, then

‘Di(e)(WF(p)) € WF(p|H).

Further, if N, is disjoint from WF(p), then

‘Di(e)(WF(p)) = WF(p|H).

Proof. The proof for the Lie group case [H, Props. 1.5-6] also handles

the p-adic case. O

We conclude with non-trivial examples of representation wave front

sets.

ExAMPLE 1. Let G = K" and (p, L*(G)) be the regular representation
of G. p is equivalent by the Fourier transform to the representation

p(x)f(»)=¥(x, »)f(»), xe€K" feL¥G).
Take ¢ to be the characteristic function of (Oy)”", and set p(x, 1) = {x, 1).
Then

(0, 0% (A, )7() = [ 6()¥(Nx £)(p(x)/)() dx

= [, ()Y (Nx, £)F(Cx, 1) () dx = $(AE = 1)/ (),
and WF (p) = K" — 0.

EXAMPLE 2. Suppose G is nilpotent. The computation is the same as
[H, p. 131], since the Lie and p-adic theory are the same [K]. To each
irreducible unitary representation (p, H,) there is associated an orbit
@, = {Ad*(x)v,: x € G} for some v, € g*, such that

(32) (x,e8) =t [ o(x)o(x) x|

=f9 é(v)dQ(v), ¢ € S(G),
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where
$(0) = [ olexn(X)¥(X. 7)) ax,

and d{ is an invariant measure on {,. Note that exp is defined on all of
since exp( X) is a finite sum and X € g*.

We use (3.2) to compute WF(p). Let ¢ € S(G) and p € H(G X K").
Then

(33) <Xp’ ¢‘I'(AP(’§))> = Lz [qS\II(}\p(’é))]A(V) dﬂ(v)
= j;z {j;* ¢(CXP(X))‘I'[>\[)(CXP(X),'n)]\P(<X’ V>) dK} dﬂ(v)

- fﬂ {fg ¢(exp( X)) ¥ [Xp(exp(X), n) + (X, )] dX} aQ(»).
If we take p(exp(X), £) = (X, £), (3.3) becomes

/sz é(v + AE) dQ(»).
Hence <xp,¢‘lf(}\p(-,§))> has bounded support on A iff @, + A¢ is
disjoint from supp(¢) for |A| sufficiently large, A € A. Thus by Theorem
3.3, ¢ &€ WF(p) iff there is a neighborhood U C g* of 0 such that
2, + Aé N U = & for || sufficiently large.

ExaMPLE 3. Take G to be a unimodular semi-simple p-adic group. Let
(p, H,) be an irreducible admissible representation of G. Then x, is a
locally summable function of G, and is locally constant on an open, dense
subset G’ of G. x, is not C* at g=e (& G'). However, there is a
neighborhood V of 0 in g, and constants cg such that

(3.4) Xp(exP(X)) = %CQ fg(X), XevV,

the (finite) sum being over the nilpotent orbits in £ in g* [HC, p. 180].
Here the locally summable functions fi, are defined as follows [R]: Fix
X, € g and let @, = {Ad(x) X,: x € G}. If Gy is the stabilizer of X,
then Gy is unimodular and G/Gy, has an invariant measure d{}, and we
define

(3.5 (po.9) = fG o, $(Ad)X) d2(x). 6 € S(a).
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Note that we have identified g with g* using a fixed non-degenerate,
symmetric, G-invariant, bi-linear form (, ).

Using (3.4) for x, on W = exp(V), if ¢ € S(W), we have that for any
p € HG X K"),

(x,,4¥(Ap(-,8))) = fG o(x)¥(Ap(x, £))x,(x) dx

= qus’(X)\If[}\p(exP(X),%)]XP(CXP(X)) dx

fV ¢ (X)¥[Ap(exp(X), é&)]{%‘,cQ : ﬁQ(X)} dx

Y o (R o ¥(Ap(-, 8))),

Q nilpotent

where ¢’ € S(V) and p'(-, §) = exp*p(-, ). Thus by Prop. 2.4(iv),
WF?(x,) is contained in

U WE, AO( la Q ) ’
Q nilpotent

where

WF{(ho) = (£ € g: (e, §) € WFy(Bg)}.

So let £ C g be a nilpotent orbit generated by X, € g. For ¢’ € S(V),
by (3.5),

(3.6) (fig, o ¥(AP'(+, ) = (pa, [¢¥Y(AP'(-, E)]")

= [ 1o, )] (Ad(x) X,) dQ(x)
G/Gyx,

- L/G [fg ¢ (Y)¥(Ap/(Y, £))¥((Ad(x) X,, Y)) dy] d(x).
Letting p'(Y, ) = (Y, £), (3.6) becomes

f U ¢'(Y)¥((A¢ + Ad(x) X,, Y)) dY] dQ(x)

G/Gy,

= j (A& + Ad(x) X,) d2(x).
G/Gy,

But this is O for large |A| iff A& + Q is disjoint from supp(¢) for |A]
sufficiently large. Thus by Theorem 3.3, £ & WF{(p) iff there is an open
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neighborhood U C g of 0 such that N + Aé N U = & for |A| sufficiently
large, where N is the set of nilpotent elements of g.
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