p-ADIC INTEGRAL TRANSFORMS ON COMPACT SUBGROUPS OF \mathbf{C}_{p}

Neal Koblitz

Abstract

Let p be a fixed prime, and let C_{p} denote the p-adic completion of the algebraic closure of \mathbf{Q}_{p}. For d a fixed positive integer prime to p, set $X=X_{d}=\lim _{\leftarrow_{N-}-} \mathbf{Z} / d p^{N} \mathbf{Z}$. For example, $X_{1}=\mathbf{Z}_{p}$. We shall first discuss the "inverse Mellin" integral transform $f_{\mu}(\rho)=\int_{X} \rho(x) d \mu(x)$ for ρ a C_{p}-valued bounded measure on X. We then discuss a second type of p-adic integral transform, which to a continuous function $f(x)$ on X associates the analytic function whose Taylor expansion coefficients are $f(n)$. Thirdly, for σ a compact subset of \mathbf{C}_{p} the p-adic Stielties transform $\varphi(z)=\int_{\sigma}(z-x)^{-1} d \mu(x)$ was shown by Barsky and Vishik to give a correspondence between measures μ on σ and a certain class of analytic functions φ on the complement of σ. We shall show that when σ is a compact subgroup of \mathbf{C}_{p}, the Stieltjes transform is closely related to the first two transforms. Some examples and arithmetic applications will also be discussed.

1. Let p, \mathbf{C}_{p} and $X=X_{d}$ be as above. The p-adic absolute value in \mathbf{C}_{p} is normalized so that $|p|_{p}=1 / p$. For $u \in \mathbf{C}_{p}$ with $|u|_{p}=1$, let \bar{u} denote its residue in $F_{p}^{\text {algcl }}$, and let $\omega(u)$ be the Teichmüller representative of u, i.e., the unique root of unity of order prime to p with the same residue in $F_{p}^{\text {algcl }}$. Set $\langle u\rangle=u / \omega(u)$. The ring X is isomorphic to the product of rings $\mathbf{Z} / d \mathbf{Z}$ and \mathbf{Z}_{p} under the two projections π_{1} and π_{2}, where for $x \in X$ we set $\pi_{1}(x)=$ the image of x modulo d and $\pi_{2}(x)=$ the limit of the image of x modulo p^{N} ("forget mod d information"). Let $a+d p^{N} \mathbf{Z}_{p}$ denote the set of $x \in X$ for which $x \equiv a \bmod d p^{N}$. Let $X^{m}=X_{d} \times \mathbf{Z}_{p}^{m-1}$ denote the product of X with $m-1$ copies of \mathbf{Z}_{p}.

A function $f(n)$ mapping the nonnegative integers to \mathbf{C}_{p} extends to a continuous function on X if and only if for every $\varepsilon>0$ we have $\left|f\left(n_{1}\right)-f\left(n_{2}\right)\right|_{p}<\varepsilon$ whenever $n_{1} \equiv n_{2} \bmod d p^{N}$ for N sufficiently large. In particular, for $u \in \mathbf{C}_{p}$ the function $f(n)=u^{n}$ extends to X if and only if $\left|u^{d}-1\right|_{p}<1$. In that case $u^{x}=\omega(u)^{\pi_{1}(x)}\langle u\rangle^{\pi_{2}(x)}$.

Let $U_{1} \subset \mathbf{C}_{p}$ denote the open unit disc about 1 , and let $U_{d}=\{u \in$ $\left.\mathbf{C}_{p}| | u^{d}-\left.1\right|_{p}<1\right\}$ denote the union of the open unit discs around the d th roots of unity. Let $U^{m}=U_{d} \times U_{1}^{m-1}$. We say that a set $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ $\in U^{m}$ is (multiplicatively) X^{m}-independent if the relation $u_{1}^{x_{1}} u_{2}^{x_{2}} \cdots u_{m}^{x_{m}}=$ 1 for $x=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$ implies $x=0$. By replacing u_{j} by $u_{j}^{d p^{N}}$ for
some large N, one sees that a set is multiplicatively X^{m}-independent if and only if its p-adic logarithms are \mathbf{Q}_{p}-linearly independent.

Let σ be a compact subset of $\mathbf{C}_{p}^{*}=\mathbf{C}_{p}-\{0\}$. Suppose that σ is a subgroup of \mathbf{C}_{p}^{*}. Then clearly $\sigma \subset U_{d}$ for some d. Choose d to be minimal with $\sigma \subset U_{d}$. It is not hard to see that there exists a finite X^{m}-independent set $u=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ such that $\sigma=\sigma_{\text {tors, } p} u^{X^{m}}$, where

$$
u^{X^{m}}=_{\operatorname{def}}\left\{u_{1}^{x_{1}} \cdots u_{m}^{x_{m}} \mid x_{1} \in X, x_{j} \in \mathbf{Z}_{p}(j>1)\right\}
$$

and $\sigma_{\text {tors, } p} \subset \sigma$ is the (finite) subgroup of p th power roots of unity. For some finite N_{0} any $u \in \sigma$ can be written uniquely in the form $u=\zeta u_{1}^{x_{1}}$ $\cdots u_{m}^{x_{m}}$ with $x \in X^{m}$ and $\zeta^{p^{N_{0}}}=1$. We say that σ has no p-torsion if $\sigma_{\text {tors }, p}=\{1\}$.

Let ρ denote a (continuous) one-dimensional representation of X^{m} in \mathbf{C}_{p}. The image $\rho\left(X^{m}\right) \subset \mathbf{C}_{p}^{*}$ is a compact subgroup; it has no p-torsion if ρ is faithful.

Let $\delta_{j} \in X^{m}$ be the m-tuple with 1 in the j th place and 0 everywhere else. Then the map $\rho \mapsto\left(\rho\left(\delta_{1}\right), \ldots, \rho\left(\delta_{m}\right)\right)$ gives a one-to-one correspondence between one-dimensional representations of X^{m} and U^{m}. For $u=\left(u_{1}, \ldots, u_{m}\right) \in U^{m}$, we sometimes let ρ_{u} denote the representation such that $\rho_{u}\left(\delta_{j}\right)=u_{j}$. Note that ρ_{u} is faithful if and only if u is X^{m}-independent.

Let μ be a measure on X^{m}, i.e., a bounded finitely additive map $U \mapsto \mu(U)$ from compact-open subsets $U \subset x^{m}$ to \mathbf{C}_{p}.

Definition. If μ denotes a measure on X^{m} and ρ denotes a representation of X^{m} in a finite dimensional \mathbf{C}_{p}-vector space, then the map

$$
\begin{equation*}
(\mu, \rho) \mapsto f_{\mu}(\rho)=\int_{X^{m}} \rho(x) d \mu(x) \tag{1.1}
\end{equation*}
$$

is called the p-adic inverse Mellin transform of μ.

Remarks. 1. The terminology comes by analogy with the transform $g_{f}(x)=\int x^{s} f(s) d s$ which is inverse to the Mellin transform $f(s)=$ $\int x^{s} g(x) d x / x$. Here the characters of \mathbf{R} are parametrized by x. In addition, this definition generalizes the construction used by Hà Huy Khoái [5] to invert the p-adic Mellin-Mazur transform.
2. If $m=1$ and ρ is a faithful one-dimensional representation of X_{d}, then this integral can be viewed as a Mellin-Mazur transform by a change of variables. Namely, we fix the image σ of ρ_{1}, and we let ρ vary over representations with image contained in σ. If we set $u_{1}=\rho_{1}(1)$, so that
$\sigma=u_{1}^{X_{d}}$, then such ρ are parametrized by $y \in X_{d}$, that is, $\rho_{y}=\rho_{1}^{y}$: $x \mapsto u_{1}^{x y}$. Finally, let ν be the measure on σ obtained by pulling back μ : $d \nu\left(u_{1}^{x}\right)=d \mu(x)$. In this situation

$$
\begin{equation*}
f_{\mu}\left(\rho_{1}^{y}\right)=\int_{X^{m}} u_{1}^{x y} d \mu(x)=\int_{\sigma} x^{y} d \nu(x)=L_{\nu}(y) \tag{1.2}
\end{equation*}
$$

which is the p-adic L-function corresponding to the measure ν on σ.
Theorem 1. The inverse Mellin transform $f_{\mu}\left(\rho_{u}\right)$ of a measure μ on X^{m} is a bounded analytic function of $u \in U^{m}$, and any bounded analytic function on U^{m} is the inverse Mellin transform of some measure.

Proof. Clearly the map

$$
u=\left(u_{1}, \ldots, u_{m}\right) \mapsto f_{\mu}\left(\rho_{u}\right)=\int_{X^{m}} u_{1}^{x_{1}} \cdots u_{m}^{x_{m}} d \mu\left(x_{1}, \ldots, x_{m}\right)
$$

is bounded and analytic. To go the other way, given f we define

$$
\begin{equation*}
\mu_{f}\left(a+d p^{N} X^{m}\right)=\frac{1}{d p^{N}} \sum_{\xi} \xi^{-a} f(\xi) \tag{1.3}
\end{equation*}
$$

where $a+d p^{N} X^{m}$ denotes the compact-open subset

$$
a_{1}+d p^{N_{1}} \mathbf{Z}_{p} \times a_{2}+p^{N_{2}} \mathbf{Z}_{p} \times \cdots \times a_{m}+p^{N_{m}} \mathbf{Z}_{p} \subset X^{m}
$$

in the notation p^{N} on the right N denotes $N_{1}+\cdots+N_{m}$; the sum on the right is over all $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in U^{m}$ for which $\xi_{1}^{d^{N_{1}}}=\xi_{2}^{p^{N_{2}}}=\cdots=$ $\xi_{m}^{p^{N_{m}}}=1$; and ξ^{-a} denotes $\Pi \xi_{j}^{-a_{j}}$. Clearly the mapping μ_{f} defined by (1.3) on the usual basis of compact-open subsets of X^{m} extends to an additive function of compact-open subsets; it is not hard to show that μ_{f} is bounded, using the analyticity and boundedness of f. We claim that $f(u)=\int u^{x} d \mu(x)$ for any $u \in U^{m}$. Since $f(u)$ can be approximated by a finite linear combination of monomials in $\left(\left\langle u_{1}\right\rangle, u_{2}, \ldots, u_{m}\right) \in U_{1}^{m}$ multiplied by the characteristic function with respect to u_{1} of one of the d unit discs in U_{d}, it suffices to check the claim in the case when $f(u)$ is such a function. But in this case the desired equality is proved in a standard way, essentially by orthogonality of characters on $\mathbf{Z} / d p^{N_{1}} \mathbf{Z} \times \mathbf{Z} / p^{N_{2}} \mathbf{Z} \times \cdots$ $\times \mathbf{Z} / \boldsymbol{p}^{N m} \mathbf{Z}$.

Remarks. 1. In the case $m=1$, Hà Huy Khoái proves a more general theorem, namely that the so-called h-admissible distributions μ correspond to all functions on U_{d} which grow more slowly than $\left(\log _{p} u\right)^{h}$ as u approaches the boundary of U_{d}. In particular, for $h=1$ the same construction (1.3) of the measure applies. The point is that, like a bounded
analytic function, an analytic function which grows more slowly than $\log _{p}$ is determined by its values at the roots of unity ξ.
2. A conjecture of R . Greenberg asserts that for any X^{m}-independent set $u \in U^{m}$, a bounded analytic function on U^{m} (with coefficients in \mathbf{Z}_{p}) is determined by its values on u^{y} as y varies over X_{d}, where u^{y} denotes ($\left.u_{1}^{y}, u_{2}^{\pi_{2}(y)}, \ldots, u_{m}^{\pi_{2}(y)}\right)$. Equivalently, the conjecture is that, if ρ is a faithful one-dimensional representation of X^{m} and if $\int_{X^{m}} \rho(x y) d \mu(x)=0$ for $y \in X_{d}$, then $\mu \equiv 0$.
2. We now let $m=1$, and consider higher dimensional continuous representations of $X=X_{d}=\lim _{\leftarrow N-} \mathbf{Z} / d p^{N} \mathbf{Z}$. If ρ_{1} is an irreducible representation of X in an n-dimensional \mathbf{C}_{p}-vector space, then $\rho_{1}(1)$ has a single eigenvalue v_{1}, and $\rho_{1}(x)$ has eigenvalue v_{1}^{x}. Note that $v_{1} \in U_{d}$. For μ a measure on X, let $f_{\mu}\left(\rho_{1}\right)$ be defined by (1.1), and let ν be the measure on $\sigma=v_{1}^{X}$ defined by $d \nu\left(v_{1}^{x}\right)=d \mu(x)$. Now define $L_{\nu}(y)$ by the MellinMazur transform: $L_{\nu}(y)=\int_{\sigma} x^{y} d \nu(x)$.

Theorem 2. With these assumptions and notation, when $f_{\mu}\left(\rho_{1}\right) \neq 0$ the order of zero of $L_{\nu}(y)$ at $y=1$ is equal to the co-rank of $f_{\mu}\left(\rho_{1}\right)$.

Proof. Let $V_{1}=\rho_{1}(1)$, and let $V=C V_{1} C^{-1}$ be the Jordan normal form. Since ρ_{1} is irreducible, it follows that V is a single $n \times n$ Jordan block. Thus, $V=v_{1}+\varepsilon$, where $v_{1}=v_{1} J$ is a scalar matrix and ε denotes the matrix with ones just above the main diagonal and zeros elsewhere. Then

$$
f_{\mu}\left(\rho_{1}\right)=\int_{X} V_{1}^{x} d \mu(x)=C^{-1} \int_{X}\left(v_{1}+\varepsilon\right)^{x} d \mu(x) C
$$

Thus, the co-rank of $f_{\mu}\left(\rho_{1}\right)$ is the same as that of

$$
\begin{aligned}
\sum_{j=0}^{n-1} \varepsilon^{j} \int_{X}\binom{x}{j} v_{1}^{x-j} d \mu(x) & =\left.\sum_{j=0}^{n-1} \frac{1}{j!} \varepsilon^{j}\left(\frac{d}{d v}\right)^{j} \int_{X} v^{x} d \mu(x)\right|_{v=v_{1}} \\
& =\sum_{j=0}^{n-1} \frac{g^{(j)}\left(v_{1}\right)}{j!} \varepsilon^{j}
\end{aligned}
$$

where $g(v)=\int_{X} v^{x} d \mu(x)$. Making the change of variables $v=v_{1}^{y}$, we have

$$
g\left(v_{1}^{y}\right)=\int_{X} v_{1}^{y x} d \mu(x)=\int_{\sigma} x^{y} d \nu(x)=L_{\nu}(y)
$$

Let r be the order of zero of $L_{\nu}(y)$ at $y=1$. Then $L_{\nu}(1)=L_{\nu}^{\prime}(1)=\cdots=$ $L_{\nu}^{(r-1)}(1)=0, L_{\nu}^{(r)}(1) \neq 0$, and so $g\left(v_{1}\right)=g^{\prime}\left(v_{1}\right)=\cdots=g^{(r-1)}\left(v_{1}\right)=0$,
$g^{(r)}\left(v_{1}\right) \neq 0$. Then $f_{\mu}\left(\rho_{1}\right)$ has the same co-rank as $\sum_{j=r}^{n-1} g^{(j)}\left(v_{1}\right) / j!\varepsilon^{j}$, where $r<n$, because $f_{\mu}\left(\rho_{1}\right) \neq 0$. But the latter co-rank is obviously r.
3. Let $\bar{U}_{d}=\left\{u \in \mathbf{C}_{p}| | u^{d}-\left.1\right|_{p} \geq 1\right\}$ denote the complement of U_{d}, and set $\bar{U}^{m}=\bar{U}_{d} \times \bar{U}_{1}^{m-1}$. For any $z=\left(z_{1}, \ldots, z_{m}\right) \in \bar{U}^{m}$, let μ_{z} denote the bounded measure on X^{m} which is defined on the standard basis of compact-open sets by

$$
\mu_{z}\left(a+d p^{N} X^{m}\right)=\frac{z^{a}}{\left(1-z_{1}^{d p^{N_{1}}}\right)\left(1-z_{2}^{N_{2}}\right) \cdots\left(1-z_{m}^{p^{N_{m}}}\right)},
$$

where the notation $a+d p^{N} X^{m}$ has the same meaning as in (1.3), except that we agree to take the representatives a_{j} in the range $0 \leq a_{1}<d p^{N_{1}}$, $0 \leq a_{j}<p^{N_{j}}(j>1)$, and z^{a} denotes $\Pi z_{j}^{a_{j}}$. (It is easy to check that this μ_{z} actually extends to a bounded measure on X^{m}.)

Theorem 3. For any continuous function $f: X^{m} \rightarrow \mathbf{C}_{p}$, the transform

$$
\begin{equation*}
g(z)=\int_{X^{m}} f(x) d \mu_{z}(x), \quad z \in \bar{U}^{m} \tag{3.1}
\end{equation*}
$$

has the properties
(1) $g(z)$ is bounded and Krasner analytic in each z_{\jmath} on \bar{U}^{m};
(2) $g(z) \rightarrow 0$ as $\left|z_{j}\right|_{p} \rightarrow \infty$ for each variable z_{j}, with any fixed values of the remaining variables;
(3) in the open unit polydisc $\left|z_{j}\right|_{p}<1, g(z)$ has the expansion $\sum f(n) z^{n}$, where $n=\left(n_{1}, \ldots, n_{m}\right)$ runs through all m-tuples of nonnegative integers;
(4) for $\left|z_{j}\right|_{p}>1, j=1, \ldots, m, g(z)$ has the expansion $-\sum f(-n) z^{-n}$, where n runs through all m-tuples of positive integers.

Conversely, if g is any function satisfying (1) and (2), and if $g(z)=$ $\sum a_{n} z^{n}$ is its expansion in the open unit polydisc, then the sequence $f(n)=a_{n}$ extends to a continuous function on X^{m}, and we have (3.1) and also property (4).

Proof. This is essentially a theorem of Amice and Vélu [1] when $m=1$ (see the Appendix to $[8]$ for a treatment using the measure μ_{z}), and the general case is handled in the same way.

Examples.1. For fixed $u \in U^{m}$, the transform of the representation ρ_{u} (in the notation of $\S 1$) is simply $g(z)=\int_{X^{m}} u^{x} d \mu_{z}(x)=\Pi_{j}\left(1-u_{j} z_{j}\right)^{-1}$.
2. Let $m=1$. According to results of $\operatorname{Katz}[4]$, a p-adic modular form F of weight zero (and level 1) can be written as a function of the j-invariant which is Krasner analytic outside of small discs around the
supersingular points. Let $\left\{\bar{s}_{i}\right\} \subset F_{p}^{\text {algcl }}$ be the residues of all supersingular values of j. It is known that in fact $\left\{\bar{s}_{i}\right\} \subset F_{p^{2}}$ (for a table of \bar{s}_{i} for $p \leq 307$, see [10]). Suppose that $j=0$ is not supersingular, i.e., $p \equiv 1 \bmod 6$. Let F_{∞} be the value at the cusp. Then $F-F_{\infty}=g(j)$ satisfies properties (1) and (2) of Theorem 3, with j playing the role of the variable z. Here d is some divisor of $p^{2}-1$, since $\bar{s}_{i}^{p^{2}-1}=1$ for each i. Thus, if $F(j)=F_{\infty}$ $+\sum_{n=0}^{\infty} a_{n} j^{n}$ for $|j|_{p}<1$, the coefficients $f(n)=a_{n}$ extend to a continuous function on X_{d}, and

$$
F(j)=F_{\infty}+\int_{X_{d}} f(x) d \mu_{j}(x), \quad j \in \bar{U}_{d}
$$

In addition,

$$
F(j)=F_{\infty}-\sum_{n=1}^{\infty} f(-n) j^{-n} \quad \text { for }|j|_{p}>1
$$

Hence, we have congruences for the j - and $1 / j$-expansion coefficients which generalize those in Ashworth [2] and Koblitz [6].
4. We now discuss a third type of integral transform. Let $\rho: X^{m} \rightarrow U_{d}$ be a one-dimensional continuous representation, as in $\S 1$, and let ρ_{j} denote the j th component, i.e., $\rho_{j}\left(x_{1}, \ldots, x_{m}\right)=\rho\left(0, \ldots, 0, x_{j}, 0, \ldots, 0\right)$. Let μ be a bounded measure on X^{m}. For $z \in \mathbf{C}_{p}^{m}$ with z_{j} in the complement of the image of ρ_{j}, in particular for $z \in \vec{U}^{m}$, we define the Stieltjes transform of ρ and μ as follows:

$$
\begin{equation*}
\psi_{\rho, \mu}(z)=\int_{X^{m}} \frac{d \mu(x)}{\prod_{j=1}^{m}\left(1-z_{j} \rho_{j}(x)\right)} \tag{4.1}
\end{equation*}
$$

The next theorem gives a relation between the three transforms in $\S \S 1,3$ and 4.

Theorem 4. Let μ be a measure on X^{m}, and let ρ be a one-dimensional representation of X^{m} in \mathbf{C}_{p}^{*}. Let $f_{\mu}(\rho)$ be the inverse Mellin transform defined by (1.1). For $y \in X_{d}$, let ρ^{y} denote the representation $\rho^{y}(x)=\rho(x y)=$ $\rho\left(x_{1} y, x_{2} \pi_{2}(y), \ldots, x_{m} \pi_{2}(y)\right)$. If the transform (3.1) associated to the measure μ_{z} for $z \in \bar{U}^{m}$ is applied to the function $y \mapsto f_{\mu}\left(\rho^{y}\right)$, then the result is the Stieltjes transform $\psi_{\rho, \mu}(z)$.

Proof.

$$
\begin{aligned}
\int_{X^{m}} f_{\mu}\left(\rho^{y}\right) d \mu_{z}(y) & =\int_{X^{m}} \int_{X^{m}} \rho^{y}(x) d \mu(x) d \mu_{z}(y) \\
& =\int_{X^{m}} \int_{X^{m}} \rho^{y}(x) d \mu_{z}(y) d \mu(x)
\end{aligned}
$$

But

$$
\int_{X^{m}} \rho(x y) d \mu_{z}(y)=\prod_{j} \int \rho_{j}(x)^{y} d \mu_{z_{j}}(y)=\prod_{j}\left(1-z_{j} \rho_{j}(z)\right)^{-1}
$$

and so

$$
\int_{X^{m}} f_{\mu}\left(\rho^{y}\right) d \mu_{z}(y)=\int_{X^{m}} \frac{d \mu(x)}{\prod_{j}\left(1-z_{j} \rho_{j}(x)\right)}
$$

as claimed.
Remarks. 1. When $m=1$, our ψ in (4.1) is essentially the transform $\varphi_{\nu}(z)=\int_{\sigma}(z-x)^{-1} d \nu(x), z \in \bar{\sigma}$, that is studied in [3], [12] (see also the Appendix to [8]). Namely, $\psi_{\rho_{u}, \mu}(z)=z^{-1} \varphi_{\nu}\left(z^{-1}\right)$, where $\nu\left(u^{x}\right)=d \mu(x)$. Barsky and Vishik have shown that any Krasner analytic function on $\bar{\sigma}$ which vanishes at infinity and which grows more slowly than $1 / \operatorname{dist}(z, \sigma)$ as $z \rightarrow \sigma$ is of the form $\varphi(z)$. On the other hand, if $\sigma \subset U_{d}$ and $z \in \bar{U}_{d}$, then such a function of z can also be written in the form $\int_{X_{d}} f(x) d \mu_{z}(x)$, with f the continuous function which interpolates the Taylor expansion coefficients. Theorem 4 says that, because our function of z is actually analytic on $\bar{\sigma}$ (not only on \bar{U}_{d}) and σ is a compact subgroup of \mathbf{C}_{p}^{*}, it follows that f extends to an analytic function on $U_{d} \supset \sigma=u^{X_{d}}$ (not just a continuous function on σ) and so is given by the inverse Mellin transform of a measure.
2. Theorem 4 is the p-adic analog of the fact that the classical Stieltjes transform is the square of the Laplace transform $L(f)=\int_{0}^{\infty} e^{-x y} f(x) d x$. Compare the proof of Theorem 4 with the relation (in which we think of $e^{-z y} d y$ as $\left.d \mu_{z}(y)\right)$:
$L(L(f))(z)=\int_{0}^{\infty} \int_{0}^{\infty} e^{-x y} f(x) d x\left(e^{-z y} d y\right)=\int_{0}^{\infty}(z+x)^{-1} f(x) d x$.

References

[1] Y. Amice and J. Vélu, Distributions p-adiques associées aux séries de Hecke, Journées Arith., 1974.
[2] M. H. Ashworth, Congruence properties of coefficients of modular forms using sigma functions, Ph.D. thesis (Oxford University, 1966).
[3] D. Barsky, Transformation de Cauchy p-adique et algébre d'Iwasawa, Math. Ann., 232 (1978), 255-266.
[4] N. M. Katz, p-adic Properties of Modular Schemes and Modular Forms, Proc. 1972 Antwerp Summer School, Springer Lectures Notes in Math., 350 (1973), 70-189.
[5] Hà Huy Khoái, Inverse formula for the Mellin-Mazur transform and some applications, to appear.
[6] N. Koblitz, 2-adic and 3-adic ordinals of ($1 / j$)-expansion coefficients for the weight 2 Eisenstein series, Bull. London Math. Soc., 9 (1977), 188-192.
[7] ___ p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-Verlag, 1977.
[8] , p-adic Analysis: a Short Course on Recent Work, Cambridge Univ. Press, 1980.
[9] B. Mazur, Analyse p-adique, Bourbaki report (unpublished), 1972.
[10] B. Mazur and H. P. F. Swinnerton-Dyer, Arithmetic of Weil curves, Inventiones Math., 25 (1974), 1-61.
[11] Modular Functions in One Variable IV, Springer Lecture Notes in Math., 476, Springer-Verlag, 1975.
[12] M. M. Vishik, On applications of the Shnirelman integral in non-archimedean analysis, Uspekhi Mat. Nauk, 34 (1979), 223-224.

Received February 23, 1984.
University of Washington
Seattle, WA 98195

