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APPROXIMATE SOLUTIONS OF
NONLINEAR RANDOM OPERATOR EQUATIONS:
CONVERGENCE IN DISTRIBUTION

HEINZ W. ENGL AND WERNER ROMISCH

For nonlinear random operator equations where the distributions of
the stochastic inputs are approximated by sequences of random variables
converging in distribution and where the underlying deterministic equa-
tions are simultaneously approximated, we prove a result about tightness
and convergence in distribution of the approximate solutions. We apply
our result to a random differential equation under Peano conditions and
to a random Hammerstein integral equation and its quadrature ap-
proximations.

1. Introduction. In [15], we developed a theory of convergence of
approximate solutions of random operator equations using concepts like
consistency, stability, and compactness in sets of measurable functions.
The results of that paper are valid for rather general notions of conver-
gence including almost-sure convergence and convergence in probability,
but excluding convergence in distribution. Of course, all the results in [15]
that guarantee e.g. almost-sure convergence of approximate solutions
imply their convergence in distribution. However, an adequate theory for
convergence in distribution should also use weaker assumptions on the
way the “stochastic inputs” (operator, right-hand side) are approximated
that do not imply e.g. almost-sure convergence of the “stochastic outputs”
(approximate solutions). It is shown in the concluding remarks of [15] that
it is not possible to carry over the theory developed there to the case of
convergence in distribution in a straightforward way.

In this paper, we prove a result about convergence in distribution of
approximate solutions of random operator equations in fixed-point form;
the conditions needed are such that they do not imply stronger modes of
convergence for the approximate solutions: The stochastic quantities
entering into the equation are approximated with respect to convergence
in distribution only. Note that convergence in distribution is often suffi-
cient for approximating statistical characteristics of the solution, since if
(x,) converges to x in distribution, then (E(f(x,))) = E(f(x)) for all
bounded continuous real functions f, where E denotes the expected value
(see [6, p. 23]).
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It is no surprise that our main tool is Prohorov’s Theorem, by which
we prove weak compactness of the set containing the distributions of the
approximate solutions. This is also the aim of [5], but for equations that
are stochastic only in the right-hand side. We allow also the operator to be
random. This random operator is approximated twofold: The underlying
deterministic operator is approximated by other deterministic operators,
the conditions required are standard and can be verified in concrete cases;
the random variable entering into the operator is approximated by a
sequence of random variables converging in distribution. The abstract
results are applied to a random ordinary differential equation (under
Peano conditions) and to a Hammerstein integral equation with random
kernel; in the latter example, the integral is approximated by a quadrature
rule and simultaneously, the random kernel is approximated with respect
to convergence in distribution.

Our approximate solutions are always constructed in such a way that
they are almost surely solutions (“random solutions”, see Definition 2.2)
of the equations resulting from the described approximations of the
original random equation; however, because of the nature of convergence
in distribution we cannot expect to obtain as limits in distribution a
solution of the original equation in the almost-sure sense. Instead, we
obtain a random variable with the property that if we insert it into both
sides of the equation we obtain the same distribution. The stochastic
inputs of the original equation have to be assumed to be fixed not as
random variables, but only as distributions of random variables on a fixed
probability space. This leads to the concept of a “D-solution” which is
related to Ershov’s concept of a solution of a stochastic equation ([17]).

For an overview about approximation methods for random equations
see e.g. [3], [4], [15]. A paper that does not directly treat this problem but
will prove relevant for this area since it is concerned with convergence in
distribution of measurable multifunctions is [26].

2. The convergence result. Throughout this section, let (2, &7, P)
be a probability space, Z be a Polish space, X be a separable Banach space
and T, T, (n € N) be mappings from Z X X into X that are measurable
from the Borel-o-algebra on Z X X to that on X. See below for the
relevance of the last assumption. Furthermore, letz: € —» Zand y: @ - X
be measurable with respect to the Borel-o-algebras on Z and X, respec-
tively. We will be concerned with the equation

(2.1) x(w) = T(z(), x(«)) +y(0) (0 €Q)
for the unknown x: & — X and its approximations
22) x,(0) = T,(z,(0), x,(@)) +y,(0) (0€B,nEN),
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where the random variables (z,) and (y,) converge in distribution to z
and y, respectively; the (7,,) will be required to converge to 7 in a suitable
way. Note that 7 and 7, are deterministic operators; the conditions
needed about the way that the (7,) approximate 7 stem from purely
deterministic operator approximation theory. The randomness enters
through the parameter z, which is a random variable and approximated by
(z,) independently of the approximation of the operator. Thus, by re-
stricting our interest to random equations of the form (2.1) we are able to
perform the two relevant approximation processes simultaneously: the
“stochastic” approximation of the “randomness” of the equation (namely
of z and y or actually of their distributions) and the deterministic
(numerical) approximation of the operator. This can be seen in a concrete
fashion in the second example to be presented in §3.

Of course, it is a mathematical restriction to consider (2.1) instead of
an equation of the type
(2.3) x=A(w,x) +y,
where A4 is a random operator with possibly stochastic domain (see e.g.
[15, Def. 1.2]). In (2.1) we require that the randomness can be modeled via
the Polish space Z; however, we believe that for many applications this is
not too severe a restriction (cf. the examples in §3).

Note that since T and 7, were assumed to be jointly measurable, the
operators (w, x) = T(z(w), x) and (w, x) = T,(z,(w), x) are random
operators. The assumption of joint measurability is fulfilled e.g. if T and
T,, are continuous in the first variable (which the 7, will be assumed to be
anyway) and measurable in the second variable. Moreover, in our main
result we will require that (7)) converges continuously to 7', which implies
even the joint continuity of 7 (see [2, Theorem 3.1]). Thus, in view of the
additional assumptions made below, all we actually have to postulate in
order to ensure the joint measurability of 7, and T is that x — T,(z, x) is
measurable for all z € X and n € N, which is not severe.

NoOTATION 2.1. For a metric space S and a measurable z: & — S (an
“S-valued random variable””) we denote the distribution of z by D(z); i.e.,
D(z) is the probability measure on S with

D(z)(4) = P({ w € Q|z(w) € 4}) for all Borel sets 4 C S.
If (z,) is a sequence of S-valued random vgriables, we say that (z,)
converges to z in distribution (symbol: (z,) — z) iff (D(z,)) converges
weakly to D(z), i.e, ([s f(s) dD(z,)(s)) = [sf(s) dD(z)(s) for all con-
tinuous bounded real-valued functions f on S; (z,) will be called “tight”
iff (D(z,)) is a tight sequence of probability measures, i.e., for all ¢ > 0
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there is a compact set K, C S such that D(z,)(K,) = 1 — & holds for all
neN.

For characterizations and properties of convergence in distribution
and tightness see e.g. [6], [23], [24].

DEFINITION 2.2. A map x: £ — X is said to be a “random solution”
of (2.1) if (2.1) holds almost surely and x is measurable. We call x a
“D-solution” of (2.1) if x is measurable and there exist measurable maps
y:Q - Xand z: @ - Z with D(Z) = D(z) and D(y) = D(y) such that
(2.4) D(x) = D(T(z,x) +7)
holds.

REMARK 2.3. As far as existence of random solutions of (2.1) and
more general equations is concerned, there exists a well-developed litera-
ture; see e.g. [13], [14], [19], [22], and the references quoted there. For a
recent addition to this literature that demonstrates the world-wide interest
in this subject see [10].

The concept of a “D-solution” we introduce here needs some explana-
tion. First, note that in this concept of solutions, (2.1) is not required to
hold almost surely; we require only that both sides of (2.1) have the same
distribution. Identically, for the right-hand side of (2.4) to be well-defined
we need the measurability of w = 7(Z(w), x(w)) + y(w), which follows
from the assumptions in the following way: Z and x were assumed to be
measurable with respect to the Borel-o-algebras on Z and X, so that (Z, x)
is measurable with respect to their product, which is the Borel-o-algebra
on Z X X (see [23, Theorem 1.1.10]). Since 7 was assumed to be measura-
ble with respect to the latter o-algebra and y is assumed to be measurable,
w = T(Z(w), x(w)) + y(w) is measurable.

Note that we also permit that the stochastic inputs z and y are
changed in such a way that their distributions remain unchanged. Note
that if D(z) = D(Z), then T(z, x) and T(Z, x) need not have the same
distribution (see [15, §5]). As we will show below, we actually have to
permit this change in the stochastic inputs; a counterexample will show
that the approximations we construct will in general not converge to an x
with the property
(2.5) D(x) = D(T(z,x) +y).

This is in our opinion not a drawback, but seems to be inevitable. Since
we choose (z,) such that (z,) 3 z, we have by definition (z,,) ket z forall z
with D(z) = D(z). Since, however, T(z, x) and 7(z, x) need not have the
same distribution, we should not even expect that our limit x solves (2.5),
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but only (2.4) for suitable z, y. The original z, y are in no way dis-
tinguished from any other random variables with the same distributions.

Thus we can conclude that if we use the concept of a D-solution, we
can look at (2.1) in the following way: Given are distributions 2’and % on
Z and X, respectively. We look for random variables z, y, and x such that
z and y have the given distributions 2" and %, respectively, and such that
(2.4) holds. This is achieved by approximating £ and % by random
variables (z,) and (y,) converging in distribution and by calculating
random solutions (x,) of the resulting equations (2.2). It will be shown in
the proof of Theorem 2.11 that (z,, x,, y,) has a subsequence converging
(jointly) in distribution to a Z X X X X-valued random variable (Z, x, ),
whose components will be such that (2.4) is fulfilled.

Thus, D-solutions appear as limits (with respect to convergence in
distribution) of random solutions, which would also justify the use of the
term “weak solution”, which is used in a similar context for stochastic
differential equations (see e.g. [18, p. 357 ff.]).

Note that as a by-product, we will obtain a sufficient condition for
existence of a D-solution of (2.1). The concept of a D-solution reminds
somewhat of Ershov’s notion of a solution of a stochastic equation ([17]),
since also he assumes only that the distribution of the data (there:
right-hand side, here: z and y) is known and he looks for a random
variable defined on some probability space that, when inserted into a
given operator, results in a random variable with this given distribution.
For further discussion of the concept of a D-solution and an alternative
way of defining this concept using the joint distribution of (z, x) see
Remark 2.15; we postpone this discussion since it is closely related with a
possible alternative to Theorem 2.11.

Since our equations are all defined on a fixed probability space, the
following recent result has to be used below:

LEMMA 2.4. Let S be a Polish space, (v,) be a sequence of S-valued
random variables on (Q, &/, P) such that (D(v,)) converges weakly; let 2 be
the weak limit. Then there is an S-valued random variable v on (2, &/, P)

with D(v) = 2 and hence also (v,) 3 v.
Proof. [16].

DErINITION 2.5. We call a sequence (x,) of X-valued random varia-
bles “D-bounded” iff for all € > 0, there is a bounded Borel set C, € X
such that D(x,)(C,) > 1 — e holds for all » € N.
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Note that if (x,) is tight, then (x,) is D-bounded, so that D-bounded-
ness is necessary for convergence in distribution. We will give conditions
under which the D-boundedness of a sequence of solutions of (2.2) is
sufficient for tightness or even convergence in distribution.

DEFINITION 2.6. Let (A4,) be a sequence of operators from X into X;
(A,) is called “collectively compact” iff for all bounded C C X,
U,en4,(C) is compact.

For the role of collectively compact operators in approximating
solutions of deterministic operator equations see [1].

LEMMA 2.7. Let K C Z be compact, C C X be such that

(2.6) { T,(-, x)|x € C,n € N} is equicontinuous on K
and
(2.7) U T.(z,C) is compact forall z € K.

neN

ThenU, .\ T,(K X C) is compact.

Proof. Let Y:= X X N, where N bears the discrete metric,
T: Z X Y = X be defined by T(z, (x, n)):= T,(z, x). Because of (2.6)
and (2.7), T fulfills the assumptions (4.50) and (4.51) of [15], respectively
(with obvious changes of notation). Thus the conclusion follows from [15,
Lemma 4.11]. O

The following easy observation will also be used below:

LeMMA 2.8. Let (z,) and (y,) be tight sequences of Z-valued and
X-valued random variables, respectively. Then the sequence of Z X X-valued
random variables ((z,,, y,)) is also tight.

Proof. Let € > 0 be arbitrary, but fixed. By definition of tightness
there are compact sets K; € Z and K, C X with D(z,)(K;) =1 —¢/2
and D(x,)(K,)>1—¢/2foralln € N. Let K:= K, X K,. Since for all
n €N,

{0 (z,(0), y,(0) & K}

c{wez,(w) €K} U{wey(v)&K,)},
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we have
P({ 0 0l(z,(0) 5 (0) €K)) s 5 + 5 ==

so that D((z,, y,))(K) =1 — ¢ for all n € N. Since K is compact and ¢
was arbitrary, (z,, y,) is tight. O

D
Note that in general, (z,) >z and (x,) 3 x does not imply

(2,5 x,) 3 (z, x); however, Lemma 2.8 implies then together with Pro-

horov’s Theorem (see [24], [6]) that each subsequence of (z,, x,) has
another subsequence whose distributions converge weakly. Although thesé
weak limits are distributions of Z X X-valued random variables on
(2, &, P) because of Lemma 2.4, they need not coincide with the
distribution of (z, x). This is the technical reason for the need to permit z
(and y) to be changed to random variables with the same distribution in
the concept of a D-solution.

We now define the deterministic notion of convergence that will be
used to describe how the deterministic problems underlying (2.2) should
approximate (2.1):

DEFINITION 2.9. Let T andc(T,,) be as above. (7,) “converges continu-
ously to T” (symbol: (7,) = T) iff for all (z,x) € Z X X and all
sequences ((z,, x,)) in Z X X converging to (z, x), (T,(z,, x,)) = T(z, x)
holds.

For the relevance of continuous convergence in deterministic ap-
proximation theory for operator equations and its relations to other
concepts see e.g. [2]. Note that if (7,) converges pointwige to T and (72,) is
equicontinuous (jointly in both variables), then (7,) » T. If (T,) — T,
then obviously each subsequence (7,, ) converges continuously to 7.

LemMa 2.10. Let T and T, be as above, (T,) — T, and let (v,) and v be

Z X X-valued random variables with (v,) 3 v. Then (T,(v,)) 3 T(v).

Proof. Since T and T, are by assumption measurable, (7,(v,)) and
T(v) are X-valued random variables, whose distributions are D(v,)7, !
and D(v)T~', respectively. It follows from [6, Theorem 5.5] that
(D(v,)T; ') converges weakly to D(v)T %, which implies the result. O
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Now we are in the position to formulate the basic convergence result:

THEOREM 2.11. Let T, (T)), z, (z,), ¥, (¥,) be as above and let for all
n € N x, be a random solution of (2.2) for the index n.
(a) Assume that

(2.8) (T.,(2, -)) is collectively compact for all 7 € Z,

29 for all bounded C C X and compact K C Z,
(2.9) {T,(-, x)|x € C, n € N} is equicontinuous on K,
(2.10) (x,) is D-bounded

and that (z,) and ( y,) are tight. Then (x,) is tight. b
(b) Assume that (2.8) (2.9), and (2.10) hold, that (z,) — z and (y,) 3 y,
and that

(2.11) (T,) > T.

Then for every subsequence (x, ) of (x,) (especially for (x,) itself)
there exists an X-valued random variable x which is a D-solution of (2.1) and
D
for which (x,, ) — x holds for a suitable subsequence (x, ) of (x,,)-

If furthermore all D-solutions of (2.1) have the same distribution, then
(D(x,)) converges weakly to this distribution.

Proof. (a) Let ¢ > 0 be arbitrary, but fixed. Because of the tightness of
(z,) and (y,) there exist compact sets K; € Z and K, C X such that for
alln eN

(2.12) D(z,)(K) =1 - %

and

(2.13) D(y,)(K;) 21~ 73

hold. Because of (2.10), there exists a bounded C C X with
(2.14) D(x,)(C)>1- % foralln € N.

Let K;:=U,cnT,(K; X C). Because of (2.8), (2.7) holds, while (2.9)
implies (2.6) (both with K = K;). Thus it follows from Lemma 2.7 that K,
is compact. Therefore also K:= K, + K, is compact. Let n € N be
arbitrary, but fixed and define

={wez,(w) €K}, 4,={wey(0)¢K,)},
A= {weQx, (o) & C}.
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Because of (2.12), (2.13), and (2.14) we have
(2.15) P(4) <3 forie {1,2,3).

Let A,:= {0 € Q|x,(w) &€ K}, N € &/ with P(N) = 0 be such that for
allw € Q\ N, x,(0) = T,(z,(w), x,(»)) + y,(w) holds; such an N exists,
since x,, is a random solution of (2.2). Now let

3
@€ (Q\N)N N (2\4,).
i=1
Then z,(w) € K;,y,(w) € K,, and x,(w) € C, so that
T,(z,(®), x,(®)) + y,(@) € T,(K, X C) + K, C K;

since x,(w) = T,(z,(w), x,(w)) + y,(w), we have x,(w) € K, so that
w € Q\ 4,.

This argument yields that
3

(2.16) A,cNU U4,

i=1
which implies together with (2.15) that
(2.17) P(4,) <e.
Since n € N was arbitrary, this means
(2.18) D(x,)(K)>=1—¢ foralln €N.

Since ¢ > 0 was arbitrary and K (which depends on ¢) is compact, (2.18)
implies that (DS) x,)) is tight. b

(b) If (z,) — zand (y,) — y then(z,) and ( y,) are tight by Prohorov’s
Theorem. Thus it follows from (a) that (x,) is also tight. Therefore we
obtain from Prohorov’s Theorem that each subsequence of (D(x,)) has
another subsequence that converges weakly to some probability measure
2 on X. Because of Lemma 2.4, there is an X-valued random variable X on
(2, o, P) with D(x) = 2. We now show that if some subsequence (x,, )
of (x,) converges in distribution to X, then there is an X-valued random
variable x with D(x) = D(x) (so that (x, ) converges also to x in
distribution) that is a D-solution of (2.1). In doing this we also construct z
and y as needed in (2.4). Since the assumptions of the Theorem are also
fulfilled for (7, ), (gnk), (¥,)s (x,,), we may assume without loss of
generality that (x,) — X.

Because of Lemma 2.8, the sequence ((z,, x,, ,)) is tight. By
Prohorov’s Theorem and Lemma 2.4, there exists a subsequence
((z,,, X, ¥,,)) converging to a Z X X X X-valued random variable
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(2, x, y). This also implies (z,, ) 3 z, (V) gi, (x,,) 3 x, so that (be-
cause of [6, Theorem 1.3])
(2.19) D(y)=D(y) and D(z)=D(z)
holds. Let (7,) and T: Z X X X X — X be defined by

T (u,v,w):= T,(u,v) +w and T(u,v,w):= T(u,v)+w,
respectively. Because of (2.11), (7, ) 5 T, which implies together with
Lemma 2.10 (applied to (7, ) and T') that

(2.20) (T, (20 Xup 3)) = T(2, %, 3),

so that

(221) (L., (20 %) +32,) = (T(2,%) +5).

Since T, (z,,, X, ) + ¥, = X, holds almost surely, (2.21) implies
(2.22) (x,.) > T(Z, x) +7,

which yields together with the fact that (x, ) 3 x and [6, Theorem 1.3]

that (2.4) holds. Because of (2.19), this means that x is a D-solution of
(2.1).

Now assume that all D-solutions of (2.1) have the same distribution
2. Let (x,, ) be an arbitrary subsequence of (x,). We have proven that
(x,,) contams a subsequence (x,, ) converging in distribution to a D-solu-
tlon of (2.1), i.e, (D(x, ) > 2 weakly It follows from [6, Theorem 2.3]
that (D(x,)) = Qweakly O

The following example shows that Theorem 2.11 would not remain
true if we did not permit z and y to be changed to Z and y in the definition
of a D-solution:

ExaMmPLE 2.12. Let @ = {w,, w,, w3, w,;, ws}, L= P({), P be the
unique probability measure on ./ with P(w,) = P(w,) = 1/4 and P(w,)
= P(w,;) = P(ws) =1/6. Let X =R with the usual metric and Z =
{ a, b} with the discrete metric. Let z and z: & — Z be defined by

z(w)) = z(w,) = b, z(wy) = z(w,) = z(w;) = a,

Z(w;) = Z(w,) = a, Z(w;) = Z(w,) = Z(ws) = b
We have D(z) = D(z). Let T: Z X X = X be defined by T(a, x) = x
and T(b,x)=1forall x € Xand let T, = T for all n € N. For n €N,
let z, =z and x,: & — X be defined by x,(w,) =0, x,(w;) = x,(w;) =
x,(w,) =x,(ws) =1 Thenforallw € R and n € N, T,(z,(w), x,(w)) =
x,(w). It is easy to check that (2.8), (2.9), (2.10), and (2.11) are fulfilled.
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Since (z,) 3 z, the conclusions of Theorem 2.11 hold (which can of

course be seen directly here). Assume that there is a subsequence (x,, ) of
D

(x,) with (x, ) = x and D(x) = D(T(z, x)); without loss of generality,

let (x, ) = (x,). Since (x,) - x, it follows from [6, Theorem 2.1] that

D(x)(] - 1,1]) < liminf D(x,)(] —1,1[) = :
and that
D(x)(] —1,1[) = D(x)({0}) = limsup D(x,)({0}) = :11.’

n—oo

so that D(x)(] — 1,1[) = 1/4. By assumption, this implies
(2.23) D(T(z, x))(] - 1.1]) = .

Let V= {w € Q|T(z(w), x(w)) € ]—1,1] }. Since z(w,) = z(w,) = b,
we have w; &€ V and w, ¢ V by definition of T. Thus, V C { w;, w,, ws},
so that P(V) € {0,¢, 3, 3}. Since P(V) = D(T(z, x))(] — 1,1]), this
contradicts (2.23).

Thus, no subsequence (x, ) converges in distribution to an x that
fulfills D(x) = D(T(z, x)). This example shows that in the definition of a
D-solution, it was actually necessary to introduce Z (and y) as discussed in
Remark 2.3. In other words, the whole approximation process described
in Theorem 2.11 works only if (2.1) is understood in such a way that only
the distributions of z and y, not their actual realizations as random
variables, matter. We feel that this is appropriate if one works with
convergence in distribution.

REMARK 2.13. Theorem 2.11 consists of two parts: In part (a), it states
that the “solution measures” (D(x,)) form a tight set. Only the tightness
of (D(z,)) and (D(y,)) and (2.8)—(2.18) are needed for this part. Note
that [18, Chapter 5.1] contains various conditions for the tightness of
measures that correspond to random variables and stochastic processes on
concrete metric spaces. For part (a), the limiting equation (2.1) plays no
role at all; the underlying measure space could be different for every
n € N.

If one would define “D-compactness” analogously to [15, Definition
2.1 d] with p, replaced by convergence in distribution, then one could
conclude from Theorem 2.11 a that for all D-bounded sequences (x,), the
sequence (7,(z,, x,) + y,) is D-compact, which can be viewed as “D-com-
pactness” (in a sense similar to [15, Definition 2.8 a]) of the sequence of
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random operators (7,(z,(), ) +y,(-)). If the (x,) are especially a
D-bounded sequence of random fixed points of these operators, then we
obtain “D-Limsup,.n{x,} # @7 (cf. [15, Definition 2.1 b]), which is a
result analogous to [15, Theorem 2.11] for the special case of random fixed
point problems, but for convergence in distribution which was excluded in
[15].

Part (b) of Theorem 2.11 can be viewed as a “closedness result” with
respect to convergence in distribution (cf. [15, Definition 2.8 b]): It is
shown that each subsequence of solutions of the approximate equations
has a subsequence that converges in distribution to a D-solution. As a
by-product, Theorem 2.11 b contains an existence result for D-solutions of
(2.1). The key ingredients for the proof of this part are our Lemmata 2.4,
2.8, 2.10, and assumption (2.11). Incidentally, (2.11) could be replaced by
the assumption that T is continuous and (7,,) converges to T uniformly on
compact sets, since then the conclusions of Lemma 2.10 still hold (see [6,
p- 34)).

We feel that the (deterministic) assumptions (2.8), (2.9), and (2.11)
can be checked in concrete situations, as can be seen in the examples of
§3. As far as assumption (2.10) is concerned, it has been mentioned
already that it is necessary for the tightness of (D(x,)); this assumption is
comparable to the use of a priori bounds when using fixed point methods
for obtaining solutions of nonlinear equations. In the examples of §3, we
will be able to verify (2.10). In the first of these examples, this is done by
using Gronwall’s inequality. For other kinds of equations, more general
differential and integral inequalities could be used (see e.g. [29]).

In Theorem 2.11, we obtained convergence in distribution of (x,)
(not only of a subsequence) under a (as we think, rather restrictive)
uniqueness condition. Note that in the case X = C[0, 1] convergence of
(x,) in distribution can also be concluded without the uniqueness condi-
tion if for some reason one knows that all finite-dimensional distributions
of (x,) converge weakly. To conclude the weak convergence of (D(x,))
one needs the tightness, which can be concluded from Theorem 2.11 a. A
related approach to obtain convergence in distribution of (x,) for arbi-
trary (separable) X follows from [8, Theorem 2.21]: If (f(x,)) converges
in distribution for all f in the linear hull of a total subset of X* and if
(D(x,)) is tight (which is obtained from Theorem 2.11 a), then (x,)
converges in distribution.

The result of Theorem 2.11 a is also relevant for obtaining stronger
modes of convergence for (x,). We call a sequence of random variables
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“compact” with respect to a mode of convergence if each of its subse-
quences contains another subsequence that converges to a random varia-
ble in this mode of convergence. We call a subset F of X* “total” iff
f(x) = 0 for all f € X* implies x = 0. Note that since X is separable, X *
has a countable total subset ([8, Theorem 1.2.1]).

PROPOSITION 2.14. Let F be a countable total subset of X*, (x,) be
X-valued random variables on (2, &/, P). Then:

(a) (Buldygin) (x,) converges in probability if and only if (D(x,)) is
tight and ( f(x,)) converges in probability for each f € F.

(b) (x,) is compact with respect to convergence in probability (equiva-
lently: with respect to almost-sure convergence) if and only if (D(x,,)) is tight
and (f(x,)) is compact with respect to convergence in probability for each
fEF.

Proof. (a) [8, Theorem 2.4.1]; cf. also [9, Theorem 7].

(b) The “if’-part of the statement is the nontrivial part. Let F =
{ f1, 2> f3--.}. Because of (a), it suffices to show that each subsequence
(x,,) of (x,) has a further subsequence (x,, ) such that (f(x,, )) con-
verges in probability for all i € N. For sunphc1ty we write (x;) for (x,,)-
Let N, be a set of indices such that ( f,(x,)|k € N,) converges in probabll-
ity; assume for j € N that N,,...,N; are defined and define (by induction)
N;,1 € N, as a set of indices such that (f;,(x,)|k € N, ;) converges in
probability. By assumption, all N; are infinite subsets of N. Thus we can

construct a set K= {ky, k,, k;,...} C N with k; <k, <k;<

and k; € N, for all j € N. Since N12N22N3_ -+, we have that
(f:(x,))k € K) converges in probability for all i € N. This concludes the
proof. O

One can combine Proposition 2.14 with Theorem 2.11 in the follow-
ing way: Under the conditions of Theorem 2.11 a, one obtains the
tightness of (D(x,)); if from other considerations one obtains conver-
gence or compactness of ( f(x,)) for all f € F(F C X* total and counta-
ble) with respect to convergence in probability, one can conclude from
Proposition 2.14 that (x,) converges or is compact with respect to
convergence in probability. If X = C[0, 1], one can take as F, e.g., the set
of evaluation functionals on a countable dense set of points in [0, 1]. The
question is how to obtain compactness in probability of all (f(x,)); a
necessary and sufficient condition for compactness in probability for
real-valued random variables in [21] does not look much simpler than the
sufficient condition of [15, Theorem 4.9] that could be applied to (x,)
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directly. It will be reasonable to assume that (z,) and (y,) converge in
probability if one wants (x,) to converge in probability. But except for
special cases of linear operators 7, (independent of z), where one can use
the adjoint, it seems not to be easy to conclude the convergence in
probability of all (f(x,)), (f € F as above) from that of (y,). Neverthe-
less, it seems to be worthwhile to investigate these ideas of combining
Theorem 2.11 a with Proposition 2.14 further, since one would then
(under natural hypotheses) obtain a random solution (not only a D-solu-
tion) of (2.1) in the limit and also since it seems not to be easy to apply
the results about convergence in probability derived from [15, Theorem
4.13] to concrete equations.

REMARK 2.15. After discussing our convergence result, we turn back
to the concept of a D-solution introduced in Definition 2.2. There we
required (beside (2.4)) that

(2.24) D(z)=D(z) and D(y)= D(p)
holds, which is implied by (but does not imply)
(2.25) D((z, y)) = D((z, y)).

For the moment, we will use the ad-hoc notion of a “D/solution” (“D,”
for “joint distribution”) if in the definition of a D-solution (2.24) is
replaced by (2.25). A Dj-solution is a D-solution, but not vice versa (unless
z and y are independent). It might look more natural to use the latter
concept, since then the stochastic inputs (z and y) would be viewed as one
random variable which would have to be altered only in such a way that
the joint distribution remains unchanged, which is less severe than permit-
ting changes for which only (2.24) holds. But note that “D-solution” is the
more general concept in the sense that it contains “D-solution” as a
special case. To see this, let Z:= Z X X, 2:=(2,y): Q> Z, T ZX X
— X be defined by T((2, §), x):= T(2,x) +J for (2, 9) € Z, x € X.
Then a D-solution of

(2.26) x = T(z%, x)

is a D;-solution of (2.1). If we apply Theorem 2.11 to (2.26) and analogous
reformulations of (2.2), then part (a) remains unchanged (in view of
Lemma 2.8), while in part (b) “D-solution” léas to be replaced by

“D,-solution” and instead of “(z,) - z and (,) = »” we have to require

“Uz,5 Vo) 3 (z, y)”, which is a stronger requirement (unless z and y and
for all n € N, z, and y, are independent). Thus, by strengthening the
convergence requirements of the stochastic inputs from separate conver-
gence in distribution to convergence of the joint distributions we obtain as
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a limit a stronger type of solution. This holds true also for all conclusions
drawn from Theorem 2.11 b in this paper.

A conceptual reason for treating z and y separately was the example
of §3.1, where these two random variables play two different roles, namely
the roles of a random right-hand side and a random initial condition for a
differential equation, respectively. It follows from the remarks made

above that if instead of (3.3) and (3.4) one requires ((z,, X,,)) — (z, X,)

there, then one obtains a D -solution of (3.2).

Also, it follows from these remarks that if z can be decomposed in
some natural way into random variables z; and z, and if both are
approximated (with respect to convergence in distribution) separately,
then one obtains a result analogous to Theorem 2.11 with the only
difference that one has to change the concept of solution in such a way
that changes in z have to be permitted that preserve the distributions of z,
and z,, but not necessarily that of z. Thus, many variants of Theorem 2.11
are possible, where a change in the convergence requirements for (z,)
(and (y,)) has to be compensated by a corresponding change in the
concept of solution. Which of these variants one uses has to be de-
termined by a decision which distributions of the stochastic inputs (joint
or certain marginal distributions) are available for the problem and which
distributions one is able to approximate.

As a last remark in this context we note that in our form of Theorem
2.11, the only reason we needed X to be a Banach space was to make the
addition of y possible. If there is no y, X could as well just be a Polish
space.

3. Applications to random integral and differential equations. In
this Section, we outline two types of problems for which Theorem 2.11 is
applicable: a random differential equation (under Peano conditions) and a
random Hammerstein integral equation. In the first example, we ap-
proximate only the stochastic inputs, while in the second example we also
approximate the integral operator via quadrature formulas.

Our aim is to show that the conditions of Theorem 2.11 are fulfilled.
We assume that the approximate problems have random solutions, which
can be proven under suitable (deterministic) conditions on the functions
determining the equations along the lines of [13, §6]; there is no need to
give details about this here.

3.1. A random differential equation. Our first example concerns a
nonlinear ordinary (vector) differential equation, which contains random
terms in the right-hand side as well as in the initial condition. Let
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k, r € N, x,: & — R* be a random variable, z and (z,) be C([0, 1]; R")-
valued random variables on a probability space ({2, &7, P). Note that z
and (z,) can be identified with stochastic processes with parameter set
[0, 1], state space R" and continuous paths in a natural way (see e.g. [6, p.
57]). Thus we will write z(w, t) for z(w)(?).

Finally, let f: [0,1] X R"** — R* be continuous. We consider the
random differential equation

x'(1) = f(t, z(w,£),x(1)), te][o0,1],
x(0) = xo(w)

where w € Q, or equivalently

(32) x(1)= fo‘f(s,z(w,s),x(s)) ds + xo(0), 1€[0,1],0€ Q.

(3.1)

Let (x,,) be a sequence of R*-valued random variables with
(3.3) (¥on) = %o

and assume that

(3.4) (z,) > 2.

(Of course we could require only that (x,,) and (z,) are tight and apply
Theorem 2.11 a.)

See [6] and [18] for conditions for convergence in distribution and
tightness in spaces of continuous functions. Note that it follows e.g. from
[8, Theorem 2.2.1] that (3.3) is equivalent to convergence in distribution of
the sequence of C([0,1]; R¥)-valued random variables (y,) to y, where
Yo(w)(t) = xy,(w), y(w)t):= xy(w). Thus we can identify (y,) and y
with (x,,) and x,, respectively.

Note that it follows from [12] and [27] that random differential
equations like (3.1) are also relevant for obtaining Stratonovich solutions
of stochastic differential equations.

Now, let for each n € N, x, be a random solution of

x'(8) = f(t, z,(w, 1), x(2)),  t€][0,1],

(3.5)
x(0) = x,(w)
or (equivalently) of (3.2) with z and x, replaced by z, and x,,, respec-
tively.

This setup can be brought into the framework of §2 in the following
way: Let X:= C([0,1]; R¥), Z:= C([0,1]; R") be equipped with the usual
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sup-norms, T: Z X X — X be defined by
T(x,z)(2):= ft f(s, z(s), x(s)) ds + x,, T,= Tforalln € N.
0

We show that Theorem 2.11 is applicable.

Let C C X be bounded, x € C arbitrary. By standard arguments one
shows that for fixed z € Z, T(z, C) is uniformly bounded and equicon-
tinuous, thus by the Arzela-Ascoli Theorem relatively compact. This
shows that (2.8) holds.

Let C C X be bounded, K C Z be compact (and hence bounded),
a:= sup{||v]| [v € C} and b:= sup{||w| |w € K}. Since f is uniformly
continuous in the compact set [0,1] X {w € R'||w| < b} X {v € R¥|
|v] < a} (where | | denotes the norms on R* and R’, respectively), we
have: If x € C is arbitrary, then for each ¢ > 0 there is a § > 0 such that
for all z,z € K with ||z - Z||] <d§ and all s € [0,1] we have
|f(s, 2(s), x(s)) — f(s, 2(s), x(s))| < & and hence for all ¢ € [0, 1]
|T(z, x)(t) — T(Z, x)(t)| < &, so that || T(z, x) — T(z, x)|| < & Thus, (2.9)
holds.

By an analogous argument one shows that T is jointly continuous.
Hence (2.11) holds.

Now, let z € Z be arbitrary, but fixed, and x € X be a solution of
x = T(z, x). Assume that there are continuous functions g: [0,1] X R" —
R*and L: [0,1] » R* such that for allt € [0,1], w € R"and v € R¥,

(3.6) lf(t,w, )| < g(2,w) + L(2) -|x|
holds. With H(t):= [ L(7) dr, we obtain from Gronwall’s inequality
(see e.g. [29]) that for all r € [0, 1],

x(0)] < " bxg] + [ (s, 2(s) e )

so that

(3.7) x| < e"®[lxol + sup{ g(s, 2(s))ls € [0,1]}]

holds. We show that this implies (2.10). Let ¢ > 0 be arbitrary, but fixed.
Because of (3.3), there is an a, > 0 such that with 4,,:= {w € Q||x,,(w)]
< a,(} we have P(A4,,) > 1 — &/2 for all n € N. Because of (3.4), there is
a compact set K, C Z such that with 4,,'= {w € Q|z,(w) € K.} we
have P(A,,) =1 —¢/2 for all n € N. Let n € N be arbitrary, but fixed
and w € A, N A,,. Then for all s € [0,1], g(s, z,(w, 5)) € g([0,1] X K,);
this implies the existence of a b, > 0 (independent of n) with
sup{ g(s, z,(w, 5))|s € [0,1]} < b,. Thus because of (3.7),

(3.8) len (@)l < e"V-[a, + b,]
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holds for all » € N and w € 4,, N 4,,, where x,, is a random solution of
(3.5).

Since P(A4,,NA4,,)>1— ¢ and ¢ > 0 was arbitrary, (3.8) implies
that (2.10) holds.

We have shown that under the condition (3.6) all assumptions of
Theorem 2.11 are fulfilled. Thus the conclusions of that Theorem hold,
which implies that there is a subsequence of (x,) that converges in
distribution to a D-solution of (3.2).

Results about almost-sure convergence of approximate solutions of
random differential equations can be found in [25].

3.2. A random Hammerstein integral equation. Here we consider a
nonlinear Fredholm integral equation with Hammerstein kernel; the kernel
is assumed to be random. We approximate this random kernel by random
functions converging in distribution and the integral operator by finite-di-
mensional operators obtained from quadrature rules simultaneously and
show that the resulting approximate equations fulfill the conditions of
Theorem 2.11.

Let z and (z,) be C([0,1] X [0, 1])-valued random variables on a
probability space (£, &7, P), which we can identify as in §3.1 with
stochastic processes with continuous paths. Assume that

(3.9) (z,) >z

holds. Let f: [0,1] X R — R be bounded and continuous. We consider the
equation

1
(3.10) x(¢) = j 2(w,t,5)f(s, x(s) ds, t€][0,1],w Q.

0
For each n € N, let a,,,...,a,, be the weights of a quadrature rule with
nodes s,,,. . .,S,,; we assume that for each y € C([0, 1]),

(3.11) tim Y a,9(s,) = [ ¥(s) ds

n—o g 0

holds; it is well-known that for (3.11) to hold

(3.12) sup{ > la,lin € N} < o

j=0

is necessary.
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For each n € N, let x,, be a random solution (with continuous paths)
of

(3.13) x(z) = éoa,,j cz (w0, t, s,,j)f(snj, x(s,,j)), t € [0,1].

We show that for (x,) the conclusions of Theorem 2.11 hold. In this
process, we will temporarily use the symbols x, and z, also for other
quantities, which will not lead to confusion.

To formulate our setup in the framework of §2, we take X:= C([0, 1])
and Z:= C([0,1] X [0, 1]) with the usual sup-norms and define

T(z, x)(2):= j:z(t, s)f(s,x(s))ds andforalln € N,

T, (z, x)(1)= X a,,z(t, $,,)f (5., x(s,;)) forze Z, x € X,
Jj=0
and ¢ € [0,1]; T and T, map Z X X into X.
Let n € N and z € Z be arbitrary, but fixed and C € X be bounded,
a:= sup{||v|||v € C}, x € X. Then for all ¢ € [0, 1],

IT,(2, ) (1) < ¥ lay |- max{|z(r, )| (7, 5) € [0,1]?)

Jj=0

-max{|f(r, y)|Ir € [0,1], [y| < a};
because of the continuity of z and f, this implies together with (3.12) that
{T,(z, x)|x € C} is bounded; since T,(z, -) has finite-dimensional range,
this implies that each 7,(z, -) is compact.
Now, let (y,) be a bounded sequence in X, a:= sup{||y,|l |n € N},
z € Z be arbitrary, but fixed; let w,:= T,(z, y,)- As above one can see
the boundedness of (w,). For ¢, s € [0,1] and » € N we have

|Wn(t) - Wn(s)‘ = éolanjl : If(snj’ yn(snj))l : lz(t, Snj) —z(s, Snj)l

< sup{ é)lanl] |ne N} -max{|f(7, y)||r € [0,1], |y| < a}

’]IlaX{lZ(t, Sy —Z(S, snj)l VS {O”"’n}}’

which implies together with (3.12), the continuity of f and the uniform
continuity of z that (w,) is equicontinuous. Thus, each subsequence of
(w,) has a convergent subsequence by the Arzela-Ascoli Theorem. In the
terminology of [2] this means that (7,(z, -)) is asymptotically compact.
Thus we can conclude from [2, Theorem 3.4] that (2.8) holds.
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Let C C X be bounded; as above, one can see that with a suitable
constant ¢ depending at most on C we have ||7,(z, x) — T,(z, x)|| <
¢-|lz—z|| for all n € N, x € C and arbitrary z, Z € Z. This implies that
(2.9) holds.

To show that (2.11) holds, we proceed in two steps. Let (z, x) € Z X X
and ((z,, x,)) be a sequence in Z X X with ((z,, x,)) = (z, x). We first
show that

(3.14) lim |T,(z,, x,) = T,(z, x)]| = 0.

Since (x,) is bounded and f is continuous, we can conclude as above from
(3.12) that

= up 3o (s 5205, 1 € ] < o

Now we have for allz € [0,1] and » € N:
T(z,, x,)(¢) = T,(z, x)(2)

= §oanj[(zn(ta Spj) — Z(t’snj))f(snj’ xn(snj))
+Z(I’ s"j)(f(snj’ xn(snj)) _f(snj’ x(snj)))]’

so that
1T, (2,5 x,) = T(2, )| < allz, = 2l +lz]| - |l£ (-, x,(-)) =7 (-, x ()]

Together with [20, Theorem 2.3] this implies that (3.14) holds. We now
show that

(3.15) lim |T,(z,x) — T(z,x)[|=0
h— o0

holds.
Foreachn € N, let E,: X — R be defined by

Ey= [ ys)ds— ¥ a,y(s,).
0 j=0
Because of (3.11), the linear functionals (E,) tend to 0 pointwise and
hence uniformly on compact sets (see e.g. [7, p. 23]). For each ¢, s € [0, 1],
let y,(s):= z(t, s)f(s, x(s)). Obviously, { y,|t € [0,1]} is bounded in X.
Let a:= sup{|f(s, x(s))||s € [0,1]} < oo. Forall¢, s,, s, € [0,1] we have:

Iyt(sl) ")’:(Sz)l SIZ(t, sl) - Z(t9 SZ)' '|f(s1’ x(sl))l
+1z(2, )| - (51, x(51)) = £ (555, x(5,))]|
<a-|z(t,s8) = z(t, s,)| + |zl - |/ (51, x(57)) = £ (53, x(s,))|-
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Together with the uniform continuity of z and s — f(s, x(s)) this implies
that { y,|t € [0, 1]} is equicontinuous; thus this set is relatively compact by
the Arzela-Ascoli Theorem, so that (E,y,) — 0 uniformly for ¢ € [0, 1] (cf.
also [28, p. 93]). But this means that

nlingc sup{’/: z(t, 5) f(s, x(s)) ds

-y anjz(t, s,,j)f(s,,j, x(s,; )

Jj=0

It [0,1]} =0,
which implies (3.15). Together, (3.15) and (3.14) imply that (2.11) holds.
Note that so far we used only the continuity of f, not its boundedness.
We need this only to show that (2.10) holds; if this is known for some
other reason, the boundedness of f is not needed.
Let (3.9) hold and x, be a random solution of (3.13) for all n € N,
ie., x,(w) = T,(z,(w), x,(w)) almost surely. Then

(@)l <llz,(@)]- sup{If(r, )] ¢ € [0,1],0 < R}

-Sup{ Z |a,,j| |n € N}
j=0
holds, which implies together with (3.12), the boundedness of f and the
tightness (and hence the D-boundedness) of (z,,) that (2.10) holds.

Thus, Theorem 2.11 is applicable and we especially obtain that (x,,)
contains a subsequence that converges in distribution to a D-solution of
(3.10).

Of course, one could add a random variable y on the right-hand side
of (3.10) and y, on the right-hand sides of (3.13) with (y,) — y; the
conclusions of Theorem 2.11 would still hold.

By similar arguments, one could also apply Theorem 2.11 to fully
nonlinear random integral equations of the type

x(t) = j: f(z(w,t,5),x(s)) ds + y(w,t),

also in other function spaces. Also, for the deterministic approximation
process one could use not only quadrature rules, but also collocation,
Galerkin-type methods and combinations.

Note that the second example presented in this section provides a
theoretical basis for investigations of the kind performed in [11] (where
only linear random integral equations are treated).
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Finally, we remark that with methods similar to those used in the
second example, it should be possible to incorporate also into the first
example a deterministic approximation procedure for the underlying
deterministic initial value problem.
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