PRIMES OF THE FORM [n^{c}]

G. Kolesnik
Dedicated to the memory of Ernst G. Straus

Methods of Vinogradov for estimating exponential sums over primes are modified and made easier to use. Comparisons are made with approaches of Heath-Brown and Vaughan.

1. Introduction. In 1939 I. M. Vinogradov developed a method of estimating exponential sums over primes. His method reduces the estimation of a sum $S=\Sigma_{p \leq N} F(p)$ to the estimation of sums of type 1 ,

$$
\sum_{X \leq x \leq 2 X} a(x) \sum_{\substack{Y<y \leq Y_{1} \\ x y \leq N}} F(x y)
$$

where $Y_{1} \leq 2 Y, Y$ is large, and sums of type 2,

$$
\sum_{X \leq x \leq 2 X} a(x) \sum_{\substack{Y \leq y \leq 2 Y \\ x y \leq N}} b(y) F(x y)
$$

where X and Y are large.
R. C. Vaughan proved an identity which allows one to express S as the sum of type 1 and type 2 sums:

$$
\sum_{V \leq n \leq X} \Lambda(n) F(n)=S_{1}-S_{2}-S_{3}
$$

where

$$
\begin{aligned}
S_{1} & =\sum_{d \leq U} \sum_{k \leq X / d} \mu(d) \log k F(d k) \\
S_{2} & =\sum_{k \leq U V} a(k) \sum_{r \leq X / k} F(k r)
\end{aligned}
$$

with

$$
a(k)=\sum_{\substack{d \leq U, n \leq V \\ d n=K}} \mu(d) \Lambda(n)
$$

and

$$
S_{3}=\sum_{m>U} \sum_{V \leq n \leq X / n} \Lambda(n)\left(\sum_{\substack{d \mid m \\ d \leq U}} \mu(d)\right) F(m n)
$$

where U and V are parameters, to be chosen to our advantage. Here S_{3} is a type 2 sum, S_{2} is of type 1 and S_{1} can easily be reduced to a type 1 sum. D. R. Heath-Brown has proved [1] another identity, which allows one to use parameters better. He proved that if $F(x)$ is a function supported in $[N / 2, N]$, and U, V, Z are parameters satisfying $3 \leq U<V<Z<N$, $z \geq 4 U^{2}, N \geq 64 Z^{2} U, V^{3} \geq 32 N$, then

$$
\begin{equation*}
\left|\sum_{n} \Lambda(n) F(n)\right| \ll \max |F(n)|+K \log N+L \log ^{2} N \tag{1}
\end{equation*}
$$

where

$$
K=\sum_{m} a(m) \sum_{n>Z} F(m n)
$$

is a type 1 sum, and

$$
L=\sum_{m} a(m) \sum_{U<n<V} b(n) F(m n)
$$

is a type 2 sum. Using the above inequality, he proved that

$$
\pi_{c}(X)=\frac{X}{c \log X}+O\left(X / \log ^{2} X\right)
$$

for $c<755 / 662$, where $\pi_{c}(X)$ is the number of $n \leq X$ for which [n^{c}] is a prime. The above result extends a previously known result for which the above formula for $\pi_{c}(X)$ holds. The identities of Vaughan and HeathBrown are easy to use, while the original method of Vinogradov needs some combinatorial arguments. However, using Vinogradov's idea, we can prove the following:

Lemma 1. Let $\alpha, \delta, \varepsilon$ be positive numbers with $\delta \leq 1 / 2$ and ε small, and let $N_{1}, N \leq 2 N_{1}$ be large numbers. Let $F(x)$ be a function supported in $\left[N_{1}, N\right], F(x) \ll 1$, and let

$$
L^{1}=\max \sum_{\sigma \leq N^{\delta}}\left|\sum_{X / \sigma \leq x \leq 2 X / \sigma} a(x) \sum_{Y / \sigma \leq y \leq 2 Y / \sigma} b(y) F\left(x y \sigma^{2}\right)\right|
$$

where the maximum is taken over $|a(x)| \leq 1,|b(y)| \leq 1, X \in\left[N^{\alpha}, N^{\alpha+\delta+\varepsilon}\right]$, $X Y=N_{1}$. Furthermore, let

$$
K^{1}=K(\alpha, \delta, F)=\max \left|\sum_{x \in \mathscr{D}} a\left(x_{n}\right) F\left(x_{1} \cdots x_{n}\right)\right|
$$

the maximum being taken over all $n \leq[1 / \delta]+1$, all $|a(x)| \leq 1$, and over all subdomains \mathscr{D} of $\left\{x \mid X_{j} \leq x_{j} \leq 2 X_{j}, j=1, \ldots, n\right\}$ with the following restrictions:
(i) $X_{1} \cdots X_{n}=N_{1}, X_{n} \geq N^{\alpha}, X_{1} \geq X_{2} \geq \cdots \geq X_{n-1} \geq N^{\delta}$;
(ii) for any $\left\{j_{1}, \ldots, j_{k}\right\} \subset\{1, \ldots, n\}$

$$
X_{j_{1}} \cdots X_{j_{k}} \notin\left[N^{\alpha}, N^{\alpha+\delta}\right] \cup\left[N^{1-\alpha-\delta}, N^{1-\alpha}\right]
$$

(iii) if for some $\left\{j_{1}, \ldots, j_{l}\right\} \subset\{1, \ldots, n-1\}$

$$
X_{j_{1}} \cdots X_{j_{1}} \leq N^{\alpha+\delta+\varepsilon}, \quad \text { then } X_{j_{1}} \cdots X_{j_{t}} X_{n} \leq N^{\alpha}
$$

Let also

$$
M=\max _{N^{2 \delta} \leq Q_{0} \leq N} \sum_{Q_{0} \leq q \leq 2 Q_{0}} \min _{\alpha_{1}, \delta_{1}}\left[K\left(\alpha_{1}, \delta_{1}, F_{1}\right)+L\left(\alpha_{1}, \delta_{1}, F_{1}\right)\right]
$$

where $F_{1}(x)=F(q x)$, the last sum is taken over powerful q with $(q, P)=1$. Then

$$
\Sigma_{1} \equiv\left|\sum_{p} F(q)\right| \ll(L+K+M) N^{\varepsilon}
$$

Here K^{1} can be treated as a type 1 sum, and in some cases one can take advantage of the sum over all variables; L^{1} is the sum of type 2 sums, and, in fact, the main contribution comes from small σ so that L^{1} is estimated similarly to L in Heath-Brown's identity. While, as Heath-Brown pointed out, his identity has sometimes an advantage over the identity of Vaughan, his conditions on U, V, Z can be occasionally too restrictive (say, the conditions $U \ll N^{1 / 5}, V \gg N^{1 / 3}$; note however that in his recent paper. "Prime numbers in short intervals and a generalized Vaughan identity", D. R. Heath-Brown proved a new identity which has no such disadvantages; his new identity is essentially similar to Lemma 1 of this paper).

The lemma has no such restrictions. Also, the type 1 sum K^{1} is in fact a multiple sum which can in some cases be estimated better than the type 1 sums in the methods of Vaughan and Heath-Brown described above. This happens, for example, if $F(x)=e(f(x))$, where $f(x)$ grows relatively slowly so that one can apply the Poisson summation formula to the type 1 sum. If we take $\delta \geq \alpha, \beta+\delta \geq 1 / 3$, then L^{1} is essentially similar to Heath-Brown's L, and K^{1} is "better" (in the sense mentioned above) than the K in Heath-Brown's method. Applied to the Pyatetsky-Shapiro prime number theorem, both Lemma 1 and Heath-Brown's identity (1) lead to the following result:

Theorem. Let c be a constant $<39 / 34$. Then $\pi_{c}(X)=X /(c \log X)+$ $O\left(X / \log ^{2} X\right)$.

As Heath-Brown mentioned in his paper, one can write an asymptotic formula for $\pi_{c}(X)$ which is similar to the known formula for $\pi(X)$. The

Theorem improves slightly the result of D. R. Heath-Brown. The improvement is obtained by using our estimation of multiple sums (Lemma 4 below).
2. Notation. Since the Theorem is proved [1] for $c<755 / 662$, we assume that $755 / 662 \leq c<39 / 34 ; \gamma=1 / c$. As usual, $f(x) \lll g(x)$ means that $|f(x)| \ll x^{\varepsilon} g(x) ; f(x) \cong g(x)$ means that $|f(x)|=O(|g(x)|)$ and $|g(x)|=O(|f(x)|) ; f(x) \tilde{\Delta} g(x)$ means that

$$
f^{(t)}(x)=g^{(i)}(x)(1+O(\Delta))
$$

for all i for which the statement makes sense; p, p_{j} are primes.
3. The main results. To prove Lemma 1, we use the ideas of I. M. Vinogradov [3]. We can obviously assume that $\alpha+\delta<1$, otherwise $\sum_{1} \ll L$. Let

$$
\begin{gathered}
P=\prod_{p \leq N^{\delta}} p ; \quad Q=\prod_{N^{\delta} \leq p \leq N} p ; \\
\Sigma_{k}=\frac{1}{k!} \sum_{p_{1} \cdots p_{k} \mid Q} F\left(p_{1} \cdots p_{k}\right), \quad W_{k}=\sum_{y_{1} \cdots y_{k} \mid Q} F\left(y_{1} \cdots y_{k}\right),
\end{gathered}
$$

where p_{j}, y_{j} of the above sums \sum_{k}, W_{k} range independently over the interval $[1, N] ; W_{k, 1}(q)=\sum_{y_{1}, \ldots, y_{k}} F\left(y_{1} \cdots y_{k} q\right)$, where q is powerful and the sum is taken over y_{J} such that $p \mid y_{J}$ implies $p|Q, p| q ; F(x)=0$ for $x \notin[N / 2, N] ; r_{0}=[1 / \delta]$ if $\{1 / \delta\} \neq 0$ and $r_{0}=1 / \delta-1$ otherwise. As in Theorem 3 of [3], page 156, we use the identities $W_{r}=r \sum_{1}+r^{2} \sum_{2}+$ $\cdots+r^{r_{0}} \sum_{r_{0}}\left(r=1,2, \ldots, r_{0}\right)$ to express Σ_{1} as a linear combination of $W_{1}, \ldots, W_{r_{0}}$ so that

$$
\left|\Sigma_{1}\right| \ll\left|W_{1}\right|+\cdots+\left|W_{r_{0}}\right| \ll \max _{k}\left|W_{k}\right| .
$$

Using induction on r_{0}, one can show that

$$
\begin{aligned}
W_{k}= & W_{k, 1}(1)+\sum_{p \mid Q} \sum_{j=2}^{r_{0}} C(j, k) W_{k, 1}\left(p^{j}\right) \\
& +\sum_{p_{1} p_{2} \mid Q} \sum_{j_{1}, L_{2}=2}^{r} C\left(j_{1}, j_{2}, k\right) W_{k, 1}\left(p_{1}^{\prime} p_{2}^{\prime}\right)+\cdots \\
& +\sum_{p_{1} \cdots p_{r} \mid Q} \sum_{j_{1}, \ldots, j_{r_{0}}=2}^{r_{0}} C\left(j_{1}, \ldots, j_{r_{0}}, k\right) W_{k, 1}\left(p_{1}^{/_{1}} \cdots p_{r_{0}}^{l_{0}}\right)
\end{aligned}
$$

so that

$$
\Sigma_{1} \lll \max _{k} \sum_{q}\left|W_{k, 1}(q)\right| .
$$

Here for $P(q)=P \Pi_{p \mid q} p$ we have
$\sum_{q}\left|W_{k, 1}(q)\right|$

$$
\begin{aligned}
& =\sum_{q}\left|\sum_{y} F\left(y_{1} \cdots y_{k} q\right) \sum_{d_{1} \mid\left(P(q), y_{1}\right)} \mu\left(d_{1}\right) \cdots \sum_{d_{k} \mid\left(P(q), y_{k}\right)} \mu\left(d_{k}\right)\right| \\
& =\left.\sum_{q}\right|_{d_{1}, \ldots, d_{k} \mid P(q)} \mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right) \sum_{m} F\left(q d_{1} \cdots d_{k} m_{1} \cdots m_{k}\right) \mid \\
& \ll \sum_{q}\left|\sum_{d_{1}, \ldots, d_{k} \mid P} \mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right) \sum_{m} F\left(q d_{1} \cdots d_{k} m_{1} \cdots m_{k}\right)\right|,
\end{aligned}
$$

and

$$
\begin{array}{r}
\Sigma_{1} \lll \max _{k}\left(\max _{D} \sum_{(d, m) \in D} \mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right) F\left(d_{1} \cdots d_{k} m_{1} \cdots m_{k}\right)\right. \\
+\left.\max _{Q_{0}} \sum_{Q_{0} \leq q \leq 2 Q_{0}} \max _{D}\right|_{(d, m) \in D} \mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right) \\
\\
\left.\quad F\left(q d_{1} \cdots d_{k} m_{1} \cdots m_{k}\right) \mid\right)
\end{array}
$$

where the maxima are taken over $Q_{0} \in\left[N^{2 \delta}, N\right]$ and D of the form

$$
D=\left\{(d, m)\left|X_{1} \leq m_{1} \leq 2 X_{1}, \ldots, X_{k} \leq m_{k} \leq 2 X_{k}, d_{1}\right| P, \ldots, d_{k} \mid P\right\}
$$

We will show that the first sum is $\ll K^{1}+L^{1}$; the proof that the second sum is $\ll M$ can be obtained similarly. We consider the following cases

1. $X_{1} \cdots X_{k} \geq N^{1-\alpha-\delta}$.

Here $d_{1} \cdots d_{k} \in\left[X_{k+1}, 2^{k+1} X_{k+1}\right]$, where

$$
X_{k+1}=N\left(2^{k+1} X_{1} \cdots X_{k}\right)^{-1}
$$

If for some $\left\{j_{1}, \ldots, j_{l}\right\} \subset\{1, \ldots, k+1\}$ we have $X_{j_{1}} \cdots X_{j_{t}} \in\left[N^{\alpha}, N^{\alpha+\delta}\right]$ $\cup\left[N^{1-\alpha-\delta}, N^{1-\alpha}\right]$, then we write $x=m_{j_{1}} \cdots m_{j_{i}}, y=d_{1} \cdots d_{k} m_{1} \cdots$ m_{k} / x and get $\Sigma_{1} \lll L^{1}+M$; otherwise we denote by l the number such that $X_{1} \geq X_{2} \geq \cdots \geq X_{l} \geq N^{\delta}>X_{l+1} \geq \cdots \geq X_{k}$. Here $X_{1} \cdots X_{l}>$ $N^{1-\alpha}$, because otherwise we would have, for some $j \geq l, X_{1} \cdots X_{j} \in$ $\left[N^{1-\alpha-\delta}, N^{1-\alpha}\right]$. If for some $\left\{j_{1}, \ldots, j_{l}\right\} \subset\{1, \ldots, l\}$ we have $X_{j_{1}} \cdots X_{j_{t}}$ $\leq N^{\alpha+\delta}$, then $X_{j_{1}} \cdots X_{j_{i}} X_{l+1} \cdots X_{k} \leq N^{\alpha}$ (otherwise either $X_{j_{1}} \cdots X_{j_{i}} \in$ [$\left.N^{\alpha}, N^{\alpha+\delta}\right]$ or $X_{j_{1}} \cdots X_{j_{l}} X_{l+1} \cdots X_{n} \in\left[N^{\alpha}, N^{\alpha+\delta}\right]$ for some $n \in[l+$ $1, k]$) and, similarly, $X_{j_{1}} \cdots X_{j_{1}} X_{l+1} \cdots X_{k+1}>N^{\alpha+\delta}$. Using the argument similar to case 2 below, we obtain $\Sigma_{1} \lll L^{1}+M$.
2. $X_{1} \cdots X_{k}<N^{1-\alpha-\delta}$.

Using Lemma 5 of [3], page 144, we divide the set of all integers $d_{j} \mid P$ $(j=1, \ldots, k)$ into $\ll N^{\varepsilon}$ subsets such that for any subset there exist numbers $\varphi_{1}, \ldots, \varphi_{k}$ such that $\varphi_{j} \leq d_{j} \leq \varphi_{j}^{1+h}$, where h is a small positive number. Also, since every subset consists of some squarefree numbers having the same number of prime divisors (see [3]), for every subset $\mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right)=$ const. This divides the sum

$$
S=\left|\sum_{(d, m) \in \mathscr{D}} \mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right) F\left(d_{1} \cdots d_{k} m_{1} \cdots m_{k}\right)\right|
$$

into $\ll N^{\varepsilon}$ subsums. Taking the largest subsum S_{0} which corresponds to the subset \mathscr{D}_{0}, we get

$$
S \lll\left|\sum_{m} \sum_{d \in \mathscr{D}_{0}} F\left(d_{1} \cdots d_{k} m_{1} \cdots m_{k}\right)\right|=S_{0}
$$

where $m=\left(m_{1}, \ldots, m_{k}\right), m_{j} \in\left[X_{j}, 2 X_{j}\right)(j=1, \ldots, k), d=\left(d_{1}, \ldots, d_{k}\right)$, $d_{j} \in\left[\varphi_{j}, \varphi_{j}^{1+h}\right](j=1, \ldots, k)$. We assume $S_{0} \neq 0$. Here $\varphi_{1} \cdots \varphi_{k} \geq N^{\alpha}$, since otherwise

$$
d_{1} \cdots d_{k} m_{1} \cdots m_{k} \leq N^{\alpha} \cdot 2^{k} N^{1-\alpha-\delta}<N / 2 \leq N_{1}
$$

Let q be the smallest integer such that $\varphi_{1} \cdots \varphi_{q} \geq N^{\alpha}$. If $\varphi_{1} \cdots \varphi_{q} \leq$ $N^{\alpha+\delta}$, then we write $x=d_{1} \cdots d_{q}, y=d_{q+1} \cdots d_{k} m_{1} \cdots m_{k}$ and, since

$$
N^{\alpha} \leq \varphi_{1} \cdots \varphi_{q} \leq d_{1} \cdots d_{q} \leq\left(\varphi_{1} \cdots \varphi_{q}\right)^{1+h} \leq N^{(\alpha+\delta)(1+h)} \leq N^{\alpha+\delta+h}
$$

we get $\Sigma_{1} \lll S \lll S_{0} \ll L^{1}$. Now we assume that $\varphi_{1} \cdots \varphi_{q}>N^{\alpha+\delta}$. We take γ defined by $N^{\alpha-\gamma}=\varphi_{1} \cdots \varphi_{q-1}$ and use part (ii) of Lemma 5, [3], page 144 to show that there exist two sequences (u) and (v) such that $N^{\gamma} \leq u \leq N^{\gamma+\delta+h}$ for all $u \in(u)$, and such that the products $u v$ with $(u, v)=1, u v \leq N$ comprise precisely the numbers d_{q} of the subset, each repeated the same number of times. We obtain:

$$
\begin{aligned}
& S_{0} \ll \mid \sum_{d_{1}, \ldots, d_{q-1}} \sum_{v \in(v)} \sum_{\substack{u \in(u) \\
(u, v)=1}} \sum_{d_{q+1}, \ldots, d_{k} m} \sum_{m} \\
& F\left(d_{1} \cdots d_{q-1} u v d_{q+1} \cdots d_{k} \cdot m_{1} \cdots m_{k}\right) \mid \\
&=\left|\sum_{d, m} \sum_{u, v} \sum_{\sigma \mid(u, v)} \mu(\sigma) F\left(d_{1}, \ldots, d_{q-1} u v d_{q+1} \cdots d_{k} m_{1} \cdots m_{k}\right)\right| \\
& \leq \sum_{\sigma}\left|\sum_{d, m} \sum_{\substack{\sigma u \in(u) \\
\sigma v \in(v)}} F\left(d_{1} \cdots d_{q-1} u v \sigma^{2} d_{q+1} \cdots d_{k} m_{1} \cdots m_{k}\right)\right| .
\end{aligned}
$$

Writing $d_{1} \cdots d_{q-1} u=x, v d_{q+1} \cdots d_{k} m_{1} \cdots m_{k}=y$, we get $\sigma x \geq$ $\varphi_{1} \cdots \varphi_{q-1} N^{\gamma}=N^{\alpha}$,

$$
\sigma x \leq\left(\varphi_{1} \cdots \varphi_{q-1}\right)^{1+h} N^{\gamma+\delta+h} \leq N^{(\alpha-\gamma)(1+h)+\gamma+\delta+h} \leq N^{\alpha+\delta+\varepsilon}
$$

if $h \leq \varepsilon / 2$, so that

$$
\sum_{1} \lll S_{0} \lll \sum_{\sigma}\left|\sum_{x, y} a(x) b(y) F\left(x y \sigma^{2}\right)\right| \lll L^{1}+M
$$

This proves Lemma 1.

We also need five more Lemmas. Lemma 2 is the Poisson summation formula (see, for example, Lemma 6 of [1], or Lemma 1 of [2]); Lemma 3 is Weyl's inequality (see Lemma 5 of [1] or Lemma 2 of [2]); Lemma 4 is Theorem 2 of [2]; Lemma 5 can be proved similarly to Lemma 4 of [1] (in fact, $5 \gamma-4$ can be replaced with $5 \gamma-4+(1-\gamma) / 48$, which, however, does not lead to any improvement for $\pi_{c}(X)$ because our Lemma 6 is not good enough). Improving Lemma 6, one might hope to extend the boundary for c to $c<239 / 207$ (instead of $c<15 / 13$, which is the best one can obtain by using Heath-Brown's identity).

Lemma 2. Let $q<a<b<2 a$. Let $f(x)$ be a real function such that $f^{\prime \prime}(x) \cong M^{-1}$ for $x \in[a, b] ; f(z)$ be analytic for $z \in\{z \mid \forall x \in[a, b]$, $\left.|z-x| \leq \sqrt{c_{0} M \log b}\right\}$. Let $f^{\prime}(a)=\alpha, f^{\prime}(b)=\beta$, and define x_{n} for $n \in$ $[\alpha, \beta]$ by $f^{\prime}\left(x_{n}\right)=n$. Then

$$
\begin{aligned}
\sum_{a \leq x \leq b} e(f(x))= & \sum_{\alpha \leq n \leq \beta}\left[f^{\prime \prime}\left(x_{n}\right)\right]^{-1 / 2} e\left(\frac{1}{8}+f\left(x_{n}\right)-n x_{n}\right) \\
& +O\left(M^{-1 / 2}+\log (2+M b)\right)
\end{aligned}
$$

Lemma 3. Let I be a subinterval of $(X, 2 X$], and let Q be a positive number. Let z_{n} be complex numbers. Then

$$
\left|\sum_{n \in I} z_{n}\right|^{2} \leq\left(1+X Q^{-1}\right) \sum_{|q| \leq Q}\left(1-|q| Q^{-1}\right) \sum_{n, n+q \in I} \bar{z}_{n} z_{n+1}
$$

Lemma 4. Let α, β, γ be real numbers, $\alpha \beta \gamma(\alpha-1)(\beta-1)(\gamma-1)$ $\cdot(\alpha+\beta+\gamma-1)(\alpha+\beta-\gamma-2) \neq 0$, and let $X \geq Y \geq Z, X Y Z=N$. Let \mathscr{D} be a subdomain of $\{(x, y, z) \mid X \leq x \leq 2 X, Y \leq y \leq 2 Y, Z \leq$ $z \leq 2 Z\}$, bounded by $O(1)$ algebraic curves, and let $f(x, y, z)$ be a real C^{∞}
function such that $f(x, y, z) \tilde{\Delta} F X^{-\alpha} Y^{-\beta} Z^{-\gamma} x^{\alpha} y^{\beta} z^{\gamma}$ throughout \mathscr{D}. Then

$$
\begin{aligned}
\left|\sum_{(x, y, z) \in \mathscr{D}} e(f(x, y, z))\right| & \\
\lll N\left\{F N^{-1}+\right. & Z^{-1}+N^{-1 / 4}+Y^{-2 / 5} Z^{-2 / 5} \\
& \left.+\left(F Y^{2} Z^{2}\right)^{-1 / 8}+\left(F^{6} X^{6} N^{-8} \Delta^{3}\right)^{1 / 8}\right\}^{1 / 2}
\end{aligned}
$$

Lemma 5. Let L be the type 2 sum from Lemma 1 with $F(x)=e\left(h x^{\gamma}\right)$ and $X \in\left[N^{1-\gamma+\eta}, N^{5 \gamma-4-\eta}\right]$.

Let $\eta>0$ be a sufficiently small constant. Then $L \ll N^{1-\eta / 7}$.
Proof. To prove the Lemma, we use Heath-Brown's estimate for a fixed σ from his Lemma 4 and, summing over σ, obtain the needed result.

Lemma 6. Let $\alpha_{i}, \beta_{j}, A_{i}, B_{j}>0, B \geq A>0$, and let $f(x)=$ $\sum_{t=1}^{m} A_{i} x^{-\alpha_{t}}+\sum_{j=1}^{n} B_{j} x^{\beta_{j}}$. Then

$$
\begin{aligned}
M & =\max _{A \leq x \leq B} f(x) \\
& \leq 2^{m+n}\left(\sum_{i=1}^{m} A_{i} B^{-\alpha_{t}}+\sum_{j=1}^{n} B_{J} A^{\beta_{J}}+\sum_{i=1}^{m} \sum_{j=1}^{n} A_{t}^{\beta_{j} / \alpha_{i}+\beta_{J}} B_{J}^{\alpha_{i} / \alpha_{i}+\beta_{J}}\right) .
\end{aligned}
$$

This Lemma can be easily proved by induction on (m, n).
Lemma 7. Let $H=N^{1-\gamma} \log ^{3} N, N / 2 \leq N_{1} \leq N$,

$$
\begin{gathered}
S=\sum_{1 \leq h \leq H} \sum_{X \leq x \leq 2 X}\left|\sum_{\substack{Y \leq y \leq 2 Y \\
N_{1} \leq x y \leq N}} e\left(h x^{\gamma} y^{\gamma}\right)\right| \\
S \lll N H\left(Y^{-3 / 8}+X^{-1 / 2}+\left(X Y^{4}\right)^{-1 / 18}+N^{-47 / 360}\right) .
\end{gathered}
$$

Proof. We apply Lemma 3 to get
(1) $|S|^{2} \ll H X \sum_{h, x}\left|\sum_{y} e\left(h x^{\gamma} y^{\gamma}\right)\right|^{2}$

$$
\begin{aligned}
& \ll H^{2} N^{2} / Q+H N Q^{-1}\left|\sum_{q=1}^{Q} \sum_{h} \sum_{x, y} e(f(x, y, q))\right| \\
& \lll H^{2} N^{2} / Q+H N Q^{-1} \sum_{h}\left|\sum_{H_{1} \leq q \leq 2 H_{1}} \sum_{x, y} e(f(x, y, q))\right|,
\end{aligned}
$$

where $1 \leq H_{1} \leq Q / 2 ; Q \ll Y$ is a parameter to be defined later; $f(x, y, q) \tilde{\Delta} \gamma h q x^{\gamma} y^{\gamma-1} \cong h H_{1} N^{\gamma} / Y \equiv F$ with $\Delta=H_{1} / Y$. Next we apply Lemma 2 to the sum over x and y successively and Abel's summation formula:

$$
\begin{align*}
& S_{1} \equiv \sum_{q} \sum_{x, y} e(f(x, y, q)) \tag{3}\\
&= \sum_{q, y}\left\{\sum_{n}\left[f_{x^{2}}\left(x_{n}, y, q\right)\right]^{-1 / 2} e\left(\frac{1}{8}+f\left(x_{n}, y, q\right)-n x_{n}\right)\right. \\
&\left.+O\left(X F^{-1 / 2}+\log N\right)\right\} \\
& \lll X\left(h H_{1} N^{\gamma} / Y\right)^{-1 / 2}\left|\sum_{q, n} \sum_{y} e\left(f_{1}(n, q, y)\right)\right| \\
&+N H_{1}\left(h H_{1} N^{\gamma} / Y\right)^{-1 / 2}+H_{1} Y \\
& \ll X\left(h H_{1} N^{\gamma} / Y\right)^{-1 / 2} \\
& \cdot\left\{\left|\sum_{q, n} \sum_{m}\left[\frac{\partial^{2} f_{1}\left(n, q, y_{m}\right)}{\partial y^{2}}\right]^{-1 / 2} e\left(f_{1}\left(n, q, y_{m}\right)-m y_{m}\right)\right|\right. \\
&+N H_{1}\left(h H_{1} N^{\gamma} / Y\right)^{-1 / 2}+H_{1} Y \\
& \lll N Y\left(h H_{1} N^{\gamma}\right)^{-1}\left|\left(\sum_{q, m, n} e(g(m, n, q))\right)\right| \\
&\left.+Y H_{1}+N Y\left(h H_{1} N^{\gamma} N^{\gamma} / Y\right)^{-1 / 2}+\log N\right\} \\
&+1 / 2
\end{align*}
$$

where $f_{1}(n, q, y)=f\left(x_{n}, y, q\right)-n x_{n}$,

$$
g(m, n, q)=f_{1}\left(n, q, y_{m}\right)-m y_{m} \tilde{\Delta} c_{0} \sqrt{n} m^{\alpha_{n}}(q h)^{\beta_{1}} \cong F
$$

c_{0} is a constant, $\alpha_{1}=-\gamma /(2-2 \gamma), \beta_{1}=1 / 2-\alpha_{1}, m \cong h H_{1} N^{\gamma-1} \equiv M_{1}$, $n \cong h H_{1} N^{\gamma} Y^{-2} \equiv M_{2}$. Now we apply Lemma 3 with an appropriate Q_{1} and Lemma 2 to the sum over n to get
(4)

$$
\begin{aligned}
\left|S_{2}\right|^{2} \equiv & \left|\sum_{q, m, n} e(g(m, n, q))\right|^{2} \ll\left(H_{1} M_{1} M_{2}\right)^{2} Q_{1}^{-1} \\
& +H_{1} M_{1} M_{2} Q_{1}^{-1} \sum_{q_{1}=1}^{Q_{1}}\left|\sum_{q, m} \sum_{h} e\left(g\left(m, n+q_{1}, q\right)-g(m, n, q)\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \ll\left(H_{1} M_{1} M_{2}\right)^{2} Q_{1}^{-1}+H_{1} M_{1} M_{2} Q_{1}^{-1} \\
& \times \sum_{q_{1}=1}^{Q_{1}} \mid \sum_{q, m}\left\{\sum_{v}\left[g_{n^{2}}\left(m, n_{v}+q_{1}, q\right)-g_{n^{2}}\left(m, n_{v}, q\right)\right]^{-1 / 2}\right. \\
& \cdot e\left(\frac{1}{8}+g\left(m, n_{v}+q_{1}, q\right)-g\left(m, n_{v}, q\right)-v n_{v}\right) \\
& \left.\quad+O\left(F^{-1 / 2} M_{2}+\log N\right)\right\} \mid \\
& \ll\left(H_{1} M_{1} M_{2}\right)^{2} Q_{1}^{-1}+\left(H_{1} M_{1} M_{2}\right)^{2}(F)^{-1 / 2} \\
& +H_{1} M_{1} M_{2}^{2} Q_{1}^{-1} \cdot\left(Q_{1} Y\right)^{-1 / 2} \sum_{q_{1}}\left|\sum_{q, m} \sum_{v} e(\varphi(q, m, v))\right|
\end{aligned}
$$

where $v \cong V \equiv q_{1} Y / M_{2}, Q_{1} \ll M_{2}$,

$$
\varphi(q, m, v) \tilde{\Delta}_{1} c_{1} v^{1 / 3} q_{1}^{2 / 3} m^{2 \alpha_{1 / 3}}(q h)^{2 \beta_{1 / 3}} \cong F q_{1} / M_{2}
$$

$\Delta_{1}=H_{1} / Y+q_{1} / M_{2}$. Using Lemma 4 to estimate the last sum over q, m, v, we get

$$
\begin{aligned}
& S_{3} \equiv\left|\sum_{q, m, v} e(\varphi(q, m, v))\right| \\
& \lll H_{1} M_{1} V\left\{F q_{1}\left(M_{2} M_{1} H_{1} V\right)^{-1}+H_{1}^{-1}+M_{1}^{-1}+V^{-1}+\left(H_{1} M_{1} V\right)^{-1 / 4}\right. \\
& +\left(H_{1}+M_{1}+V\right)^{2 / 5}\left(H_{1} M_{1} V\right)^{-2 / 5} \\
& +\left[\left(H_{1}+M_{1}+V\right)^{2} M_{2}\left(F q_{1}\right)^{-1}\left(H_{1} M_{1} V\right)^{-2}\right]^{1 / 8} \\
& +\left[\left(F q_{1} / M_{2}\right)^{6}\left(H_{1}+M_{1}+V\right)^{6}\left(H_{1} M_{1} V\right)^{-8}\right. \\
& \left.\left.\times\left(M_{1} / Y+q_{1} / M_{2}\right)^{3}\right]^{1 / 8}\right\}^{1 / 2} .
\end{aligned}
$$

Substituting this into (3), we choose Q_{1} (using Lemma 6) to minimize the obtained expression; then we substitute the obtained estimate into (2) and (1) and, choose (using Lemma 6) Q to our advantage, we complete the proof of the lemma.

Now we can prove the Theorem. As in [1], it suffices to prove (using Abel's formula) that

$$
\begin{equation*}
S_{0}=\sum_{1 \leq h \leq H}\left|\sum_{N_{1} \leq p \leq N} e\left(h p^{\gamma}\right)\right| \ll N(\log N)^{-2} \tag{5}
\end{equation*}
$$

where

$$
H=N^{1-\gamma} \log ^{3} N
$$

While the formulation of Lemma 1 is slightly longer than (1), the application is not more difficult, and we will use it to prove (5). We take $\alpha=1-\gamma+\eta, \alpha+\delta=5 \gamma-4-\eta$, where η is sufficiently small, and use Lemma 1:

$$
S_{0} \lll\left(L^{1}+K^{1}\right)+N^{1-\eta} .
$$

According to Lemma $5, L \lll N^{1-\eta / 7}$, and we need to estimate K. Here $\alpha+\delta>14 / 39-\eta$ so that n from Lemma 1 is equal to 2 or 3 . If $n=3$, then $X_{1} \geq N^{(\gamma-\eta) / 2}, X_{2} \geq N^{5 \gamma-4-\eta}$, and, denoting $y=x_{1}, x=x_{2} x_{3}$, we use Lemma 7 to get

$$
\begin{aligned}
\sum_{h} K & \lll N^{2-\gamma}\left(X_{1}^{-3 / 8}+\left(X_{2} X_{3}\right)^{-1 / 2} l+\left(X_{1}^{4} X_{2} X_{3}\right)^{-1 / 18}+N^{-47 / 360}\right) \\
& \ll N^{1-\eta}
\end{aligned}
$$

if η is small. If $n=2$, then we use van der Corput's estimate (or Lemma 2 and a trivial estimate of the right-hand side sum) and obtain

$$
\begin{aligned}
\sum_{h} K & \ll \sum_{h} \sum_{x_{2} \cong X_{2}}\left|\sum_{x_{1} \cong X_{1}} e\left(h x_{1}^{\gamma} x_{2}^{\gamma}\right)\right| \\
& \lll \sum_{h} X_{2}\left[X_{1}\left(h N^{\gamma}\right)^{-1 / 2}+\left(h N^{\gamma}\right)^{1 / 2}\right] \\
& \ll N^{1-\gamma+1 / 2} X_{2} \lll N^{2-2 \gamma+1 / 2+\eta} \leq N^{1-\eta} .
\end{aligned}
$$

References

[1] D. R. Heath-Brown, The Pjatečkii-Sapiro Prime Number Theorem, J. Number Theory, to appear.
[2] G. Kolesnik, On the method of exponent pairs, Acta Arithmetica, to appear.
[3] I. M. Vinogradov, On the Method of Trigonometrical Sums in the Theory of Numbers, Interscience Publishers LTD, London.

Received May 31, 1984 and in revised form October 5, 1984.
California State University at Los Angeles
Los Angeles, CA 90032

