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RECONSTRUCTION OF HYPERTREES

H. G. SENGE

In Memory of Ernst G. Straus

In this paper we show that with essentially only one exception, every
hypertree can be reconstructed from the set of maximal partial hyper-
trees {T — E\ E Π CΦ 0 } . The exceptional hypertrees are hyper-
chains of odd length { x0, Ex, xx,..., Ex, xs}, where

1. Introduction. Let G denote a graph with vertex-set X =

{xl9...,xn}9 and let Gt denote the subgraph of G that is generated by all

the vertices of G except jt,.. In [6], Kelly proved that if T and T are trees

with the same number of vertices, and if Tif s T[ for all i = l,2,...,w,

then Γ s 7". This gave rise to the Kelly-Ulam conjecture [6,7]:

Conjecture 1. Let G and G' be graphs with the same number of

vertices. If for some ordering of the vertices of G and G\ Gt = G\ for all

/ = 1,2,..., thenG s Gr.

Harary [4] reformulated the Kelly-Ulam Conjecture as follows:

Conjecture 2. Every graph G is uniquely determined by the set of

maximal subgraphs {Gx\ x e X}.

He called graphs for which Conjecture 2 is true, reconstructible graphs.

In the same paper he also conjectured that every graph G is reconstruct-

ible from the partial graphs Ge that are obtained from G by deleting an

edge from G. Let us restate this as:

Conjecture 3. Every graph is uniquely determined by the set of

maximal partial graphs {Ge\ e e <f}.

Harary and Palmer [5] extended Kelly's theorem by proving that

every tree T can be reconstructed from the set of maximal subtrees Tχ9

degx = 1. Later, Bondy [2] extended Harary and Palmer's theorem by

considering only those maximal subtrees Tx where x lies on the cir-

cumference of T.
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In this paper we present a reconstruction theorem for hypertrees that
contains all the results mentioned above as special cases. Even though the
transition from trees to hypertrees is not particularly difficult, we will
present a complete proof of the reconstruction theorem for hypertrees that
is considerably different from the proof given by Bondy.

2. Definitions. Let X be a finite non-empty set, and let £ be an
indexed family of non-empty subsets of X. H = (X, £) is called a
hypergraph if UE€Ξ<g>E = X. The elements of X are called the vertices of if,
and the elements of £ are called the edges of H. If the elements of £ are
distinct, so that £ is a set of subsets of AT, then H is called a simple

hypergraph.

Let Γ c I and let £' = {E Π X\ E e £ and E Π Xr Φ 0}. The
hypergraph of Hf = (X\ £') is called the subhypergraph that is generated
by X'. If X' = X — {X}, then 7/' is called a maximal subhypergraph of if,
and is denoted by H — x.

Let £' c £ and let X' = UE^E. The hypergraph if' = (X\ £') is
called the partial hypergraph of H that is generated by £ '.If £' = «? - { E},
then i/' is called a maximal partial hypergraph of H, and is denoted by
H - E.

A hypergraph H that is uniquely determined by the set of maximal
subhypergraphs [H — x\x e X), is said to be υertex-reconstructible. A

hypergraph H that is uniquely determined by the set of maximal partial
hypergraphs {H — E\ E ^ £},is said to be edge-reconstructible.

The incidence matrix of a hypergraph H with n vertices xl9... 9xn9 and
m edges El9... ,2?m, is the matrix A = (a ), where

For every hypergraph H, there exists a hypergraph H^, whose incidence
matrix is the transpose of the incidence matrix of if. if* is called the dual

hypergraph of H. Let us denote the vertices of H* by xf,... ,x*, and the
edges of H* by £ * , . . . , £ * .

P R O P O S I T I O N 1. A hypergraph H is {v

e

eJt

g

e

e

x}-reconstructible if and only if

H* is { e

υ

dJt

e

ex)-reconstructive.

Proof. (H - x.)* = H* - E* for all i = 1,... ,/i, and (H - £.)* =
H* — x* for ally = 1,... ,m. This follows immediately by considering the
respective incidence matrices.
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PROPOSITION 2. Let X be a finite set of n elements, and let Sx = {A c
X\\A\ is odd}, andS2= {A c X\ \A\ is even, and Φθ}. If Hx = ( ^ ^ )
and H2 = (X, S2), then Hλ — x = H2 — xfor all x e X.

Proof. For all x e X, H) — x is the complete hypergraph on X + {*},
for both i = 1 and i = 2.

From Propositions 1 and 2, it follows that in general, edge or vertex
reconstruction of hypergraphs is impossible. However, it now becomes an
interesting problem to determine all reconstructible hypergraphs. One
large class of reconstructible hypergraphs that will be considered later is
the class of hypertrees.

A hypergraph is said to be regular if all vertices have the same degree.
If all edges contain the same number of vertices, then it is called a uniform
hypergraph. Thus H is uniform if and only if H* is regular.

A hyperchain of length s is an alternating sequence, {x0, Ev

xl9...9Es9xs}9 of s -f 1 distinct vertices, and s distinct edges, where
xi_ι e Ei and xt ^ Et for all / = 1,2,... ,s. An alternating sequence that
satisfies all conditions for a hyperchain exception that x0 = xs, is called a
hypercycle. The distance between two vertices x and xr is defined as the
length of a shortest hyperchain that connects x and xf, and is denoted by
d(x, x'). The eccentricity of a vertex X E J i s defined as

e \X J — Illαλ ClyX, X ) .
c 'e l

The radius and diameter of a hypergraph can be defined in terms of the
eccentricity of the vertices. Let

r = mine( c),

and

d = maxe(x).

The set of all vertices of a hypergraph H that have minimal eccentricity is
called the center of H, while the set of all vertices of maximal eccentricity
is called the circumference of H. The center and the circumference of H
are denoted by Z and C respectively, where

and

A hyperchain of maximum length d in a hypergraph i/ is called a
Diameter of //. [Note that the words "diameter" and "Diameter" have
different meanings].
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A vertex x e X is called a cut vertex of H iί H — x is disconnected. A
block is a connected hypergraph that has no cut vertices. The maximal
sub-hypergraphs of H that are blocks, are called the blocks of H.

LEMMA 1. A sub-hypergraph B of a hypergraph H is a block if and only

if any two vertices of B lie on a hyper cycle in B.

LEMMA 2. The center of a hypergraph is contained in one of its blocks.

The proofs of these two lemmas are identical to the proofs of the
corresponding lemmas for graphs and can be found elsewhere [1].

3. Hypertrees. A connected hypergraph that does not contain a
hypercycle is called a hypertree. If two edges E and F of a hypergraph H
have at least two vertices x and y in common, then H contains the
hypercycle { JC, E, y, F, x}. Consequently, any two edges of a hypertree
have at most one common vertex.

For hypertrees, Lemmas 1 and 2 have the following implications: 1.
The blocks of a hypertree are the edges, and 2. The center of a hypertree
consists of a single vertex, or a single edge. Moreover, the type of center of
a hypertree is completely determined by its diameter. Hypertrees with
even diameter have a vertex as the center, while hypertrees with odd
diameters have an entire edge as the center. From now on we will refer to
a hypertree as being even or odd according to whether its diameter is even
or odd.

4. Reconstruction of hypertrees. Let z be the center of an even
hypertree T. Let us decompose T by separating all the edges that contain
z. The resulting components are partial hypertrees of Γ, and are called the
central branches of T. Thus every central branch of T contains z as a
vertex of degree 1. Let Z be the center of an odd hypertree T. Then T — Z
consists of at most \Z\ components. Each of these components together
with Z is a partial hypertree of Γ, and is called a central branch of T. Thus
every central branch of T contains Z as a terminal edge. A central branch
of a hypertree T that contains at least one vertex on the circumference of
T is called a radial branch. There is one basic property that distinguishes
even and odd hypertrees: An even hypertree can have any number of
central branches, while an odd hypertree can have at most \Z\ central
branches. Before we launch into the proof of the reconstruction theorem,
we must consider one exceptional case.
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LEMMA. Let T be an even hypertree that consists of a single alternating

hyperchain Eo, Ev...,ES, where Ei_1 n £,. # 0 , and\E0\ = \E2\ = | £ 4 | =

• Φ \Eλ\ = | £ 3 | = \E5\ = . Let Tλ = T - Eo and T2= T - Es. Then

Tx Φ T29 and 7\ - Ex = T2 - Eo s T2 - Es_v

Proof. Clear.

Let T = (X, £) be a hypertree, let C denote the circumference of Γ,

and let <?c = { £ e <?| i? n C # 0 } . We can now prove the reconstruc-

tion theorem.

THEOREM 1. Every hypertree T, that is not an alternating hyperchain of

odd length can be reconstructed from the set of maximal partial hypertrees

{ T - E\E <Ξ£C).

Proof. The proof will be divided into three parts:

1. |<fc| > 2, and T - E is even (odd) for all E €Ξ <?C.

2. |<fc| > 2, and there exist hyperedges E and F e J ^ so that Γ - £ is

even, and T — F is odd.

3 1 J0 I 0

1. Let us first consider the case where T — E is even for all E e Sc.

Then Γ must be even, and the center of T is the same as the center of

T — E for all E e Sc. Let bi denote the number of radial branches of T

that have exactly / edges in $c, and let b0 denote the number of non-radial

central branches of T. For every edge E e <fc, let bt{E), i > 0, be defined

as above for the hypertree T — E. Let/?(/) = bx 4- bxt 4- Z?2/
2 + , and

let pE(t) = bo(E) + ί ) ^ ^ ) ^ + b2(E)t2 + . The polynomials pE(t),

where E e $c, are easily derived from the structure of T — E and are

closely related to p(t). In particular, if an edge E e Sc is part of a radial

branch that has / edges in Sc, then

^ y , if7 # ι — l , andy ¥= i,

and hence

Consequently, for any two distinct edges E and JF e Sc, there exist

positive integers i andy, so that

(2) p^ή-p.iή^tJ-t^-t' + t'-K
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We can assume thaty > i. (If not, interchange E and F.)
At this point we have to consider two different cases:

(1.1) pE(t) = pF(t), for all E and F e «fc.

(1.2) />E(ί) # ρF(t), for at least two edges E and F <EΞ <fc.

(1.1). It follows from (1) and (2) that all radial branches of Γhave the
same number of edges in ic, so thatp(t) = b0 + 6f.ί', and for all E e <fc,
/>E(0 = ô + ί '~ 1 + iPi ~~ !)*'• Let 5 denote the number of radial branches
of T. Then |<^c| = w, and the total number of radial branches in all
sub-hypertrees T — E, where E e Sc, is is(s — 1). Every radial branch of
T occurs among the radial branches of all T — E exactly i(s — 1) times.
Thus the multiplicity of a radial branch among all T — E under considera-
tion is i(s — 1) times its multiplicity in T. With this observation we can
identify all radial branches of T. If i > 1, then the non-radial central
branches of T are precisely the non-radial central branches of T — E, for
any E e Sc. Finally suppose that i' = 1. Having determined the radial
branches of Γ, we can identify the nonradial central branch of T — E that
resulted from deleting E for any E e Sc, The remaining non-radial central
branches of T — E are the non-radial central branches of T.

(1.2). Choose E and F G # C S O that (2) is satisfied andy > 1. Then all
central branches of T — E except those having / or / — 1 edges in Sc and
all central branches of T — F except those having j or j — 1 edges in Sc

completely determine the central branches of T unless j — 1 = /.
If j — 1 = Ϊ, then the radial branches with exactly i edges in Sc are

determined by an argument similar to the one in 1.1 applied to the set of
all sub-hypertrees T — F for which pF(t) = pE(t)- This concludes the
proof of part 1 for even hypertrees.

If T - E is odd for all E e <SC, then T is odd and the center Z of T is
the same as the center of T — E for all E e Sc% Let us replace Z in each
partial hypertree T — E by a star S whose vertex-set is Z U {z0}, and
whose edge-set i s { ( z o , z ) | z e Z ) . The resulting hypertrees are all even,
and are partial hypertrees of the hypertree V that is obtained by replacing
the center of Z by the star S. By part 1 of this theorem for even
hypertrees, T can be reconstructed from the set of even partial hypertrees.
Once V is reconstructed, T can be obtained by replacing the star S in V
byZ.

2. In this case, either T — E is the only partial hypertree that is even,
or T — F is the only partial hypertree that is odd. In either case, let Ex
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denote the unique edge in Sc so that the parity of T — Ex is unique among
the partial hypertrees under consideration. Then T has only two radial
branches B1 and 2?2, where Bλ has one edge Ex e $c, and B2 has at least
two edges in Sc. For any edge E e §c, E Φ Ev the non-radial central
branches of T — E are the non-radial central branches of T. The radial
branches of T can be reconstructed with ease in all cases except those in
which

(2.1) B2 has exactly two edges E2 and E2 e $c,

(2.2) The circumference of T — Ex meets four edges and,

(2.3) T- E2=T- E'2.

In all other cases, one radial branch Bi (/ = 1,2) of T can be
identified immediately, and this uniquely determines Bt — Et. Now B3_t

can be identified in T — Et.
Suppose that T satisfies (2.1)-(2.3). Under the isomorphism (2.3), the

center and the radial branches of T — E2 correspond to the center and the
radial branches of T — E2. This implies that

Bλ = Bλ and B2 - E2 = B2 - E'2,

or

JBJ = B2 — E2 and B2 — E2 = Bγ.

In either case B2 - E2 = B2 — E2. Without loss of generality we can
assume that under the isomorphism (2.3), Ex in T — E2 is isomorphic to
Ex in T — E2, and if we restrict the isomorphism (2.3) to T — Ev then we
see that

{T-Eι)-E2 = {T-Eι)-E>2.

Let E[ and E" denote the two hyperedges of Bλ — Ex that meet the
circumference of T - Ev If (T - Eλ) - E[£(T - Eλ) - E{\ then B2 can
be identified in T — Ev Therefore, let us suppose that in addition to
(2Λ)-(2.3), Γ satisfies

(2.4) (T - Eλ) - E{ s (Γ - Ex) - E{\

If the two radial branches of T - Ex are isomoφhic, then T can be
reconstructed immediately by joining an appropriate edge to any one of
the four edges that meet the circumference of T — Ev The edge that must
be added to T — Eλ can be determined by comparing the four edges
mentioned above with the two edges that meet the circumference in
T - E2.

Now suppose that the radial branches of T — Ex are not isomorphic.
Let D = {E{, Fv F2,...,Fs9 E'2) denote the Diameter of T - E2 that
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connects E[ and E2. T — E2 can be derived from T — Eλ by joining Ex to

one end of D and removing the edge that is isomorphic to the other end of

D from T — Ev This can be done in two ways and leads to two hypertrees

with unique Diameters

( F Ff F F F F'\

and

{E[9 Fl9 F2,...,Fs9 E2, Ey).

If these two hypertrees are isomorphic, then their Diameters are also

isomorphic. Hence Ex = E2 = Fλ = F2 — = E2 = Ev or Ex = Ev E[

= E2, and Fι = Fs_v The first case is impossible because it implies that

the two hypertrees consist only of the Diameters. In the second case, the

isomorphism between the two hyperetrees induces the isomorphism

((T - Et) - E2) -E>2 = ((T - EJ - E[') - E[.

But this in turn implies that T — Ex has isomorphic radial branches which

contradicts the first sentence of this paragraph. Thus there is only one way

of transforming T — Ex into T — E29 and this leads to a unique recon-

struction of T.

3. If | ^ c | = 2, then T has a unique Diameter. Let us denote the

sequence of edges in the Diameter of T by {Ev E2,...,Ed). If T — Eλ

does not have a unique Diameter, then the radial branch of T that

contains Ed can be identified in T — Ev and then the radial branch that

contains Eλ can be identified in T — Ed. This determines the edge Ev and

now Γcan be reconstructed directly from T — Ev

Now suppose that T — Eλ and T — Ed have unique Diameters. T can

be reconstructed by superimposing the two maximal hypertrees in such a

way that the two Diameters together yield the Diameter of T. This can be

done in at most four ways.

(3 1) Ex,E2,...,Ed_x
V } F F F

XL2,. . . ,E.d_χ,Γ.d

^ ' F F F
n2, /^3, . . ^ d

Ed,...,E3, E2
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One of these superpositions is always possible. Let us assume that the
Diameter of the two maximal sub-hypertrees are labeled so that one
superposition is represented by (3.1). If the two hypertrees can also be
superimposed as indicated by (3.2), then Ex s E3 s E5 s , and Eι =
E2 = E3 = . Moreover, T can have no side branches in this case,
because E2 and Ed_ x are connected to only two other edges. If T is even,
the terminal edges of both T — Ex and T — Ed are isomorphic. Thus both
superpositions of T — Ex and T — Ed lead to the same result. If T is odd,
then T — Ex = T — Ed, and the terminal edges of T — Eλ need not be
isomorphic. Thus the two superpositions of T — Eλ and T — Ed will lead
to different hypertrees if the terminal edges of T — Ex are not isomorphic.

If the two hypertrees can be superimposed as indicated by (3.3), then
Ei = Ed+2-i9 1 < i < d. this implies that there exists an automorphism of
T — Ex that reverses its Diameter, and therefore both superpositions lead
toΓ.

If the two hypertrees can be superimposed as indicated by (3.4), then
Ef = Ed_i9 1 < i < d. This implies that there exists an automorphism of
T — Ed that reverses its Diameter, and therefore both superpositions lead
toΓ.

If the two hypertrees can be superimposed as indicated by (3.4), then
Ei = Ed_r 1 < i < d.Ύhis implies that there exists an automorphism of
T — Ed that reverses its Diameter, and therefore both superpositions lead
toΓ.

5. Concluding remarks. It should be clear that vertex-reconstruc-
tion for hypergraphs is not a generalization of graph reconstruction in the
sense of Conjecture 2, because the removal of a vertex from a hypergraph
does not necessarily eliminate any edges. In fact, the edges of H — x are
obtained from the edges of H by eliminating x from the edges that contain
it. On the other hand, edge-reconstruction of hypergraphs is a generaliza-
tion of graph reconstruction in the sense of Conjecture 3, provided we
ignore isolated vertices.

Reconstruction in the sense of Conjecture 2 can be extended to
hypergraphs as follows: H = (X, <f) be a hypergraph, and let Xx = X —
{*}, δx = {E €Ξ S\x <£ E}9 and Hx = (Xχ9 Sx). The partial hypergraphs
Hx are maximal in the sense that Sx is the minimal subset of $ whose
elements don't contain x. Let us call a hypergraph H strongly reconstruct-
ible if it is uniquely determined by its partial hypergraphs in Hx.

Finally we point out that, as for graphs, it can be shown that every
regular hypergraph with at least four edges is edge-reconstructible, and
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consequently, every uniform hypergraph with at least four vertices is
vertex-reconstructible. This leads us to suspect that the following conjec-
ture is true:

Conjecture 4. Every uniform hypergraph of order n > 4, is strongly
reconstructible.
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