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EPIDEMIOGRAPHY

AVIEZRI S. FRAENKEL AND JAROSLAV NESETRIL

Dedicated to the memory of Ernst G. Straus

Epidemiography designates a class of games played on directed
graphs. At stage k of the game, the move made on a graph G is replicated
onto k isomorphic copies of G. The player first unable to move is the
loser; his opponent the winner. We give conditions on G under which a
game terminates, and determine the winner for a number of cases.

1. Introduction. We like to investigate the following form of epide-
mic chorea {Dancing Mania). Let G1? (?2,... be countably many copies of
a given connected directed graph G and let uλ be a labeled vertex of Gv At
the beginning, uλ is the only labeled vertex in Gλ and there are no labeled
vertices in any of the other copies. Player I now removes the label from uv

labels in Gx a vertex u2 dominated by ux and also labels u2 in G2. The
players alternate turns. At stage k, a player selects any labeled vertex ut in
any of the copies GJ9 removes the label from ut and labels some ui+1

dominated by ut in Gj. He also labels ui+ι in k as yet completely
unlabeled copies of G.

We shall always assume here that the player first unable to move is
the loser. His opponent is the winner, because he manages to kill the
epidemic. If G is infinite or contains cycles, the epidemic may rage on and
on, in which case the game outcome is declared a draw. However, if G is a
finite directed acyclic graph, then the game terminates and one of the
players has a winning strategy. This is proved in §2.

Several perverse and maniacal forms of the malady will be examined
in §§5 and 6. In §§3 and 4, however, we will prescribe a remedy for the
special case where G is a finite directed simple path (one of length 5 is
shown in Figure 1). In this case the disease is also known as the Nim
epidemic (Nimania), which is sometimes observed in post-pneumonia
patients. As the theory of Nim is a key to the Sprague-Grundy theory for
impartial acyclic 2-player games with perfect information and no chance
moves, so the proper treatment of Nimania may turn out to be the key to
the successful treatment of other forms of Dancing Mania. This is the
reason we treat it first.
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FIGURE 1. Nimania is played on a directed simple path.

Dancing Mania was motivated by the oo-predecessor Hydra game of

Nesetril [4], which was studied extensively by M. Loebl and P. Savicky.

2. There exists a remedy for common mania. Dancing Mania played

on a connected finite directed acyclic graph is known as Common Mania

(Coma). Nimania is of course a special case of Coma.

THEOREM 1. Coma is a finite game, and one of the two players has a

winning strategy.

Proof. Let G = (V, E) be the connected finite directed acyclic graph

on which Coma is played. For u e F, denote by h{u) the length of a

longest path emanating from u. Put H = maxM<Ξ vh(u).

With any position P of the game, associate a sequence (nv...,nH) of

nonnegative integers, where nt is the number of copies Gt of G in which

there exists a labeled vertex Uj satisfying hG(Uj) = H — i + 1 (ι e
{l,...,i/ + 1}). With this coding, the set of all coma-positions corre-

sponds to a subset of the set of all sequences ZH of nonnegative integers.

Consider the lexicographic ordering < of ZH:

( m l 9 . . . , m H ) < ( n l 9 . . . 9 n H )

if there exists j such that mt = nt for i < j and my < nj.

Let Pf be the position after a move of a player from position P at

stage k. Let Pf be coded by (mv...9mH). Since (w, v) e E implies

h(u) > h(v), the sequence ( m l 9 . . . ,mH) has either the form

(ml9...9mH) = («!, . . . ,«, - 1, ni+1,...,rij + fc + l , . . . , / i#)

for some i < // and some j > /, or the form

( m l 9 . . . 9 m H ) = ( n l 9 . . . 9 n H _ l 9 n H - 1 ) .

In either case, ( m 1 ? . ..,mH) < (nv...,nH). Since this lexicographic order-

ing is a well-ordering of the set Z 7 7 , the game will terminate after a finite
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number of moves. For games with this latter property, it is known that
one of the two players has a winning strategy. See e.g. Berlekamp, Conway
and Guy [2, the extras of Chapters 1 and 2]. D

3. Nimania. To find a remedy for Nimania, it is convenient to
forget about graphs, reverting to the language of nonnegative integers
instead. In Nimania, two players, I and II, alternate in making moves.
Given a positive integer n. In his first move, player I subtracts 1 from n. If
n = 1, the result is the empty set and the game ends with player I winning.
If n > 1, one additional copy of the resulting number n — 1 is adjoined,
so at the end of the first move there are two (indistinguishable) copies of
n — 1 (denoted by (n — I) 2). At the Λ -th stage, a player selects a copy of
a positive integer m of the present position, and subtracts 1 from it. If
#i = l, the copy is deleted. If m > 1, k copies of m — 1 are adjoined to
the resulting m — 1 (k > 1). The player first unable to move loses and his
opponent wins.

Since the numbers in successive positions decrease, it is clear that the
game terminates. This also follows directly from Theorem 1. The basic
question we address ourselves to is whether player I or II wins for any
given n.

EXAMPLE, (i) n = 1. As we saw above, player I wins, (ii) n = 2. Player
I moves to I 2 , player II to 1, hence player I again wins, (iii) n = 3. The
following self-explanatory diagram (Figure 2) shows that again player I
can win. Unlike the above two cases, however, not all moves of player I
are winning: Player I has to select his moves carefully to win, following
the lower branches of the diagram.

I 7 II wins

FIGURE 2. A proof that player I wins n = 3 of Nimania. The numbers
in circles indicate the player making the move.

An attempt to resolve the problem for n = 4 by a similar diagram
construction is rather frustrating, because of the size and the many
branches of such a diagram.

The purpose of the next section is to prove the rather surprising fact
that player I has a winning strategy for every n > 1.
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4. Player I conquers Nimania recursively.

LEMMA 1. (i) Starting from a position la at stage k, player I can win iff

a is odd {a > 0, k > 1).

(ii) Starting from the position 2, la at stage k, player I can win in

Nimania iff either k is odd or a is odd {a > 0, k > 1).

Proof, (i) Clear, (ii) The options of the given position are depicted in

Figure 3. On the upper path, II wins iff a + k + 1 is odd, iff a + k is

even. So I wins on the upper path iff a + k is odd. Thus player I will opt

the lower path if a + k is even.

odd

FIGURE 3. The options of 2, la at stage k of Nimania.

Note that if a + k is even, we may assume that every player at his

turn will reduce the multiplicity of 1 until it becomes 0, because otherwise

he leaves his opponent in position \k+a+1

9 from which the opponent can

win. At stage k + a the position is thus 2, and the next player moves to

lk+a+ι and loses. Therefore the player who moved to position 2 wins. This

player is I iff a is odd, iff k is odd. D

The following theorem deals with a general position of the form na%

O - I ) " " - 1 , . . . ,2" 2 ,1" 1 with at > 0 (1 < / < n). From it our result follows

readily.

THEOREM 2. Starting from a position An = na% (n - l)a»-\... , 2 % I"1

at stage k, with the proviso that either a2 > 1 or ai > 0 for some 3 < i < n,

player I can win in Nimania iffk is odd(k > 1).
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Proof. We shall use induction on the size of the position, where

positions are ordered lexicographically. That is, we assume the truth of the

assertion for a subset of the set of positions satisfying the proviso which

are lexicographically less than An, and show that it implies the truth of the

assertion for An.

The set of options of A n is

S = [

5X = Λ < \ ( Λ - \)°-\{n ~ 2)α"-2,...,2«M^-

where the option Bι is in the set S iff α, > 0 (1 < i < n).

If at > 0 for some i > 3, then every option Bj of An again satisfies the

proviso of the theorem. This is clear for j Φ i. In Bi9 at transforms into

ai — 1 and α / _ 1 into a'i_ι = ai__ι + k 4- 1. If / > 3, then the proviso is

satisfied, since a'ι_ι > 0 and i — 1 > 3. If / = 3, the proviso is satisfied

since α'2 = a2 4- k -f 1 > 2. Therefore the induction hypothesis implies

that player II can win starting from Bj iff A: 4- 1 is odd, iff k is even, for

every option Bj & S {I <j < n). Equivalently, player I can win iff k is

odd.

We may thus assume α, = 0 (/ > 3). T h e n ^ = A2 = 2Λ2, Γ*1, α 2 > 2,

so B2 = 2Λ 2~1, l«i + 1 + \ If «χ > 0, then J?x = 2"2, I 0 ' 1 " 1 exists, and the

induction hypothesis implies that if player II moves from Bv then player I

can win iff k is odd. If a2 > 2, then the induction hypothesis applied to B2

implies again that player I can win iff k is odd. If a2 = 2, then B2 = 2,

2*i + i + *β gy L e m m a l(ϋ)9 player II can win iff k 4- 1 is odd or αx 4- 1 4- fc

is odd, iff k even or k 4- αx even. So player I can win in B2 iff A: is odd and

aλ is even. It follows (considering also the case aλ = 0) that player I can

win iff k is odd. D

COROLLARY 1. Starting from any position n in Nimania (at stage 1),

player II wins trivially if n = 0, and player I has a winning strategy for every

l

Proof. This is the special case k = 1, an = 1, ai = 0 (1 < / < n) of

Theorem 1 when Λ > 3. For n = 1 and 2 the result was considered in the

above examples. D
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Translated back into graph-terminology, Corollary 1 states: Given a

finite directed simple path G with a vertex u initially labeled. Then player

II wins trivially in Nimania on G (at stage 1) if h(u) = 0, and player I can

win for every u with h(u) > 1.

5. Raving epidemy and other variations of Nimania. The general

idea of raving epidemics is that instead of labeling an immediately

dominated node of a previously labeled node ui9 we label at stage k a. node

ui+1 such that the directed path (ui9...9ui+ι) contains/? edges. As before

we also label ui+ι in k as yet unlabeled copies of G. This epidemic comes

in a number of variations: (i) The node ui+1 must be at distancep from ur

(ii) The node ui+1 must be on a path emanating from ui9 where the path

length between w, and ui+ι is p (but the distance may be less than p).

(iii) Label all nodes at distance/? from ut. (iv) Label all nodes at the end of

paths of length p from ur (v) Label some vertices at distance p from ut.

(vi) Label some vertices at the end of paths of length/? from ut.

In order to relate some of these variations to the class of games played

on directed graphs as introduced in §1, the following definition is useful.

DEFINITION. TWO games are called equivalent if they have the same

value.

In the present context of impartial games, the value of a game is the

Sprague-Grundy function value of the game-graph of the game. See e.g.

Conway [3] or [2].

Let G = (V9 E) be a connected directed graph with a vertex u initially

labeled. Construct Gλ = (Vl9 Ex)9 where Vx and Eλ are defined recursively

as follows: u e Vv For every v e Vl9 put w into Vx and (υ, w) into Eλ if

the distance from v to w in G is /?. For every x e Vγ put (x, w) into Ex if

the distance from x to w in G is /?. Then Dancing Mania on Gx is

equivalent to variation (i) on G. (A formal proof of this equivalence can

be given along the lines of the second part of the proof of Theorem 3

below.) Now define G2 = (V29 E2) recursively: u e V2. For every v e V29

put w into V2 and (ι;, w) into Z?2 if there exists a path from Ϊ; to w of length

/? in G. For every x e F2 put ( c, w) into /?2 if there exists a path from c to

w of length /? in G. Then Dancing Mania on G2 is equivalent to variation

(ii) on G.

REMARK. The variations (iii)-(vi) do not fit easily into the general

framework of directed graphs set up in Section 1 but an argument similar

to Theorem 1 shows that if G is an acyclic directed graph and every vertex
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of G has finitely many successors, then each variation constitutes a finite

game. (A vertex v is a successor of u if there is a directed path from uiov.)

Note that if G is a finite directed simple path such as in Figure 1, then

all these six variations coincide. We call this game Nimaniap (where

Nimania! = Nimania). We show below how to cure Nimania^ for any

p > 1 by reducing the symptoms to those of Nimania.

THEOREM 3. Let G = (V, E) be a connected finite directed acyclic graph

with the following property:

(P) For every pair of vertices x andy, all the paths from x toy have the same

length.

Then Coma on G is equivalent to Nimania played on some finite simple path.

In particular, player I can win Coma on G iff the initially labeled vertex u

satisfiesh(u) > 1.

Proof. Let h be the function defined in §2. For (u, v) e E we have

h{u) = h(v) 4- /for some / > 1. Since there is a path of length 1 between

u and v9 property (P) implies that / = 1. Therefore the graph on which the

actual Coma game is started is a simple path of length h(u), if u is the

initially labeled vertex. This graph is isomorphic to that of Nimania

played on a finite directed simple path of length h{ u).

Consider the sum (disjunctive compound) game (Dancing Mania (G),

Nimania (h(u)), where u is the initially labeled vertex in G). For the

notion of sum of games see e.g. [3] or [2]. Since the two graphs are

isomorphic, player II can win by playing moves corresponding to those of

player I in the set of graphs isomorphic to the set in which player I moves.

Hence the Sprague-Grundy function value of the game-graph of Coma on

G is the same as that of the game-graph of Nimania played on a path of

length h{u). In particular, player I can win Coma played on G iff

h(u)>l. Π

COROLLARY 2. Let m be a nonnegative integer. Starting from position m
ofNimania p {in stage 1), player II wins trivially if m < p, and player I can
win for every m > p.

Proof. We revert to graph-theoretic language. If G is a directed simple

path, then the graph G1 induced by G clearly satisfies property (P). It

follows that player I can win for every m > p.

To illustrate Corollary 2, Figure 4(a) shows a directed simple path of

length 10. The induced graph Gλ for/? = 3 is shown in (b), which is again

a directed simple path.
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(a) The graph G. (b) The induced graph Gx.

FIGURE 4. Nimania3 played on a directed simple path G of length 10.

Let S be a partially ordered set. For a, b e S, we say that <z covers £ if
b < a and there is no x e S satisfying b < x < a. The covering relation
graph G induced by S is the directed graph G = (S, E), where (a, b) e E
if α covers b.

COROLLARY 3. Let G be the covering relation graph induced by a finite
semi-modular lattice. Then player I wins Dancing Mania on G.

Proof. Any semi-modular lattice satisfies the Jordan-Dedekind chain
condition, which states that all maximal chains between fixed points have
the same length. See e.g. Abbott [1, Ch. 5]. This condition is the same as
property (P). D

REMARK. Property (P) is not a necessary condition for the existence of
a winning strategy for player I. Thus the digraph depicted in Figure 5
violates property (P), but Corollary 1 implies that player I can win if u is
initially labeled, since the first move decides which of the two directed
simple paths the game will unravel on.

FIGURE 5. Player-I can win Dancing Mania on this graph

which violates property (P).
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6. Sweeping epidemy. Sweeping epidemy is a further complication

of raving epidemy. Instead of labeling a node uι+1 on a directed path

emanating from ut removed from ui by exactly/? edges as in the latter, we

may label, in the former, any node lying on this path up to p edges away

from ur Everything else is as in raving epidemy. Analogously to the latter,

sweeping epidemy has a number of variations. For the case of a directed

simple path, for which we denote the game by Nimania^, these varia-

tions are again identical.

In this section we describe a recursive cure for the case p = 2, that is,

for Nimania<2 Note that Nimania <2 on a finite directed simple path

G = (V9 E) is equivalent to Dancing Mania on G3 = (F, E3) where E3 =

E U E4 and (x, y) e E4 if the distance from x to y in G is 2.

EXAMPLES, (i) n = 1. Clearly player I wins, (ii) n = 2. Player I can

move to 0 winning swiftly, or he can move to I 2 , in which case he also

wins, though only after having prolonged the malady, (iii) n = 3. Player I

can move to I 2 and again win.

Note the striking similarity to the examples at the end of §3. When

the interns at Radixal University Hospital were confronted with this

evidence, they naturally concluded that the prognosis of Nimania <2 is the

same as for Nimania. They were in for a shock when Dr. Manny Plaeg,

the Department Head, pointed out to them, many victims later, that the

above examples are the only cases where player I can win: For any n > 3,

player II can in fact win! We now proceed to prove this.

LEMMA 2. Starting from the position 2, la at stage k, player I can win in

Nimania <2 iff either k is even or a is even (a > 0, k > 1).

Proof. From 2, l2a player I moves to l2a and wins. If k is even, then

player I moves from 2, l 2 α + 1 to ik+2a+2^ winning. If k is odd, however,

then this move is losing, as are also the remaining two moves: to \ l a + ι

and to 2,1 2*. D

LEMMA 3. (i) Starting from position 22 at stage k, player I can win in

Nimania<2 iff k is even (k > 1).

(ii) Starting from position 2h, la at stage k, player I can win in

Nimania<2 iffk is even (b > 2, a > 0, k > 1).

Proof, (i) The options of 2 2 are shown in Figure 6.
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k+l
•2,1

— 2 II wins

FIGURE 6. The options of 22 at stage k of Nimania<2.

On the upper path, Lemma 2 implies that player II can win iff k 4- 1
is even, iff k is odd. Hence player I can win iff k is even.

(ii) We use induction on a 4- b. The options of the position are shown
in Figure 7.

b-l k+α+l

FIGURE 7. The options of 2b, \a at stage k of Nimania<2.

Suppose first b = 2. By Lemma 2, player II may lose on the top path
iff k 4- 1 is odd and a is even. So player I can win on the top path iff both
k and a are even. On the middle path, player II may lose iff k 4- 1 and a
are both odd. Thus player I can win on the middle path iff k is even and a
is odd. By part (i) we may assume a > 0. Hence the bottom path exists.
On it, the induction hypothesis and part (i) imply that player II can win
iff k + 1 is even, iff k is odd. So player I can win on the bottom path iff k
is even. A simple best strategy for player I is thus to use the bottom path.

Now suppose b > 2. Then on each of the paths the induction hy-
pothesis implies that player II can win iff k 4- 1 is even, iff k is odd. Thus
player I can win iff k is even. D

LEMMA 4 (i) Starting from position 3 at stage k, player I can win in
Nimania<2 (k > 1).

(ii) Starting from the position 3, la at stage k, player I can win in
Nimania <2 iff either k is even or a is even {a > 0, k > 1).

Proof, (i) If k is even, player I moves to 2k+1 to win (Lemma 3 (ii)),
otherwise he moves to lk+ι and wins.

(ii) The options are shown in Figure 8. By Lemma 3 (ii), player I can
win on the top path iff k is even. On the middle path, player I can win iff
k 4- a is odd. By part (i) we may assume a > 0. Therefore the bottom path
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2 k V
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. α - l
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- 3 , Γ

FIGURE 8. The options of 3, \a at stage k of Nimania<2.

exists, and by induction player II can win iff a — 1 is even or k -f 1 is
even. So player I can win on this path iff a and k are both even.

It follows that the only case where player I may lose is when both a
and k are odd. G

An analog of Theorem 2 for Nimania<2 will now be proved. Our
result (Corollary 4) follows immediately from it.

THEOREM 4. Starting from a position An = na% (n - I ) " " 1 , . . . , 2 % 1Λ
at stage k, with the proviso that either <x2 4- α 3 > 1 or α > 0 for some
4 < i < n, player I can win in Nimania <2 iffk is even (k > 1).

Proof. As in the proof of Theorem 2, we shall again use induction on
the size of the position.

The set of options of An is

{n - 2)a"-\(n

Cn = «««-\(« - lΓ-'.ί/i - 2)β

CB_X = /!*-,(* - l ) " " - - 1 ^ / ! - 2) a '-\( n - 3 ) β -

5 2 = na%(n - l)α"-,(« - 2)"-2,(« - 3)β"-3,...,2^-Mα>+*+1,

C2 = na",(n - ϊ)a-\{n - 2)a"~\(n ~ 3)β-3,...,2«'-Ur

^ = Cx = ««»,(« - l) β - ' ,(/i - 2)a"~\(n - 3)Λ"-3,...,2«M a '-1

where the options Bt and C; are in S iff α7 > 0 (1 < i < n).
If at > 0 for some / > 4, then every option 2?y and Cy of 4̂W again

satisfies the proviso of the theorem. This is clear for every option B; and
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CJ withy Φ i. In Bi9 α7 transforms into α, — 1 and ai_1 into a'i_ι = aι_1 4
k 4 1. If i > 4, then the proviso is satisfied, since α'_x > 0 and i — 1 > 4.
If i = 4, then the proviso is satisfied since a3 = a3 4 /: -f 1 > 2. In Cz, α,
transforms into α, — 1 and ai_1 into α _2 = α _2 4 /: 4 1. If / > 5, then
the proviso is satisfied since α'_2 > 0 and i — 2 > 4. If i = 4 or 5, then
the proviso is satisfied since then α'_2 = α/._2 4 fc 4 1 > 2, hence the
sum of the second and third exponents is at least 2.

We may thus assume α7 = 0 (/ > 4). Then An = A3 = 3α3,2tt2,lβl,
with α2 4 <x3 > 2. Suppose first a2 4 α3 = 2. There are three subcases:

(a) A3 = 3,2, l α (α > 0). The options of A3 are shown in Figure 9.

3,2,1

2,1
k + α + l

3,1

3,1°

•3,2,1

k t α + !

0 " 1

FIGURE 9. The options of 3,2,1* at stage k of Nimania<2.

On the top path, Lemma 3 (ii) implies that player I can win iff k is
even. For the second path we employ Lemma 2 to conclude that player II
may lose iff both H I and k 4 a 4 1 are odd, iff both k and k 4 a are
even. Thus player I can win on the second path iff both k and a are even.
Exactly the same conclusion is reached for the third path, using Lemma 4
(ii). Using the same lemma, player II may lose on the fourth path iff
A: 4 1 is odd and a is odd. So player I can win on this path iff k is even
and a is odd. Finally, if a > 1 the bottom path exists, and player I can win
on it iff k is even by induction.

The upshot of all five options is that player I can win iff k is even.
(b) A3 = 32, la (a > 0). The options of the position are depicted in

FIGURE 10. The options of 3 , V at stage k of Nimania<2.
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Figure 10. Player I can win on the top path iff k is even by induction. On
the middle path, using Lemma 4 (ii), player II may lose iff k -f 1 and
k 4- a 4- 1 are both odd iff k and k + a are both even. Thus player I can
win on this path iff k and a are both even. If a > 1 the bottom path exists,
and player I can win on it iff k is even by induction.

We see again that the best strategy permits player I to win iff k is
even.

(c) A2 = 22, la (a > 0). By Lemma 3 player I can win iff k is even.
We may thus assume a2 4- a3 > 2. Then the result follows by ex-

amining the options and using induction. D

COROLLARY 4. Starting from any position n > 3 (at stage 1), player II
has a winning strategy in Nimania<2. For n — 1,2 and 3, player I can win.

Proof. The case k = 1 and an = 1 for n > 4 of Theorem 4 shows that
player II can win for n > 4. The cases n = 1,2 and 3 were considered in
the examples above. D
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