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LOWER BOUNDS ON BLOCKING SETS

A. A. BRUEN AND B. L. ROTHSCHILD

In memory of Ernst Straus

In a geometry the notion of blocking set ordinarily refers to a set of
points meeting every line. (For projective planes convention requires in
addition that the blocking set not contain all the points of any one line.)
In this paper we obtain lower bounds for the size of a blocking set for
projective planes and inversive planes, which are equal to or improve-
ments on the best previously known bounds. If the notion of blocking set
is generalized to f amities of disjoint subspaces rather than sets of points,
then (partial) spreads are included, and we obtain a lower bound
for the size of a maximum partial spread of m-spaces in projective
(2m-f l)-space. The technique is that of Glynn, counting various sets of
intersecting subspaces in two ways to obtain inequalities.

If we are considering any geometry (affine, projective, inverse, etc...)
we can use the following definition:

DEFINITION. A set S of mutually disjoint &-subspaces is a (k, /)-block-
ing set if every /-subspace meets some member of S.

In the case of k = 0, / = 1 we have ordinary blocking sets, except for
the case of the projective plane, where conventionally the condition that S
contain no line is required for blocking sets. If k = /, then we have a
maximum partial spread of /:-spaces. These are the two cases for which
there are some known bounds.

We consider first the case of k = 0, / = 1 in the inversive plane of
order q [4]. The relevant features of this geometry are that there are q2 + 1
points, (q2 4- 1)^ lines (called "circles" sometimes), q(q -f 1) lines through
each point, (q -f 1) lines through any two points, and one line through
any three points. Suppose we have a set S of x points, and denote by ni

the number of lines containing exactly i points of 5, / > 0. (We note that
nι: = 0 for i > q 4- 1 as lines have q -f 1 points.) If S is a blocking set,
then n0 = 0.

Counting all lines gives

(1) Σ « , = (<72 + 1)<7
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Similarly we get equations (2), (3), (4) below by counting in two ways the

numbers respectively of pairs (P; L), ({P, Q}\ L), and ({P, β, R}\ L),

where P, Q, R are points of the set S on a line L.

i

(3) Σ

(4)

Consider the polynomial (used in [6]) P(i) = (/ — l)(ι — 3)(ι - 4). It

is non-negative for all positive integers /. Rewriting the polynomial we

obtain

Using (l)-(4) above we get

(5) 0< Σn,P(i) = 6Σ

+ 1) + 12(q2 + q)x - ll(q2 + \)q.

Now let x = λq. We get from (5) a non-negative cubic polynomial in q

with leading coefficient

(λ3 - 5λ2 + 12λ - 12) = (λ - 2)(λ2 - 3λ + 6).

Then for λ < 2 this is negative, and for q large enough (depending on λ)

the polynomial in q is negative, contradicting (5). Thus we get:

THEOREM 1. If S is a blocking set in the inverse plane of order q, and

ε > 0, then \S\ > (2 — ε)qfor q sufficiently large.

We can refine the argument a little by taking x = 2q — k. Then the

polynomial in (5) becomes quadratic in q:

(6) (2 - 4k)q2 +{k2 + 15k + 2)q -(k3 + 8k2 + Ik).

If we have k > 1/2, then (6) is negative for q sufficiently large. Thus we

must have k < 1/2, or x > 2q - 1/2. As x is an integer, x > 2q, for q

sufficiently large. In fact, if we examine the polynomial above carefully,

we see that the polynomial will be negative for all values of q if k > 3, for
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all but q = 3 if k = 2, and for g > 9 if k = 1. Hence we get:

THEOREM 1'. //S is a blocking set in the inverse plane of order q, then
\S\ > Iqfor q>9, and \S\ >2q-lforqΦ3.

The best previous value for a lower bound for \S| was 2q — 1.

A word of explanation for the choice of P(i) is in order. There are
many choices that could be made for the cubic polynomial P(i) so that it
will be positive for all values of / between 1 and q 4- 1 (the number of
points on a line in the inversive plane). Among those of the form
(/ — 1)(/ — a)(i — (a 4- 1)) we would like to find the integer a which gives
the strongest inequality onλ. That is, we use (x — l)(x — a)(x — (a 4- 1)),
and express it in terms of binomial coefficients. Then using (l)-(4) we get
an inequality like (5) (with different coefficients). Letting x = λq in that
inequality gives a non-negative cubic polynomial in q with leading coeffi-
cient

/(λ, a) = λ3 -(2a - l)λ2 + {a2 + a)λ -(a2 + a).

There is some λ 0 for which /(λ, a) < 0 when λ < λ0. (λ 0 will be the
smallest real root of /(λ, a) of course.) We want to choose a to maximize

λ o

Now suppose for some a λ 0 > 2. Then

0 > /(2, a) = 8 - 4(2a - 1) + {a1 4- a)2 -{a1 4- a)

= a2-Ίa + l2 = (a- 3)(a - 4).

Thus a = 3 or a = 4. Both /(λ,3) and /(λ,4) have a single real root,
which in both cases is 2. So we look at the second (quadratic) term in the
polynomial corresponding to (5) to see that a = 3 gives the better inequal-
ity

Glynn [6] used this polynomial originally to prove

THEOREM 2. Let S be a maximal partial spread of lines in PG(3, q),
then \S\ > 2q.

We recall that a maximal partial spread here is a set of disjoint lines
meeting all lines of the space in at least one point. In our earlier notation
/c = / = l , n = 3. We generalize the argument to the case n = 2m 4- 1,
k = I = m. That is, we consider maximal partial spreads of m-spaces in
PG(2m 4- 1, q) a set of disjoint m-spaces which intersects every m-space



306 A. A. BRUEN AND B. L. ROTHSCHILD

in at least a point. The best bound previously known on the size of a

maximal partial spread is (q + {q + 1) [1]. Using an argument like the

one above, but necessarily a bit more complicated, we get:

T H E O R E M 3. If S is a maximal partial spread of m-spaces in

PG(2m + 1, q), then \S\ >2q- 1, for q sufficiently large.

Proof. For m = 1 Theorem 2 applies, so we assume m > 2. We let

ί*J* ( ^ - l ) ( ^ - l ) '

which is the number of vector Λ>supspaces of an /-dimensional vector

space over GF{q). We will write just [£], suppressing the q, since there is

no danger of ambiguity. The number of projective fc-subspaces of projec-

tive L-space is then [£Vi]. In what follows all spaces and subspaces will be

projective spaces unless otherwise stated. The principal fact we need about

these numbers is that as q -> oo

+ O(q~ι), l> k> 0,

1 + q'1 + O(q-2), I - 1 > k > 1,

1 + q-1 + 2q-2 + 0{q~ι), I + 2 > k > 2,

1 + q-1 + 2q~2 4- 3q~3 + θ(q~4), I - 3 > k > 3.

This follows simply by expanding the numerator and denominator of [ι

k]

as polynomials in q and then using 'long division'.

We also need the following fact.

PROPOSITION. Let N be an π-dimensional projective space over GF(q).

Let L be an /-dimensional subspace, G a g-dimensional subspace such that

L z> G. Then the number of Λ -dimensional subspaces K with K Π L = G

is given by

(8)
k- g q

We note that when I = g this is the number of &-supspaces containing G,

[ £ l | ] , a formula used repeatedly below. Also, if g = —1 we get

[nk+\]^l{k+1)(I+l) f°Γ the number of k-spaces not meeting a fixed /-space at

all. Let S denote a maximal partial spread of m-spaces in PG(2m + 1, q),

and let \S\ = x. Let «z denote the number of m-spaces meeting exactly /

members of S in at least one point. Then corresponding to (l)-(4) we get:

(9) Σ n, = 9 - 2 + 2 - + 1 ( l + q-1 + O(q-2))
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(10) Σ **< = xqm2+2m{l + 2q~x +

(11) Σ (2)"- - (X

2)qm2+2m~1(ί + 3?-1 + θ(<Γ2))

(12) Σ

The equations (9)-(12) are obtained below by counting (in two ways)
the numbers respectively of all M, pairs (N; M)9 pairs ({iV, P}; M), and
pairs ({JV, P, β } ; M), where iV, P, Q are m-spaces in 5 meeting an
m-space M (not necessarily in S).

Equation (9) is clear since the summation gives the total number of
m-spaces, which is

2m + 2

by (7).
For equation (10), the summation on the left enumerates all pairs

(N; M) where N is in S and M is an arbitrary m-space meeting N in at
least a point. Alternatively all such pairs can be found by selecting N (x
ways) and then choosing M to meet N. There are [2™+?] m-spaces all
together of which, by (8), ήr<w+1>2 don't meet N. Thus the total number of
pairs is

m2 + 2m + l I w2 + 2m Q( m2 + 2m~l\

which is xqm2+2m(l + 2q~ι + O(q~2)) by (7).
To get (11) we can use a truncated form of the method of inclusion

and exclusion. We want to enumerate the pairs ({N, P} M) where N and
P are in S and M is any m-space meeting N and P. We can construct all of
these by first picking {N9 P}. (There are (f) ways to do this.) Then we let
a be the number of ways to choose M given N and P. We can overesti-
mate a as follows: There are [m\ι] ways to choose a point in N9 and the
same for P. Then M can be chosen in [2™x] ways to contain both points.
Thus a is at most

a' -

from (7). But we overestimate here because some choices for M meet N
and P in more than a point, and are thus counted multiply. A space M
meeting N in a /c-subspace, iΓ, and P in an /-subspace, L, will be counted

~kVl'V
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times. There are

m +
k +

l l f / n + 1
1 J L / + 1

choices for the subspace K and L, and then M can be chosen in at most

2m-k-I
m-k-I-1

ways to contain K and L. Thus the excess a' — a is at most

, , = y \k + l j [ / + l ] f w + l l f / n + l l f 2 m - k - l 1
α ^ 0 I 1 Jl 1 J U + l J l z + l J L / n - f c - / - l ]

_ y φ/ m2 + 2m-k-l-k2~l2-l) _ Q( m2 + 2m-3\

Thus α' > α > α' - α", and α = ^'«2+2'»-i(i + 3^-1 + O(^"2)). Finally,

V -ίi / v ̂  /

establishing (11).
For (12), the left side enumerates the number of pairs ({N, JP, Q} M)

where N9 P, Q are in S and all three meet the m-space M. The right side of
(12) is a little delicate. Let a denote the number of ways of choosing M
given TV, P, Q. Then the right side of (12) is (£)α. There are f ^ 1 ] 3 ways to
choose a point from each N, P, Q. Of the choices, only [m\ι] are colinear
triples. The number m-spaces M containing three colinear points is [ ^ J ,
whereas the number containing three points in general position is \2™ll\.
Thus a is at most

a =

U 1 J L 1 J

= qm2 + 2m-2(\ + Aq~ι + θ(q~2))

by (7) for m > 3. For m = 2 we get [^!Γ2

1] = 1 a n ^

α < (^6 4- 3ήf5 4 <9(g4)) 4(ήr5 4 θ(^r4)) = q6 4 4^5F 4 θ(ήr4).

Thus

Again the upper bound is an overestimate because some choices for
M meet N, P9 Q respectively in /*-, k- and /-spaces, where /z, k, / > 0,
A + fc + / > 1. Each Af is multiply counted, the number of times depend-
ing on the relative positions of the /z-, k~ and /-spaces, call them H, K, L.
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Suppose (H 4- K) Π L = Z, a z-dimensional projective subspace of
L. Given h, k, I and z we can choose if, AT and L in the following manner.

First we assume by a proper choice of basis that when N9 P, Q are
considered as (m 4- l)-dimensional vector subspaces of (2m 4- 2)-
dimensional space we have bases ev... 9em+1 for N,fv.. -Jm+ι for P, and
eι + fv->em+i + /w+i f°Γ £?> where the e, and/) are all independent. Let
Π^ be the projection from Q to N9 and Π P from β to P, Π^ίβ^ 4- /)) = ei9

ΐlP(ei 4- /)) = /). The condition that (H + K) Π L = Z is equivalent to
U~N\H) Π Π p 1 ^ ) Π I = Z. Thus we can choose Z t f ^ 1 ] choices), then
H D Π^ίZ) and ϋΓ 2 Π P (Z) (at most [^Γ/][^ΓZ

Z] choices). Finally we
choose L (at most [7-Γ/] choices). Then M meeting TV, P, Qin H, K and L
can be chosen in at most [^"iV^+^Λl ways, which is the number of all
M containing H, K, L. The number of times each M is counted by ar is

1] ί'ΐ1]- S o ώe amount a! - a of the overestimate is at most

f 2 m - h - k - l + z ]\h + 1 ]\k + l l f / + l l
[ m - h - k - 1 + z - 1 1 1 1 JL 1 JL 1 J

= θ(qm2+2m-4)

since h, k, I > 0 and & + £ + / > 1. These estimates give a' > a > a' —
a", so α = q"<2+2m-2^ + 4q-i + o(q~2)), which establishes (12).

To complete the proof of Theorem 3, we use the same polynomial as
in Theorem 1, namely,

(i - l)(i - 3)(Ϊ - 4) = β( l) - lθ( j ) + 12/ - 12.

Thus

0< Σ

= 6Σ(^1-ioΣ(^)« ί + i2Σ^

and using (9)-(12)

+ 2q-χ + 0{q~2))

-12qml+2m+ι(l + q-1 + θ{q-2)).
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Letting x = 2q — k, expanding, and collecting terms gives a polynomial
in q with leading term (6 - 4k)qm2 + 2m. This is negative for k > 3/2.
Thus for q large enough, the polynomial is negative, a contradiction. Since
k must be integral, we must have x > 2q — 1. This completes the proof.

Next we consider the case of the projective plane. Recall that a
blocking set here is a set of points meeting all lines but containing none.
We note that the result below agrees with that of Bruen [2], [3].

THEOREM 4. Let S be a blocking set in a projective plane of order q.

Then \S\> q + jq + 1.

Proof, The proof uses the same technique as before, but now with a
different polynomial.

Let \S\ = q + k. Let ni denote the number of lines containing exactly
/ points of S. Then n0 = 0. Further, let t denote the largest number of
points of S on any line, say the line L. Then there must be a point P on L
not in S. There are q lines other than L meeting P, and each has at least
one point of S on it. Thus \S\ > t + q. Hence k > t, and we have nt = 0
for / > k. Thus, in the summations below we need only sum up to / = k.
We need three relations now:

(13) Σn, =
ι = l

k

(14) Σ''", =

(13) just enumerates all the lines. (14) counts in two ways the pairs
(P; L) where P is a point of S and L a line containing it. (15) counts all
({ P, Q} L) where P and Q are points of S on L.

Now for 1 < / < k the polynomial

(i-l)(k-i)= -2

is non-negative. Of all quadratic polynomials with leading term —i2 and
non-negative for 1 < i < k, this one has the smallest value for 1 < i < k.
Thus we might expect the sharpest inequality to result. Using (13)—(15) we
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get

k k , , . , >

0 < Σ (i + 1)(* - »)»/ = Σ - 2 ' + Id - k)nt

A: A:

Σί' + iK^-O^ - Σ
i - l i - l

= q({\ - kf - q).

This implies q <{\ — k)2,oτ k > {q + 1, completing the proof.

The authors wish to thank A. Dress, N. M. Singhi and S. Sane for
helpful comments.
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