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PRIMES OF THE FORM [nc]

G. KOLESNIK

Dedicated to the memory of Ernst G. Straus

Methods of Vinogradov for estimating exponential sums over primes
are modified and made easier to use. Comparisons are made with
approaches of Heath-Brown and Vaughan.

l Introduction. In 1939 I. M. Vinogradov developed a method of
estimating exponential sums over primes. His method reduces the estima-
tion of a sum S = Σp<NF(p) to the estimation of sums of type 1,

Σ «(*) Σ F(xy),
X<x<2X Y<y<Yι

xy<N

where Yγ < 2Y, 7 is large, and sums of type 2,

Σ a(x) Σ b(y)F(xy),
X<x<2X Y<y<2Y

xy<N

where X and Y are large.
R. C. Vaughan proved an identity which allows one to express S as

the sum of type 1 and type 2 sums:

Σ A(n)F(n) = Sι-S2-S3,
V<n<X

where

Sj= Σ Σ μ(d)logkF(dk);
d<U k<X/d

S2= Σ a(k) Σ F{kr),
k<UV r<X/k

with

«(*)- Σ μ(d)Λ(n);
d<V,n<V

dn = k

and

= Σ Σ Λ(Π)
m>U V<n<X/n

Σ μ{d)\F{mn),
d\m I

d<U
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where U and V are parameters, to be chosen to our advantage. Here S3 is

a type 2 sum, S2 is of type 1 and St can easily be reduced to a type 1 sum.

D. R. Heath-Brown has proved [1] another identity, which allows one to

use parameters better. He proved that if F(x) is a function supported in

[N/2, N], and U, V9 Z are parameters satisfying 3<U<V<Z<N,

z > 4t/ 2, N > 64Z2U, V3 > 327V, then

(1) £ A ( Λ ) F ( Λ ) <£ msix\F(n)\+ KlogN + Llog2N,
n

where

K=Σa(m) Σ F{rnn)
m n> Z

is a type 1 sum, and

L = I^(m) Σ b(n)F(mn)
m U<n<V

is a type 2 sum. Using the above inequality, he proved that

for c < 755/662, where πc(X) is the number of n < X for which [nc] is a

prime. The above result extends a previously known result for which the

above formula for πc(X) holds. The identities of Vaughan and Heath-

Brown are easy to use, while the original method of Vinogradov needs

some combinatorial arguments. However, using Vinogradov's idea, we can

prove the following:

LEMMA 1. Let α, δ, ε be positive numbers with 8 < 1/2 and ε small, and

let Nl9 N < 2Nλ be large numbers. Let F(x) be a function supported in

[Nl9N],F(x) <£ hand let

σ<Nδ

a(x) Σ b(y)F(xyσ2)
X/σ<x<2X/σ Y/σ<y<2Y/σ

where the maximum is taken over \a(x)\ < 1,|6(^)| < 1 , I G [Na, Na+δ+ε]
XY = Nv Furthermore, let

Kι = K(a, δ, F) = max Σ a{xn)F{xι xn)

the maximum being taken over all n < [1/8] + 1, all \a(x)\ < 1, and over

all subdomains 2) of {x\Xj < Xj < 2Xp j = 1,... ,n) with the following

restrictions:

(i) Xx • • • Xn = N,, Xn > N«, X, > X2 > • • • > Xn_x > Ns;
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{li) for any {jx,...,jk} c {l,...,n}

Xλ • • • Xjk « [ # α , JV"+δ] U [N1-"-8, Nl~a]

(iii) i//or some { y x , . . . j , } c { 1 , . . . , « - 1}

* Λ ••• Xj,< N»+s+\ then Xh XjXn < N*.

Let also

M = max Σ rmn [K(al9 δl9 Fx) + L(al9 δl9 Fλ)]
N28<Q0<N QQ<q<2Q0 «i *i

where Fλ(x) = F(qx), the last sum is taken over powerful q with (q, P) = 1.
Then

Here K1 can be treated as a type 1 sum, and in some cases one can
take advantage of the sum over all variables; L1 is the sum of type 2 sums,
and, in fact, the main contribution comes from small σ so that L1 is
estimated similarly to L in Heath-Brown's identity. While, as Heath-Brown
pointed out, his identity has sometimes an advantage over the identity of
Vaughan, his conditions on U9 V, Z can be occasionally too restrictive
(say, the conditions U <^ ]V1/5, V » Nι/3; note however that in his
recent paper. "Prime numbers in short intervals and a generalized Vaughan
identity", D. R. Heath-Brown proved a new identity which has no such
disadvantages; his new identity is essentially similar to Lemma 1 of this
paper).

The lemma has no such restrictions. Also, the type 1 sum K1 is in fact
a multiple sum which can in some cases be estimated better than the type
1 sums in the methods of Vaughan and Heath-Brown described above.
This happens, for example, if F(x) = e(/(jc)), where/(x) grows relatively
slowly so that one can apply the Poisson summation formula to the type 1
sum. If we take δ > α, β 4- δ > 1/3, then L1 is essentially similar to
Heath-Brown's L, and Kι is "better" (in the sense mentioned above) than
the K in Heath-Brown's method. Applied to the Pyatetsky-Shapiro prime
number theorem, both Lemma 1 and Heath-Brown's identity (1) lead to
the following result:

THEOREM. Let c be a constant < 39/34. Then πc(X) = X/(c\og X) -f
O(X/\og2X).

As Heath-Brown mentioned in his paper, one can write an asymptotic
formula for πc( X) which is similar to the known formula for π(X). The
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Theorem improves slightly the result of D. R. Heath-Brown. The improve-
ment is obtained by using our estimation of multiple sums (Lemma 4
below).

2. Notation. Since the Theorem is proved [1] for c < 755/662, we
assume that 755/662 < c < 39/34; γ = \/c. As usual, f(x) <̂ c g(x)
means that |/(x) | «c xεg(x); f(x) = g(x) means that \f(x)\ = O(\g(x)\)
and|g(x)| = O(\f(x)\)'J(x)Kg(x) means that

for all / for which the statement makes sense; /?, pj are primes.

3. The main results. To prove Lemma 1, we use the ideas of I. M.
Vinogradov [3]. We can obviously assume that a + δ < 1, otherwise
Σx « L. Let

P= Π P\ Q= Π P;
p<N8 Nδ<p<N

Σ * = ^ f Σ ^ ( / Ί •••/'*), Wk= Σ F{yι-- y k ) ,
P\ • - Pk\Q y\ •• • yk\Q

where p., y- of the above sums Σ^, Wk range independently over the
interval [1, N]; Wkι(q) = Σ n F(yλ ykq), where q is powerful and
the sum is taken over yy such that p\yj implies p\Q, p\q\ F(x) = 0 for
x £ [N/2, N]; r0 = [1/δ] if {1/δ} Φ 0 and r0 = 1/δ - 1 otherwise. As
in Theorem 3 of [3], page 156, we use the identities Wr = rΣλ + r2Σ2 +
• + rr°Σr (r = 1,2,.. .,r0) to express Σλ as a linear combination of
Wl9...,Wro°soihat

| Σ 1 | « | ϊ ^ L | + ••• +\Wrj<^ max\Wk

Using induction on r0, one can show that

P\Q / = 2

r

+ Σ Σ c(j1,j2,k)wkΛ(pίpί)+ •

+ Σ Σ c{j1,...jro,k)wk<ι(pf
Pi 'l

so that
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Here for P(q) = PΠplgp we have

441

q y

«Σ

dl9...,dk\P(q)

di, ,dk\P

and

max max
k V D

Σ μ(dk)

c m 1 ••• m k )

ti(dk)F{dι dkmι - mk)

+ max m a x

u (d,m)sD

• F{qdx ••• dkmx ••• mk)

where the maxima are taken over Qo e [N2S, N] and D of the form

D = { (d, m)\Xx <mx< 2Xx,...,Xk < mk< 2Xk,dx\P,...,dk\P).

We will show that the first sum is « κ Kι + L1; the proof that the

second sum is

cases

l.Xλ-

Here dx •

M can be obtained similarly. We consider the following

Xk>

ike[Xk+x,2
h+ιXk+1], where

If for some {71 ?...j;} c (l,...,fc + 1} we have XJχ Xjt e [Na, Na+δ]

U ], then we write x = m. m,, v —
mk/x and get Σ x < ^ L1 + M; otherwise we denote by / the number such

that Xλ > X2 > • • • >X,>Nδ>Xι+1>- - >Xk. Here Xx

Nι~a, because otherwise we would have, for some j > I, Xx

X, >

^ Nι-a]m I f f o r s o m e

< Na+δ, then XΛ XjXι+ι ••

XJιX/+1

have XΛ

XhXk < Na (otherwise either XJχ

[Na, Na+δ] or Xλ XjXι+ι - Xn e [Λ^α, Na+δ] for some Λ e [/ +

1, ik]) and, similarly, XΛ XJtXι+ι ^ + 1 > ΛfΛ+δ. Using the argu-

ment similar to case 2 below, we obtain Σ x < ^ L1 + M .
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2. Xλ ••• Xk <N1-*-8.

Using Lemma 5 of [3], page 144, we divide the set of all integers dj\P

(j = 1,...,/:) into <c Nε subsets such that for any subset there exist
numbers φ l 9 . . . ,φk such that φy < dj < φ } + \ where h is a small positive
number. Also, since every subset consists of some squarefree numbers
having the same number of prime divisors (see [3]), for every subset
μ{dλ) ••• μ(dk) = const. This divides the sum

Σ μ(<*i) μ(dk)F(dx • dkmx mk)S =

into <c N€ subsums. Taking the largest subsum So which corresponds to
the subset <@0, we get

Σ Σ dkm1 ' - mk)

where m = (rnv...,mk\ mj e [ XJ92Xj) (j = l , . . . , fc) , ^ = (dl9...,dk),

dj e [φy, φy

1 + Λ] (7 = 1,... , ^ ) . We assume SO ̂  0. Here φ x φk > Na,
since otherwise

N/2

φq> Na. If φλ - - - φq <

^ m j mk and, since

dι ' dkmι mk<Na

Let # be the smallest integer such that φ x

Na+δ, then we write x = dλ dq,y = dq+ι -

Na<Ψι ' φq<dι-" dq<(Ψl'" φq)
1+h <

we get Σ L ^ c S < ĉ 5 0 < ĉ L1. Now we assume that φL φq

take γ defined by Na~y = φλ φ j and use part (ii) of Lemma 5, [3],
page 144 to show that there exist two sequences (u) and (v) such that
Ny < u < Ny+δ+h for all u e (w), and such that the products uυ with
(u, v) = I, uv < N comprise precisely the numbers dq of the subset, each
repeated the same number of times. We obtain:

> Na+S. We

dι,...,dq_

q_ι

Σ Σ Σ Σ
>e(i;) u<=(u) dq+ι,...,dkm m

F(dl • • • dq-lMdq+l • • • m

Σ Σ Σ

<Σ Σ Σ
d,m

dq_xuυσ2dq+1 • • • dkmx • • •m
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Writing dx • dq_1u = x, υdq+1 • • • dkmι • •• mk= y, we get σx >

σx < [φ^" φq_

if h < ε/2, so that

σ xyy

This proves Lemma 1.

We also need five more Lemmas. Lemma 2 is the Poisson summation

formula (see, for example, Lemma 6 of [1], or Lemma 1 of [2]); Lemma 3

is WeyΓs inequality (see Lemma 5 of [1] or Lemma 2 of [2]); Lemma 4 is

Theorem 2 of [2]; Lemma 5 can be proved similarly to Lemma 4 of [1] (in

fact, 5γ — 4 can be replaced with 5γ — 4 -f (1 — γ)/48, which, however,

does not lead to any improvement for πc( X) because our Lemma 6 is not

good enough). Improving Lemma 6, one might hope to extend the

boundary for c to c < 239/207 (instead of c < 15/13, which is the best

one can obtain by using Heath-Brown's identity).

LEMMA 2. Let q < a < b < 2a. Let f(x) be a real function such that

f"(x) ss M~ι for x <Ξ [a, b]\ f(z) be analytic for Z G { Z | V X G [α, b],

\z - x\ < (c^M\o%b). Let f'(a) = α, f'(b) = /?, and define xn for n e

Σ e(f(x))= Σ [f"(Xn)Y1/2e(\+f(xΛ)-nxH
a<x<b a<n<β ^

LEMMA 3. Let I be a subinterval of (X92X ], and let Q be a positive

number. Let zn be complex numbers. Then

Σ z / ^ i + xρ-1) Σ (1-kκr1) Σ zHzκ+1.
n&ϊ \q\<Q n

LEMMA 4. Let α, Ŝ, γ be real numbers, aβy(a - l)(β - l)(γ - 1)

-(a 4- β + γ - l)(α 4 β - γ - 2) Φ 0, and let X > Y > Z, XYZ = iV.

L ^ 9 be a subdomain of {(*, j , z) |X < x < 2AT, 7 < j ; < 2Y, Z <

z < 2Z} , bounded by O(l) algebraic curves, and let f(x, y, z) be a real C°°
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function such that f(x, y, z) A FX-aY'βZ'ΎxayβzΎ throughout 3). Then

(A, v,

N{ FN~ι + Z1

LEMMA 5. Let L be the type 2 sum from Lemma 1 with F(x) = e(hxΎ)

Let η > 0 be a sufficiently small constant. Then L <c Nι~η/Ί.

Proof. To prove the Lemma, we use Heath-Brown's estimate for a

fixed σ from his Lemma 4 and, summing over σ, obtain the needed result.

LEMMA 6. Let α,, βJ9 An By > 0, J5 > v4 > 0,

I ^ / A : " " ' -f Σ ^ . B x ^ . Then

M = max /(x)
Λ <x<B

a' 4-

f(x) =

Σ Af^' + ΪB;'/"

This Lemma can be easily proved by induction on (m, n).

LEMMA 7. Let H = N1 ~Ύlog3 TV, TV/2 < Nλ < N,

s= Σ Σ
l<h<H X<x<2X

S «$c NH(Y~3/S + X~1/2 +(XY4)

Proof. We apply Lemma 3 to get

2

(1) \S\2 «: HXΣ Σe(hxΎyy)
h,x y

Q

Y<y<2Y
N}<xy<N

4 λ-l/18 + ^-47/360^

H2N2/Q + HNQ

H2N2/Q

-1 Σ ΣΣe{f(x,y,q))
q=l h x,y

Σ Σe(f(x,y,q))
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where 1 < Hx < Q/2; Q <̂  Y is a parameter to be defined later;
f(x, y9 q)KyhqxΊyΊ~ι = hHλΉ

Ί/Ύ = F with Δ = Hλ/Y. Next we apply
Lemma 2 to the sum over x and y successively and Abel's summation
formula:

(3) ^Σ Σe(f(x,y,q))
q x,y

= Σ
q,y \ n

g +f(χn,y,q) -nχ

+ O(XF-1/2 logiV)

ZΣe{fM,q,y))
1,n y

+ NHι(hH1N
y/Y)'1/2

H,Y

X{hHxN

ΣΣ
q,n m

9 /
-mym)

+ Y •(hH1N
y/Y)~1/2 + log

'l/2+ NH1(hHιN
Ύ/Y)'l/2 + HXY

e(g(m,n,q)j

YHX

where/x(«, q, y) =f(xn, y, q) - nxn,

g(m,n,q) =fι{n,q,ym) - mymKc0<fnma"{qh)βi s F,

c0 is a constant, ax = -γ/(2 - 2γ), ̂  = 1/2 - «j, m = hH1N
Ύ~1 = Mv

n = hH1N
ΎY'2 = M2. Now we apply Lemma 3 with an appropriate Qλ

and Lemma 2 to the sum over n to get

(4)

Qι

«

q,m h
qv q) - g(m, n, q))

(continues)
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Σ l V Γ / i
Qi

Σ
q,m

, nv,

+ θ(F'1/2M2 + logN)

;1 +(H1M1M2)
2(F)-1/2

Σ Σ
q,m v

where y s F Ξ qιY/M2, Qx <c M2,

, m, v)Διc1υ
ι/3qϊ/3m2a) q λ / 2

Δx = Hλ/Y + q1/M2. Using Lemma 4 to estimate the last sum over #, m,
u, we get

q,m,v

xHγyγ + iff1 + Mf1 + F ' 1 ^(//iMi

4-

1/8̂ /2

Substituting this into (3), we choose Qλ (using Lemma 6) to minimize the
obtained expression; then we substitute the obtained estimate into (2) and
(1) and, choose (using Lemma 6) Q to our advantage, we complete the
proof of the lemma.

Now we can prove the Theorem. As in [1], it suffices to prove (using
Abel's formula) that

(5)

where

So= Σ
l<h<H

N(logN) ,

H =
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While the formulation of Lemma 1 is slightly longer than (1), the

application is not more difficult, and we will use it to prove (5). We take

α = 1 — γ + η, α + δ = 5 γ - 4 — η, where η is sufficiently small, and

use Lemma 1:

According to Lemma 5, L <̂ c iV1~η/7, and we need to estimate K. Here

a + 8 > 14/39 — η so that n from Lemma 1 is equal to 2 or 3. If « = 3,

then Xλ > N(y-η)/2, X2 > N5^4'71, and, denoting y = xl9 x = x2x3, we

use Lemma 7 to get

ς 3 ' * + ( x 2 x 3 y 1 / 2 ι + { x ? x 2 x 3 y 1 / u + j v )

if η is small. If n = 2, then we use van der Corput's estimate (or Lemma 2

and a trivial estimate of the right-hand side sum) and obtain

x,sX,h xΊ

Nι~y+ι/2X2
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