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UTTERLY INTEGER VALUED
ENTIRE FUNCTIONS (I)

DAIHACHIRO SATO

In Loving Memory of Ernst G. Straus

An entire function/(z) is called utterly integer valued if f(x) and all
its derivatives assume integer values for all integer z. A historical survey
of the theory of such functions is given, and a new class of them is
constructed. There is no utterly integer valued entire functions of finite
order except polynomials.

1. Introduction. G. Pόlya [21-23] studied entire functions which
take integral values at ail nonnegative integral points. This is generally
considered to be the origin of the research on arithmetic properties of
analytic functions. Unless otherwise stated, a "function" in this paper
means an analytic (entire) functin of a complex variable.

A function w = f(z) is called an integer valued function if /(/) =
integer for / = 0,1,2,... [21]. A function/(z) is called a completely integer
valued function if /(/) = integer for / = 0, ± 1 , ± 2 , . . . [9, 23]. A function
f{z) is called a q-fold integer valued function if f{z) and its derivatives
/'(z), ///(z),...,/(<5r~1)(z) are all integer valued [28, 30]. On the other
hand, a Hurwitz function is defined to be a function/(z) which together
with all its derivatives assumes integral values at the origin z = 0, [32-35].
If the function /(z) and all its derivatives assume integral values at k
consecutive integral points, say z = 0,1,2,... ,k — 1, then/(z) is called a
k-point Hurwitz function [36-37, 40-44]. These concepts of integral valued
functions lead to the following

DEFINITION. Given two sets S and T of complex numbers, we say that
a function /(z) is infinitely T-valued at S, if the function and all its
derivatives assume values in T at all points of the set S.

Here S is called the set of interpolation and T is called the value set. An
infinitely T-valued function is called an utterly T-valued function if the set
of interpolation S is unbounded. In particular, if S and T are the set of all
rational integers, or the sets of all algebraic integers in a fixed imaginary
quadratic number field K, then we say that an utterly Γ-valued function at
S is an utterly K-integer valued function.
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In this paper, the set of all utterly integer valued functions is denoted
by °U.

Since Pόlya's original paper of 1915, properties of (finitely) integer
valued functions have been studied to a considerable extent. However,
research on infinitely integer valued functions such as /c-point Hurwitz
functions with k > 2 was originated by E. G. Straus in 1950 [41]. After his
paper on the arithmetic properties of &-point Hurwitz functions appeared,
many generalizations and refinements followed. The later papers deal with
infinitely T-valued functions with various different sets S and T. Most of
this research was, however, restricted to those cases where the set of
inteφolation S is a finite (hence bounded) set of points. The study of the
set of utterly integer valued functions other than polynomials seems to be
much less complete.

This paper is the first of several reports on the set of utterly integer
valued transcendental functions. We start by giving simple examples of
such transcendental functions and discuss their significance with respect
to the analytic-arithmetic properties which are similar to those already
obtained for the various integer valued transcendental functions. The
constructioin of such functions in §§3 and 4 answers affirmatively the
question posed by E. G. Straus in 1951 [6].

2. Survey of present knowledge. We deal with an entire function
w = f(z); let M(r) be the maximum modulus of /(z) on the circle \z\ = r.
The order p of f(z) is defined by

/Ί\ r loglog M(r)

(1) p = lim sup * v ,

and when 0 < p < oo, the type σ of f(z) is defined to be

(2) σ = lim sup p

r->oo r

The order p and the type σ are analogues of the concept of the degree

N = lim sup (log M(r ))/(log r)
and the size of the leading coefficient L = limsupr_^00M(r)/r7V of a
polynomial. These quantities N, L, p and σ measure the rate of growth of
the function/(z) when \z\ -> oo [46]. If the order p is finite, then we say
that the function is of finite order, and in particular when the order is
p = 1, f(z) is said to be of exponential order.

The original result of G. Pόlya [21] states that among all integer
valued transcendental functions, that of the least rate of growth is given
by the exponential function/(z) = V. More precisely, an integer valued
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function/(z) is a polynomial if its order is p < 1 or if it is has order p = 1
and type σ < log 2. This theorem has inspired many further results.
Although the number 2 here cannot be replaced by anything larger, a
slightly larger rate of growth for/(z) still allows only a very restricted
class of integer valued functions [9, 24-26]. The corresponding growth
rate for completely integer valued transcendental functions is attained by
the function

instead of 2Z. The completely integer valued transcendental function (3) is
of exponential order with type σ = log((3 + ^5~)/2), below which one
finds no such transcendental functions. The transcendental Hurwitz func-
tion of the least possible order and type is given by/(z) = e\ which is of
order p = 1 and tye σ = 1 [32, 34, 35].

The construction of various integer valued transcendental function of
least possible order and type and the determination of the least upper
bound for the order and/or type of such functions below which one finds
only polynomials is one of the fundamental studies of arithmetic proper-
ties of analytic functions. Gelfond [28] has shown that the g-fold integer
valued transcendental functions must have order p > 1, and if p = 1, then
the type must be at least σ = #log(l + exp((l — q)/q)). In the case
q = 1, the example/(z) = 2Z shows that this bound for the type σ is best
possible [30].

The set of fc-point Hurwitz functions for k > 2 is a more restrictive
set of functions, because the values of all higher derivatives of the function
f(z) at any one point of the set of interpolation uniquely determine the
values of the entire function/(z) and all its higher derivatives/(m)(z) at
any other point of the complex plane. There is no fc-point Hurwitz
function of exponential order if k > 2 [35-42]. A theorem of Straus
[41] states that every &-point Hurwitz function must be either a polyno-
mial, or of order p > k. If the order is p = k, then its type σ must be
> l/((k - I)!) 2. The example of the /c-point transcendental Hurwitz
function/(z) = exp(z(z - l)(z — 2) (z — k + 1)), having order p = k
and type σ = 1, shows that the bound for the order p > k given by Straus
is best possible. Some improvement of the bound for the type σ was
obtained by D. Sato [40]. The basis of the differential ring of utterly
integer valued polynomials [6] gives a simple example of &-point Hurwitz
transcendental functions which have order p = k and type

"*- Π p[k"]/k\.
p = prime
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This is attained by the function

(4) /(z) = exp( Π
\ p = prime

Note that σk < 1 for k = 4, 5, 6,... [44]. Less simple, but arithmetically
more significant constructions are given in [38-40].

One of the immediate but important consequences of the theorems on
/c-point Hurwitz functions is the following.

COROLLARY. There is no utterly integer valued transcendental entire
function of finite order.

This is probably the reason Straus conjectured once that there would
be no utterly integer valued transcendental functions at all [6].

It is to be noted that Φ, the family of all utterly integer valued
functions, forms a ring which is not only closed under differentiation but
also closed under composition. Does there exist a function f(z) e °ll
which is not a polynomial? Straus asked this question just after the
complete characterization of the composition-closed differential ring <%p of
utterly integer valued polynomials was established. If <%p = °U, then the
structure of °ll is now known. If °llp Φ °U, then what is the analytic-arith-
metic structures of ^? This is an interesting and challenging problem.

We now know, and Straus himself knew, that °U — °Up Φ 0 and that a
nondenumerable subset of transcendental functions in 4ί exists. It can be
constructed using the method of generalized interpolation by analytic
functions developed by Straus and Sato [47, 48]. However, to the best of
the present author's knowledge, no simple concrete examples of such
transcendental analytic functions f(z) e °ll have appeared in the litera-
ture. A construction of such concrete examples can be made by the
composition of an ordinarily interpolated function of exponential order
and the periodic integer valued function w = sin(2τrz) or w = sin(7rz), both
of which have zeros for all integral values of z.

3. Utterly integer valued entire functions. The following construc-
tion probably gives the simplest transcendental functions in ^ί.

THEOREM. There exists a non-denumerable set of utterly integer valued
transcendental entire functions.

Proof. Let

(5) f(z)= Σ>>n«(2τrz).
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We want to determine the coefficients an Φ 0 in (5) in such a way that
f(z) e <%. Let aQ = 1; then /(/)== 1 for all integral values of /. We
determine an successively by induction. Since sin(2ττ/) = 0 for all integers
/, we have

(6) = ann\cosn(2πl) -(2τr)n + R(n)9

where R(n) is the sum of the terms which involve a0, av...,an_ι. Note
that R(n) is independent of the particular choices of the integer /. In order
to make \an\ Φ 0, but small enough so that the function (5) becomes
entire, we take the value f(n)(l) close to R(n), but not equal to it. For
example, with the fixed number B > 3, we may choose/(w)(/) to be the
integer / ( n ) (/) = [R(n)] + b, where b is any integer such that 2 < b < B.
Here [x] is the largest integer not exceeding x. For any choice of the value
of f{n\l) in such a manner, we have 1 < \f(n)(l) - R(n)\ < b < B, and
we get the estimate

(7) 1 ^
n\(2v)n <aJ< n\(2π)n'

Now the series (5) having the coefficients \an\ in (7) converges for all
values of \z\ < oo, since

(8) ansin"(2πz)

sin(2irz)

k | |sin(2τrz)f

sin(2τrz)
2ττ

The function (5) cannot be a polynomial since the \an\ were chosen to
be nonzero, and it is clear from the construction that f(z) e <%. In the
process of the construction we have allowed some freedom so that there
are at least two possible choices for an at each step of the selection of
/ ( / 7 ) (/). We conclude therefore, that the cardinality of the subset of such
functions in ^has the power of the continuum.

Combining this theorem with the corollary given in §2, we get the
following:

THEOREM. All utterly integer valued transcendental entire functions must
be of infinite order.

Several refinements and generalizations of this theorem will be dis-
cussed in the later reports.
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