COMPOSITION ALGEBRAS OF POLYNOMIALS

J. L. Brenner
Dedicated to the memory of Ernst G. Straus

Briefly, a composition algebra A involves two operations: addition and composition (substitution of polynomials). Let C be an arbitrary commutative ring, and $C[x, y, \ldots]$ the ring of polynomials in the indeterminates x, y, \ldots with coefficients from C. Addition of polynomials is commutative; composition is associative, and is distributive (on one side) over addition. (Notice that if the number of indeterminates is greater than 1 , the operation of composition is not a binary operation.) We find the ideal structure of A in some special cases. In particular, the ideals of A are all principal (generated by a single element) if C is a principal ideal ring (e.g. \mathbf{Z}) and the number of variables is $1: A=(C[x],+, \circ)$, provided further that for all $c \in C, 2 \mid c+c^{2}$. [An example is the algebraic integers in $Q(\sqrt{-7})$.]

We start in a general context. An ideal J in A is the kernel of a homomorphism. Thus J enjoys these three properties:
1.01. J is a module over C : If $c_{1}, c_{2} \in C, t_{1}, t_{2} \in J$, then $c_{1} t_{1}+c_{2} t_{2}$ $\in J$.
1.02. If $t \in J$ and $n_{1}, n_{2}, \ldots \in A$, then $t(x, y, \ldots) \circ\left[n_{1}, n_{2}, \ldots\right] \equiv$ $t\left(n_{1}, n_{2}, \ldots\right)$ lies in J.
1.03. If $t_{2}, t_{3}, \ldots \in J$ and if $n_{1}, n_{2}, \ldots \in A$, then $n_{1}(x, y, \ldots) \circ$ $\left[n_{2}+t_{2}, n_{3}+t_{3}, \ldots\right]-\left(n_{1}(x, y, \ldots) \circ\left[n_{2}, n_{3}, \ldots\right]\right)$ lies in J.

Since n_{1} is a sum of monomials, it follows from 1.01 that 1.03 can be replaced by the simpler requirement
1.04.

$$
\Pi_{i=2}^{k}\left(n_{i}+t_{l}\right)^{\alpha_{1}}-\prod_{i=2}^{k} n_{i}^{\alpha_{i}} \quad \text { lies in } J .
$$

1.05. Definition. An ideal $J=\langle a\rangle$ in A is principal if J is the smallest ideal containing $a . A$ is a principal ideal composition algebra (in short, A is principal) if every ideal is principal.

Even if C is a principal ideal ring (say $C=\mathbf{Z}$) it can be seen that A is not necessarily principal, so the property of being principal is not inherited. Recall the same situation in ordinary ring theory: $\mathbf{Z}[x, y]$ is not a principal ideal ring.

When the number of indeterminates is 1 , the situation is more tractable.
2. Ideals in the composition algebra $A=(\mathbf{Z}[x],+, \circ)$. In this section, all ideals in A are described, in case the number of variables is 1 , and in case $C=\mathbf{Z}$. "Described" means that the additive basis for J is given, J being taken as a module over C. It turns out that A is principal in this case. At bottom, the proof depends on a result in [1]. The present paper, by its dedication, recalls the contribution of E. G. Straus as referee of [1].

Note that if the number of variables is $1, A$ is a near ring. The characterization of an ideal J in A specializes as follows.
2.01. If $t_{1}, t_{2} \in J$ then $t_{1}+t_{2} \in J$.
2.02. If $t_{1} \in J$ and $n \in A$, then $t_{1} \circ n \in J$.
2.03. If $\alpha \geq 1, t \in J, n \in A$, then

$$
(n+t)^{\alpha}-n^{\alpha} \text { lies in } J
$$

2.04. Lemma. If t lies in the ideal $J, \alpha \geq 1$, then t^{α} lies in J.

Proof. Take $n=0$ in 2.03.
2.05. Corollary $(n+t)^{\alpha}-n^{\alpha}-t^{\alpha}$ lies in J.
2.06. Lemma. If n_{1} is any polynomial, and if t lies in the ideal J, then $n_{1}(t)-n_{1}(0)$ lies in J.

Proof. If $n_{1}(x)=\sum_{0}^{k} a_{\alpha} x^{\alpha}$, then $n_{1}(t)-n_{1}(0)=\sum_{1}^{k} a_{\alpha} t^{\alpha}$. Use 2.04.
The next series of lemmas is directed to finding the smallest ideal $J(1)$ that contains 1.
2.07. Lemma. $J(1)$ contains $2 x^{\nu}$ for $\nu=1,2, \ldots$

Proof. Use 2.05 with $n=x^{\nu}, t=1, \alpha=2:\left(x^{\nu}+1\right)^{2}-\left(x^{\nu}\right)^{2}-1=$ $2 x^{\nu}$.
2.08. Lemma. $J(1)$ contains $x^{2}+x$.

Proof. Use 2.05 with $\alpha=3, t=1, n=x$, together with 2.07 .
2.09. Lemma. Modulo $J(1), x^{\nu} \equiv x^{2 \nu} \equiv x^{4 v} \equiv \cdots \equiv x^{2^{s} \nu}, s=1,2, \ldots ;$ $\nu=1,2, \ldots$

Proof. $\left(x+x^{2}\right) \circ x^{\nu}=x^{\nu}+x^{2 \nu}$.
2.10. Corollary. $J(1)$ contains $x+x^{4}, x+x^{8}, x^{2}+x^{8}, x^{20}+x^{5}$, $x^{3}+x^{6}, x^{19}+x^{38}$.
2.11. Lemma. $J(1)$ contains $x^{5}+x, x^{35}+x^{7}, x^{25}+x^{5}, x^{25}+x$.

Proof. $\left(x+x^{2}\right)^{3} \equiv x^{3}+x^{4}+x^{5}+x^{6} \equiv x+x^{5}$.
2.12. Lemma. $J(1)$ contains $x+x^{17}$.

Proof. $\left(x+x^{4}\right)^{5}-\left(x+x^{4}\right) \circ x^{5} \equiv x^{8}+x^{17}$.
2.13. Lemma. $J(1)$ contains $x+x^{19}$.

Proof. $\left(x^{4}+x^{17}\right)^{3}-\left(x^{4}+x^{17}\right) \circ x^{3} \equiv x^{25}+x^{38}$. Use 2.11.
2.14. Lemma. $J(1)$ contains $x^{7}+x^{19}$.

Proof. $\left(x+x^{17}\right)^{3}-\left(x+x^{17}\right) \circ x^{3} \equiv x^{19}+x^{35}$.
2.15. Lemma. $J(1)$ contains $x+x^{7}$.

Proof. Combine 2.13, 2.14.
2.16. Theorem. For $\nu=1,2, \ldots, J(1)$ contains $x^{3 \nu+1}+x, x^{3 \nu-1}+x$.

Proof by induction. For $\nu=1,2$ Theorem 2.16 is already proved. Suppose $\mu \geq 3$. Then

$$
\left(x^{4}+x^{3 \mu-4}\right)^{3}-\left(x^{4}+x^{3 \mu-4}\right) \circ x^{3} \equiv x^{3 \mu+4}+x^{6 \mu-4}
$$

By induction hypothesis, $x+x^{3 \mu-2}$ lies in $J(1)$, so also does $\left(x+x^{3 \mu-2}\right) \circ x^{2}=x^{2}+x^{6 \mu-4}$. Hence $x^{3 \mu+4}+x^{2}$ lies in $J(1)$. Similarly, $\left(x^{2}+x^{3 \mu-2}\right)^{3}-\left(x^{2}+x^{3 \mu-2}\right) \circ x^{3} \equiv x^{3 \mu+2}+x^{6 \mu-2} \quad$ lies in $J(1) ;$
and

$$
x^{3 \mu+2}+x^{6 \mu-2}-\left(x+x^{3 \mu-1}\right) \circ x^{2} \equiv x^{3 \mu+2}+x^{2}
$$

The inductive step from $x^{3 \mu \pm 1}+x$ to $x^{3 \mu+6 \pm 1}+x^{2}$ has been completed.
2.17. Theorem. $J(1)$ contains $x^{3 \nu}+x^{3}$ for $\nu=1,2 \ldots$

Proof. $\quad x^{3}+x^{6}=\left(x+x^{2}\right) \circ x^{3} ; x^{3}+x^{9} \equiv\left(x+x^{4}\right)^{3}$ $-\left(x+x^{2}\right) \circ x^{6}$. If $3 v$ is a power of 3 , then $x^{3 \nu}+x^{9}=\left(x^{\nu}+x^{3}\right) \circ x^{3}$. This gives an inductive proof, since $x^{3 \nu}+x^{3} \equiv x^{3 \nu}+x^{9}+\left(x^{9}+x^{3}\right)$.

Suppose 3ν is not a power of 3 , say $3 \nu=\mu \rho$ with μ a power of 3 $(\mu \geq 3)$ and ρ prime to $3, \rho>1$. Then $x^{\mu \rho}+x^{3} \equiv x^{\mu \rho}+x^{\mu}=\left(x^{\rho}+x\right) \circ$ x^{μ}.
2.18. Theorem. The module $J(1)$ with basis

$$
\left\langle 1,2 x^{\nu}, x^{3 \nu+1}+x, x^{3 \nu-1}+x, x^{3 \nu}+x^{3} \mid \nu=1,2, \ldots\right\rangle
$$

is an ideal in $(\mathbf{Z}[x],+, \circ)$.
Proof. Under the natural mapping $\mathbf{Z}[x] \rightarrow \mathbf{Z}_{2}[x]$, the module $J(1)$ is mapped into the ideal J of [1]. Thus $J(1)$ is the full inverse image of an ideal, so $J(1)$ is an ideal. (A second proof is given in §4.)
2.19. Remark. 2.18 can be used to derive certain properties of binomial and multinomial coefficients.
2.20. Remark. It turns out that $J(1)$ is multiplicatively closed.

2.21. Theorem. Each of the modules

$$
\begin{aligned}
& V(1)=\left\langle 1,2 x^{\nu}, x^{\nu}+x \mid \nu=1,2, \ldots\right\rangle \\
& T(1)=\left\langle 1,2 x^{\nu}, x^{3 \nu+1}+x, x^{3 \nu-1}+x, x^{3 \nu} \mid \nu=1,2, \ldots\right\rangle
\end{aligned}
$$

is an ideal.
See [1].
The proofs of 2.22-2.25 are left to the reader.
2.22. Theorem. If c is any integer, $c J(1), c T(1), c V(1)$ are ideals. $c J(1)=J(c)$ is the smallest ideal that contains c. If c, d are constants, $c \mid d$, then $J(d) \subset J(c), d V(1)=V(d) \subset V(c), d T(1)=T(d) \subset T(c)(j u s t ~ a s$, in ring theory, $(d) \subset(c))$.
2.23. Theorem. $c \mathbf{Z}[x], T(c), V(c), J(c)$ are the only ideals in $(\mathbf{Z}[x],+, \circ)$, with inclusion relations given in 2.22 , and in the diagram

2.24. Theorem. Every ideal J in A is closed under multiplication, that is, if $t_{1}, t_{2} \in J$ then $t_{1} t_{2} \in J$.
2.25. Theorem. $(\mathbf{Z}[x],+, \circ)$ is a principal-ideal composition algebra, that is, a principal ideal near ring.
3. Ideals in the composition algebra $A_{m}=\left(\mathbf{Z}_{m}[x],+, \circ\right)$ when m is odd. If m is an odd prime, the ideals in A_{m} were given in [2]. If m is odd and composite, the results are similar but not identical. The proof of Lemma 3.01 appears in [2].
3.01. Lemma. Every (near-ring) ideal in A_{m} is a ring ideal in the polynomial ring $\mathbf{Z}_{m}[x]$.

Proof. Let J be an ideal in $A_{m}, f \in J$. It has to be proved that if $g \in A_{m}$, then $f g \in J$. First, $(f+g)^{2}-g^{2}-f^{2}=2 f g \in J$, because of 2.03, 2.04. Next, 2 is invertible, and by $2.06,\left(\frac{1}{2} x\right) \circ(2 f g)-\frac{1}{2} 0 \equiv f g$ lies in J.

If the ideal J contains a nonzero constant $c, \S 2$ describes J. If the ideal J contains a polynomial that is not 0 at every place in \mathbf{Z}_{m}, then J contains a nonzero constant, by 2.02 . Hence the only interesting ideals in A_{m} consist of polynomials that take only the value 0 ; because of 3.01 , each such ideal has a single "basis." Note that the (single polynomial) basis is the generator of a module with coefficients from $\mathbf{Z}_{m}[x]$ (not from \mathbf{Z}_{m} as in §2).

We first examine the case $m=p^{r}, p$ an odd prime, $r \geq 1$. If the ideal J contains a (nonzero) constant c, then J contains $c \mathbf{Z}_{m}[x]$. Otherwise, every polynomial in J is 0 at every place in \mathbf{Z}_{m}. Every such polynomial is a multiple of a distinguished one, $f_{p, r}(x)$, of lowest degree:

$$
f_{p, r}(x)=x^{r}\left(x^{\phi\left(p^{r}\right)}-1\right)
$$

This assertion follows from the fact that if two polynomials vanish at a place, so also does their gcd. We have to consider the ring ideals $\left(n_{1}(x) f_{p, r}(x)\right)$.
3.02. Lemma. If $n_{1}(x)$ is an arbitrary polynomial in $\mathbf{Z}_{m}[x]$, then the ring ideal $\left(n_{1}(x) f_{p, r}(x)\right)$ is an ideal in the composition algebra A_{m}.

Proof. The properties to check are 2.01, 2.02, 2.03. 2.01 is obviously satisfied. As for 2.02 , note that

$$
\begin{aligned}
\left(n_{1}(x) f_{p, r}(x)\right) \circ n(x) & =n_{1}(n(x)) f_{p, r}(n(x)) \\
& =n_{1}(n(x)) n(x)^{r}\left(n(x)^{\phi\left(p^{r}\right)}-1\right) .
\end{aligned}
$$

It can be checked that the last factor is a multiple of $x^{\phi\left(p^{\prime}\right)}-1$, so that 2.02 is satisfied. This leaves 2.03 . Here, the binomial theorem shows that

$$
\left(n(x)+n_{1}(x) f_{p, r}(x)\right)^{\alpha}-n(x)^{\alpha}
$$

is a multiple of $n_{1}(x) f_{p, r}(x)$, and Lemma 3.02 is verified.
If m is odd but not a prime power, criteria 2.01-2.03 must be adjusted. 2.01 must be changed to read
3.021. If $c_{1}, c_{2} \in \mathbf{Z}_{m}$ and $t_{1}, t_{2} \in J$, then $c_{1} t_{1}+c_{2} t_{2} \in J$. The conditions 3.021, 2.02, 2.03 characterize ideals in A_{m}.

If m is odd, there are ideals in A_{m} that contain nonzero constants. Such an ideal can be a homomorphic image of $J(c)$, or can be the union of such images (since \mathbf{Z}_{m} is not necessarily a principal ideal ring).

The interesting ideals in A_{m} are a little more complicated to describe when m is divisible by several primes. The difficulty lies just in finding the polynomials of lowest degree that are zero at every place in \mathbf{Z}_{m}. Suppose

$$
m=p_{1}^{\alpha(1)} \cdots p_{k}^{\alpha(k)} .
$$

Then a polynomial f of lowest degree that is zero at every place in \mathbf{Z}_{m} is

$$
f_{m}(x)=\operatorname{LCM}\left[f_{p_{1}, \alpha(1)}(x), \ldots, f_{p_{k}, \alpha(k)}(x)\right] .
$$

The rest of the theory is unaltered.
If m is even, it is not true that every ideal in the composition algebra A_{m} is a ring ideal in $\mathbf{Z}_{m}[x]$. See [2], where the case $m=2$ (among others) is fully discussed.
3.03. Problem. Describe the ideals in A_{m} if m is even.
4. Ideals in the composition algebra $A=(C[x],+, \circ)$ if C is a principal ideal ring. Even if C is a principal ideal ring, the ideals in $A=(C[x],+, \circ)$ can be hard to describe. The task is much simplified in the presence of the additional condition 4.01.
4.01. Condition. If $c \in C$, then $c+c^{2}$ is a multiple of 2 .

Note that this condition is trivially satisfied if 2 is invertible; but there are many rings in which 4.01 is satisfied, but 2 is not invertible. For instance, let C be the ring of algebraic integers in $Q(\sqrt{m}), m$ squarefree. If m is odd, the ring C is the set

$$
\left\{\left.\frac{1}{2}(a+b \sqrt{m}) \right\rvert\, a, b \text { of the same parity }\right\} .
$$

The condition $2 \mid c+c^{2}$ requires that m satisfy the further condition $m \equiv 1$ $\bmod 4$.

In the lemmas and theorems of this section, 4.01 is assumed to hold. We try to characterize the smallest ideal $J(c)$ that contains c.
4.02. Lemma. If an ideal J in A contains f, and if $c \in C$, then J contains cf.

Proof. $(c x) \circ f-(c x) \circ 0=c f$. See 3.01.
4.03. Lemma. If the ideal $J(c)$ in A contains the constant c, then $J(c)$ contains $2 c x^{\nu}, \nu=1,2, \ldots$

Proof. $\left(x^{\nu}+c\right)^{2}-x^{2 \nu}-c^{2}=2 c x^{\nu}$.
4.04. Lemma. $J(c)$ contains $c x^{2}+c^{2} x$.

Proof. $(x+c)^{3}-x^{3}-c^{3} \equiv c x^{2}+c^{2} x$.
4.05. Corollary. $J(c)$ contains $c\left(x^{2}+x\right)$.

Proof. $c\left(x^{2}+x\right) \equiv c x^{2}+c^{2} x+\left(c+c^{2}\right) x$.
4.06. Remark. $J(c)$ contains $\left(c^{\mu}+c^{\nu}\right) x^{\sigma}, \mu \geq \nu \geq 1, \sigma \geq 1$.
4.07. Theorem. $J(c)$ contains $c J(1)$.

The proof is parallel to the proof of the corresponding result in $\S 2$.
It is not obvious that $J(1)$ is an ideal in the present context; this has to be proved. A direct argument follows, based on several lemmas.
4.08. Lemma. $J(1)$ is multiplicatively closed. Moreover,

$$
x^{3} \circ\left\langle x^{3 \nu+1}+x, x^{3 \nu-1}+x, x^{3 \nu}+x^{3}\right\rangle \subset J(1)
$$

4.09. Remark. None of $V(1), T(1), J(1)$ is an ordinary ring ideal.
4.10. Lemma. If $n(x)$ is any polynomial, then each of $x^{3 \nu+1}+x$, $x^{3 \nu-1}+x, x^{3 \nu}+x^{3}$ admits multiplication by $(n(x))^{3}$.

Proof. Take $n(x)=\sum_{0}^{k} a_{i} x^{i}$. Then $(n(x))^{2} \equiv \sum_{0}^{k} a_{i}^{2} x^{2 i} \bmod 2$, that is, the two sides of the congruence differ by twice some polynomial. Hence

$$
(n(x))^{3} \equiv\left(\sum_{0}^{k} a_{i} x^{2 i}\right)\left(\sum_{0}^{k} a_{J} x^{j}\right) \quad \bmod 2
$$

since by hypothesis, $2 \mid a_{i}+a_{i}^{2}$. The product can be computed. Some of the terms are $a_{t}^{2} x^{3 i}(0 \leq i \leq k)$; see second assertion of Lemma 4.08. The remaining terms in the product occur in pairs: $a_{i} a_{j}\left(x^{2 i+j}+x^{2 j+i}\right)$. The two exponents are either both prime to 3 or both divisible by 3 , since their sum is $(2 i+j)+(2 j+i)=3(i+j)$. The lemma is proved.
4.11. Lemma. If n is an arbitrary polynomial, then $\left(x^{2}+x\right) \circ n(x)=$ $(n(x))^{2}+n(x)$ lies in $J(1)$ and its constant term is divisible by 2.

Proof. Take $n(x)=\sum_{0}^{k} a_{t} x^{l}$. Then

$$
(n(x))^{2}+n(x) \equiv \sum_{0}^{k}\left(a_{t} x^{2 i}+a_{i}^{2} x^{t}\right) \equiv \sum_{0}^{k} a_{i}\left(x^{2 i}+x^{i}\right)
$$

4.12. Lemma. $\left(x^{4}+x^{2}\right) \circ n(x)$ lies in $J(1)$.

Proof. $\left(x^{4}+x^{2}\right) \circ n(x)=\left(x^{2}+x\right) \circ x^{2} \circ n(x)$.
4.13. Lemma. $\left(x^{5}+x^{4}\right) \circ n(x)$ lies in $J(1)$.

Proof. $(n(x))^{5}+(n(x))^{4}=(n(x))^{3}\left[(n(x))^{2}+n(x)\right]$. According to 4.11, the [] lies in $J(1)$ and has zero constant term. Apply 4.10.
4.14. Corollary. $\left(x^{5}+x\right) \circ n(x)$ lies in $J(1)$.

Proof. $x^{5}+x=\left(x^{5}+x^{4}\right)+\left(x^{4}+x^{2}\right)+\left(x^{2}+x\right)$. Apply 4.11, 4.12, 4.13.

The last four lemmas can be generalized.
4.15. Lemma. if m is composite and not divisible by 3, then $\left(x^{m}+x\right) \circ n(x)$ lies in $J(1)$.

Proof. Set $m=u v, 1<u \leq v<m$. Then

$$
\begin{aligned}
\left(x^{m}+x\right) \circ n(x) & \equiv\left(x^{u v}+x^{u}+x^{u}+x\right) \circ n(x) \\
& =\left(x^{u v}+x^{u}\right) \circ n(x)+\left(x^{u}+x\right) \circ n(x) \\
& =\left(x^{v}+x\right) \circ x^{u} \circ n(x)+\left(x^{u}+x\right) \circ n(x) .
\end{aligned}
$$

The terms lie separately in $J(1)$ by an obvious induction hypothesis, based on 4.16.
4.16. Lemma. $\left(x^{3 \nu+1}+x\right) \circ n(x),\left(x^{3 \nu+2}+x\right) \circ n(x)$ lie in $J(1)$.

Proof.

$$
\begin{aligned}
\left(x^{3 \nu+1}+x^{4}\right) \circ n(x) & =(n(x))^{3}\left((n(x))^{3 \nu-2}+n(x)\right) \\
\left(x^{3 \nu+2}+x^{4}\right) \circ n(x) & =(n(x))^{3}\left(n(x)^{3 \nu-1}+n(x)\right)
\end{aligned}
$$

Apply a suitable induction hypothesis, together with 4.10.
4.17. Lemma. $\left(x^{6}+x^{3}\right) \circ n(x)$ lies in $J(1)$.

Proof. $\left(x^{6}+x^{3}\right) \circ n(x)=\left(x^{2}+x\right) \circ x^{3} \circ n(x) .$. Apply 4.11.
4.18. Lemma. $\left(x^{9}+x^{6}\right) \circ n(x)$ lies in $J(1)$.

Proof. $\left(x^{9}+x^{6}\right) \circ n(x)=(n(x))^{3}\left[n(x)^{6}+n(x)^{3}\right]$. Apply 4.17, 4.10.
4.19. Lemma. If $\nu>3,\left(x^{3 \nu}+x^{6}\right) \circ n(x)$ lies in $J(1)$.

Proof.

$$
\left(x^{3 \nu}+x^{6}\right) \circ n(x)=(n(x))^{3}\left[(n(x))^{3(\nu-1)}+(n(x))^{3}\right]
$$

Apply 4.10 together with a suitable induction hypothesis.
Lemmas 4.11-4.19 show that $J(1)$ satisfies conditions 2.01-2.02. Now we turn to condition 2.03.
4.20. Lemma. The cosets of $J(1)$ in A are represented by $1, x, x^{3}, 1+x$, $1+x^{3}, x+x^{3}, 1+x+x^{3}$.
4.21. Lemma. For $\alpha=1,2,3$, if $n(x)$ is any polynomial and if $t \in J(1)$, then $(n+t)^{\alpha}-n^{\alpha}-t^{\alpha}$ is in $J(1)$.

Proof. For $\alpha=1,2$ this is obvious. For $\alpha=3$, note that $\bmod 2$, $(n+t)^{3} \equiv n^{3}+n^{2} t+n t^{2}+t^{3}$, so that $(n+t)^{3}-n^{3}-t^{3} \equiv n^{2} t+n t^{2}$. Since $\left(n_{1}+n_{2}\right)^{2} \equiv n_{1}^{2}+n_{2}^{2} \bmod 2$, and since $\left(t_{1}+t_{2}\right)^{2}=t_{1}^{2}+t_{2}^{2} \bmod 2$, the form $n^{2} t+n t^{2}$ is additive:

$$
\begin{aligned}
& \left(n_{1}+n_{2}\right)^{2}\left(t_{1}+t_{2}\right)+\left(n_{1}+n_{2}\right)\left(t_{1}+t_{2}\right)^{2} \\
& \quad \equiv n_{1}^{2} t_{1}+n_{1} t_{1}^{2}+n_{2}^{2} t_{2}+n_{2} t_{2}^{2}+n_{1}^{2} t_{2}+n_{2}^{2} t_{1}+n_{1}+n_{1} t_{2}^{2}+n_{2} t_{1}^{2} \\
& \quad \equiv\left(n_{1}^{2} t_{1}+n_{1} t_{1}^{2}\right)+\left(n_{2}^{2} t_{2}+n_{2} t_{2}^{2}\right)+\left(n_{1}^{2} t_{2}+n_{1} t_{2}^{2}\right)+\left(n_{2}^{2} t_{1}+n_{2} t_{1}^{2}\right)
\end{aligned}
$$

Thus the lemma has to be checked only for the atoms.
4.22. Lemma. For $\alpha \geq 4$, if $n(x)$ is any polynomial and if $t \in J(1)$, then $(n+t)^{\alpha}-n^{\alpha}-t^{\alpha} \in J(1)$.

Proof. The inductive argument proceeds in steps of 3. Modulo 2, note that $(n+t)^{3} \equiv n^{3}+n^{2} t+n t^{2}+t^{3}$. Thus, mod 2,

$$
\begin{array}{r}
(n+t)^{\alpha}-n^{\alpha}-t^{\alpha} \equiv\left(n^{3}+n^{2} t+n t^{2}+t^{3}\right)\left(n^{\alpha-3}+t^{\alpha-3}+s\right) \tag{4.23}\\
s \in J(1)
\end{array}
$$

This uses the inductive hypothesis that $(n+t)^{\alpha-3}-n^{\alpha-3}-t^{\alpha-3}$ is a polynomial s in $J(1)$. There are three cases: $\alpha=0,1,-1 \bmod 3$.

If $\alpha \equiv 0 \bmod 3$, then also $\alpha-3 \equiv 0 \bmod 3$. Complete the proof by referring to $4.10,4.21$.

If $\alpha \equiv 1 \bmod 3$, we assume wolg that the constant term in t is 0 . The terms in the expansion of (4.23) that are not taken care of by 4.10 are

$$
\left(n^{2} t+n t^{2}\right) s+t^{3} s+\left(n^{2} t+n t^{2}\right) t^{\alpha-3}+n^{\alpha-4}\left(n^{3} t+n^{2} t^{2}+n t^{3}\right)
$$

Of these four terms, the first three are in $J(1)$ by 4.21, 4.08. It remains to prove that $n^{3} t+n^{2} t^{2}+n t^{3}$ is in $J(1)$. As to $n^{3} t$, see 4.10. Write $n^{2} t^{2}+n t^{3}$ $=\left(n^{2} t+n t^{2}\right) t$ to complete the proof.

If $\alpha \equiv-1 \bmod 3$, again assume wolg that the constant term in t is 0 . The terms in the expansion of (4.23) that require argument are $n^{\alpha-5}\left(n^{4} t+n^{3} t^{2}+n^{2} t^{3}\right)$. It has to be proved that $n^{4} t+n^{2} t^{3}$ is in $J(1)$. By 4.21, $n^{4} t \equiv n^{2} t^{2} \bmod J(1)$, and both $n^{2} t^{2}, n^{2} t^{3}$ have zero constant term. So it has to be proved that $n^{2}\left(t^{2}+t^{3}\right) \in J(1)$. This last assertion follows from Lemma 4.24, with the application cited afterwards.
4.24. Lemma. If $t(x)$ is in $J(1)$ [and if $t(0)=0]$ then $p(x)=t+t^{2}$ is a polynomial in x with $p(0)=0$ and such that the number of terms with exponent $\equiv 0 \bmod 3$ is even; the number of terms with exponent $\equiv 1 \bmod 3$ is even; the number of terms with exponent $\equiv-1 \bmod 3$ is even.

Proof. $t_{1}+t_{2}+\left(t_{1}+t_{2}\right)^{2} \equiv\left(t_{1}+t_{1}^{2}\right)+\left(t_{2}+t_{2}^{2}\right) \bmod 2$. Also the assertion of the lemma is valid for each atom (each generator) in $J(1)$.

Application of the lemma. If $p(x)$ has the properties stated, then so also does $m(x) p(x)$, where $m(x)$ is any polynomial, provided $p(0)=0$. Set $m(x)=n^{2} t$.
4.25. Theorem. if C is a principal ideal ring such that for every $c \in C$, $c+c^{2}$ is a multiple of 2 , then the only ideals in the (near ring or) composition algebra $(C[x],+, \circ)$ are $c C[x], c T(1), c V(1), c J(1)$, with $J(1)$, $V(1), T(1)$ defined as in 2.18, 2.21. The set of inclusion relations is the obvious set, together with those in the diagram below.

The near-ring (composition algebra) ideals are all principal in this case.
4.26. Corollary. Theorem 4.25 holds if C is the ring of algebraic integers in $Q(\sqrt{-\Delta})$, where $-\Delta$ is any one of $-3,-7,-11,-19,-43$, $-67,-163$.
4.27. Remark. If the hypotheses of 4.08 do not hold, then the smallest ideal $J(c)$ containing c contains also

$$
\begin{aligned}
& \left\langle c, 2 c x^{\nu},\left(c^{3}+c^{4}\right) x^{\nu},\left(c^{2}+c^{3}\right) x^{2 \nu}, c^{3}\left(x^{3 \nu+1}+x\right)\right. \\
& c^{3}\left(x^{3 \nu-1}+x\right), c^{3}\left(x^{3 \nu}+x^{3}\right), c^{2}\left(x^{6 \nu+3}+x^{3}\right) \\
& c^{2}\left(x^{6 \nu+5}+x^{5}\right), c^{2}\left(x^{6 \nu+7}+x^{7}\right) \\
& \left(c^{2}+c^{3}\right)\left(x^{2 \nu+3}+x^{3}\right)|\nu=1,2, \ldots\rangle
\end{aligned}
$$

However, the module with these generators need not be an ideal. (The assertion in 4.27 has a lengthy proof.)
4.28. Problem. Characterize the ideal $J(c)$ in a simple manner.
4.29. Problem. If C is the ring of Gaussian integers, is $J(1)$ the module (over C)

$$
\left\langle 1,2 x^{\nu},(1+i) x^{\nu}, x^{3 \nu+1}+x, x^{3 \nu-1}+x, x^{3 \nu}+x^{3} \mid \nu=1,2, \ldots\right\rangle ?
$$

What are the other ideals in $(C[x],+, \circ)$?
5. Properties of the binomial coefficients. The first two properties are easy.
5.01. Lemma. $C_{k}^{2 k}$ is even.
5.02. Lemma. If two of the lower suffixes of a multinomial coefficient are equal and positive, the coefficient is even.

More generally if there are r pairs of positive and equal suffixes, $C_{i, j, k, l}^{n} \ldots$ is divisible by $2^{r} .\left[C_{1,1,1,1}^{4}, C_{2,2,2,2}^{8}, C_{1,1,5,5}^{12}=2^{4} 3^{3} \cdot 7 \cdot 11\right.$ are all divisible by 4.]

The next lemmas all follow from 2.03. A direct proof of 5.03 is immediate; without using 2.03, the others seem less obvious.
5.03. Lemma. Among the $n+1$ binomial coefficients C_{k}^{n}, an even number are odd.
5.04. Lemma. Among those binomial coefficients $C_{3 \nu}^{n}$ with ν an integer and with $0<3 \nu<n$, an even number are odd.
(5.04 is immediate if n is a multiple of $3 ; 5.04$ is true without this restriction.) R. J. Evans showed me a direct proof of 5.04 .
5.05. Lemma. Let S be the collection of those multinomial coefficients $C_{i j k l m}^{n}$ that are odd, and in which $0<i<n$, subject to the further restriction $j+m \equiv k \bmod 3$. Then S has odd cardinality.
5.06. Lemma. The cardinality of the set

$$
\begin{array}{r}
\left\{C_{i_{0}, i_{1}, \ldots, r_{r}}^{n} \mid 0<i_{0}<n, i_{1}+2 i_{2}+\cdots+r i_{r} \equiv 0 \bmod 3\right. \\
\\
\left.\quad C_{i_{0}, i_{1}, \ldots, i_{r}}^{n} \text { is odd }\right\}
\end{array}
$$

is even.
5.07. Theorem. The assertion of the preceding number remains true if the congruence $\sum j \cdot i_{j} \equiv 0 \bmod 3$ is replaced by the congruence $\sum a(j) i_{j} \equiv 0$ $\bmod 3$, where $a(j)$ are arbitrary integers.

This conclusion is obtained by noting that the polynomial $\left(1+\sum_{j>0} x^{a(j)}\right)^{n}-1^{n}-\left(\sum x^{a(j)}\right)^{n}$ must lie in $J(1)$.

Acknowledgment. Professor Denis Floyd made valuable critical suggestions.

References

[1] J. L. Brenner, Maximal ideals in the near ring of polynomials module 2, Pacific J. Math., 52 (1974), 595-600.
[2] E. G. Straus, Remark on the preceding paper, ideals in near rings of polynomials over a field, Pacific J. Math., 52 (1974), 601-603.

Received July 19, 1984

10 Phillips Rd.
Palo Alto, CA 94303

