SPECTRAL SETS AS BANACH MANIFOLDS

Angel Larotonda and Ignacio Zalduendo

Abstract

Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in C^{n}. We may consider the set of germs of holomorphic functions from X to $M, \mathcal{O}(X, M)$. Now let ν be the functional calculus homomorphism from $\mathcal{O}\left(X, C^{n}\right)$ to A^{n}, and $A_{M}=\nu(\mathcal{O}(X, M))$.

It is proven that A_{M} is an analytic submanifold of A^{n}, modeled on projective A-modules of rank $=\operatorname{dim} M$.

1. Introduction. Let A be a commutative complex Banach algebra with identity, and let X be the set of all characters of A, considered as a compact subset of the topological dual A^{\prime} with the weak*-topology.

If U is an open neighborhood of X, and B a complex Banach space a $\operatorname{map} f: U \rightarrow B$ will be called holomorphic if it is locally bounded and all its complex directional derivatives exist. The set of all such functions which are also bounded on U will be denoted by $H^{\infty}(U, B)$, or simply $H^{\infty}(U)$, when B is the complex field. These are locally convex spaces with the topology of uniform convergence. We define $\mathcal{O}(X, B)$ and $\mathcal{O}(X)$ to be the inductive limit of these spaces as U ranges over all open neighborhoods of $X . \mathscr{O}(X)$ is then a topological algebra. We recall (see [2] or [7]) that there exists a continuous algebra epimorphism, the holomorphic functional calculus

$$
\nu: \mathcal{O}(X) \rightarrow A
$$

such that: the composition of ν and the Gelfand map

$$
\mathscr{O}(X) \rightarrow A \rightarrow C(X)
$$

is the restriction map $\left.f \rightarrow f\right|_{X}$, and the composition of the linear map $a \mapsto \tilde{a}$ and ν

$$
A \rightarrow \mathcal{O}(X) \rightarrow A
$$

is the identity map of A. Here \tilde{a} denotes the germ of the holomorphic map defined on A^{\prime} by $\gamma \mapsto \gamma(a)$.

In [6], Raeburn has generalized previous results of Taylor and Novodvorskii ([7], [5]). He uses a generalization of the morphism ν, extending the holomorphic functional calculus to a linear map

$$
S: \mathcal{O}(X, B) \rightarrow A \hat{\otimes} B .
$$

If $M \subset B$ denotes a Banach submanifold, $\mathcal{O}(X, M)$ is defined and so is the set

$$
A_{M}=\{S(f): f \in \mathcal{O}(X, M)\} \subset A \hat{\otimes} B
$$

Raeburn shows that if M is a discrete union of Banach homogeneous spaces the set A_{M} is locally path connected and the generalized Gelfand map

$$
A_{M} \rightarrow C(X, M)
$$

induces a bijection on the set of components

$$
\left[A_{M}\right] \stackrel{\sim}{\rightarrow}[X, M] .
$$

In this note, in §3, we take $B=\mathbf{C}^{n}$ and M a closed submanifold of an open set of \mathbf{C}^{n}, and prove that the set A_{M} is in fact an analytic submanifold of A^{n}. This was first stated by Taylor in [8]. A_{M} is modeled on projective A-modules of rank $=\operatorname{dim} M$. We also prove that A_{M} and $A^{M}=\left\{a \in A^{n}: \operatorname{sp}(a) \subset M\right\}$ have the same homotopy type. Note that with $B=\mathbf{C}^{n}$, we have $S=\nu \times \cdots \times \nu$ and $A \hat{\otimes} B=A^{n}$.

In order to do this we first prove in $\S 2$ a version of the constant rank theorem.
2. The constant rank theorem. In this paragraph we give a version of the constant rank theorem valid for A-modules; the whole paragraph is an adaptation of the results in [4].

We will be dealing with submodules of the free module A^{n}, and A-module morphisms $T: A^{n} \rightarrow A^{m}$. A submodule E of A^{n} will be called A-direct if it is closed and there is another closed submodule E^{\prime} of A^{n} such that $A^{n}=E \oplus E^{\prime}$; obviously, this is equivalent to the fact: $E=\operatorname{Ker} p$ (resp: $E=\operatorname{Im} p$), for some continuous A-linear projector $p: A^{n} \rightarrow A^{n}$.

Note that in this case E is a projective module, but not necessarily free.

If $T: A^{n} \rightarrow A^{m}$ is an A-module morphism, we say that T is A-direct (also called "split") if Ker T and $\operatorname{Im} T$ are A-direct.

Assume that

$$
A^{n}=E_{1} \oplus E_{2}, \quad F_{1} \oplus F_{2}=A^{m}
$$

for some closed submodules $E_{1}, E_{2}, F_{1}, F_{2}$; if $T: A^{n} \rightarrow A^{m}$ is an A-morphism we shall use the notation

$$
T=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]:\left[\begin{array}{l}
E_{1} \\
E_{2}
\end{array}\right] \rightarrow\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]
$$

with $T_{i j} \in \operatorname{Hom}_{A}\left(E_{j}, F_{l}\right)(i, j=1,2)$, meaning that if

$$
x=x_{1}+x_{2} \quad\left(x_{1} \in E_{1}, x_{2} \in E_{2}\right)
$$

then

$$
T(x)=\left[T_{11}\left(x_{1}\right)+T_{12}\left(x_{2}\right)\right]+\left[T_{21}\left(x_{1}\right)+T_{22}\left(x_{2}\right)\right]
$$

is the expression of $T(x)$ as a sum of elements in F_{1} and F_{2}.
We shall need the following elementary lemma, which we state without proof.

Lemma 2.1. Let P_{1}, P_{2} be A-direct submodules of A^{n} of the same rank. Then $P_{1} \subset P_{2}$ implies $P_{1}=P_{2}$.

THEOREM 1. Suppose $T_{0}: A^{n} \rightarrow A^{m}$ is an A-direct morphism and let E_{1} and F_{2} be closed submodules of A^{n} and A^{m} respectively such that

$$
A^{n}=E_{1} \oplus \operatorname{Ker} T_{0}, \quad \operatorname{Im} T_{0} \oplus F_{2}=A^{m}
$$

If

$$
T=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]:\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T_{0}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right]
$$

then the following are equivalent
(i) T is A-direct, $A^{n}=E_{1} \oplus \operatorname{Ker} T$ and $A^{m}=\operatorname{Im} T \oplus F_{2}$.
(ii) $\alpha \in \operatorname{Iso}\left(E_{1}, \operatorname{Im} T_{0}\right)$ and $\delta=\gamma \alpha^{-1} \beta$.
(iii) There exist A-linear automorphisms $u: A^{n} \rightarrow A^{n}, v: A^{m} \rightarrow A^{m}$ such that $T_{0}=v T u$ and

$$
u\left|E_{1}=\operatorname{id}_{E_{1}} \quad v\right| F_{2}=\operatorname{id}_{F_{2}}
$$

(iv) T is A-direct, $\alpha \in \operatorname{Iso}\left(E_{1}, \operatorname{Im} T_{0}\right)$ and $\operatorname{rk}\left(\operatorname{Im} T_{0}\right)=\operatorname{rk}(\operatorname{Im} T)$.

Proof: Suppose (i) and consider the diagram

$$
\begin{array}{ccc}
E_{1} \times \operatorname{Ker} T & \xrightarrow{w} & \operatorname{Im} T \times F_{2} \\
\phi \uparrow & & \downarrow \psi \\
A^{n}=E_{1} \oplus \operatorname{Ker} T_{0} & \xrightarrow{T} & \operatorname{Im} T_{0} \oplus F_{2}=A^{m}
\end{array}
$$

where ϕ is the isomorphism $v \rightarrow\left(v_{1}, v_{2}\right)$; here v_{1} (resp: $\left.v_{2}\right)$ is the projection of v onto E_{1} (resp: Ker T) with kernel Ker T (resp. E_{1}). We define ψ
in a similar way. Then we have

$$
\phi=\left[\begin{array}{cc}
1 & \tau \\
0 & \theta
\end{array}\right]:\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T_{0}
\end{array}\right] \rightarrow\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T
\end{array}\right]
$$

and

$$
\psi=\left[\begin{array}{ll}
\mu & 0 \\
\nu & 1
\end{array}\right]:\left[\begin{array}{c}
\operatorname{Im} T \\
F_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right]
$$

with $\tau \in \operatorname{Hom}_{A}\left(\operatorname{Ker} T_{0}, E_{1}\right), \quad \nu \in \operatorname{Hom}_{A}\left(\operatorname{Im} T, F_{2}\right) \quad$ and $\theta \in$ $\operatorname{Iso}_{A}\left(\operatorname{Ker} T_{0}, \operatorname{Ker} T\right), \mu \in \operatorname{Iso}_{A}\left(\operatorname{Im} T, \operatorname{Im} T_{0}\right)$. On the other hand we also have

$$
w=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} T \\
F_{2}
\end{array}\right]
$$

with $\lambda \in \operatorname{Iso}_{A}\left(E_{1}, \operatorname{Im} T\right)$.
The commutativity of the diagram implies

$$
\left[\begin{array}{ll}
\mu & 0 \\
\nu & 1
\end{array}\right]\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \tau \\
0 & \theta
\end{array}\right]=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]
$$

hence $\mu \lambda=\alpha$ (which implies that α is an isomorphism) and $\delta=\nu \lambda \tau=$ $\nu \lambda\left(\lambda^{-1} \mu^{-1}\right) \mu \lambda \tau=\gamma \alpha^{-1} \beta$, and we have (ii). Now assume (ii): if

$$
T_{0}=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T_{0}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right]
$$

with $\lambda \in \operatorname{Iso}_{A}\left(E_{1}, \operatorname{Im} T_{0}\right)$ we define

$$
u=\left[\begin{array}{cc}
1 & -\alpha^{-1} \beta \\
0 & 1
\end{array}\right]:\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T_{0}
\end{array}\right] \rightarrow\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T_{0}
\end{array}\right]
$$

and

$$
v=\left[\begin{array}{cc}
\lambda \alpha^{-1} & 0 \\
-\gamma \alpha^{-1} & 1
\end{array}\right]:\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right]
$$

and a routine calculation gives (iii).
Now suppose we have (iv) and define the automorphism $S: A^{m} \rightarrow A^{m}$ by

$$
S=\left[\begin{array}{cc}
1 & 0 \\
-\gamma \alpha^{-1} & 1
\end{array}\right]:\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right]
$$

Then we have the composition

$$
T^{\prime}=S T=\left[\begin{array}{cc}
\alpha & \beta \\
0 & \delta-\gamma \alpha^{-1} \beta
\end{array}\right]:\left[\begin{array}{c}
E_{1} \\
\operatorname{Ker} T_{0}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} T_{0} \\
F_{2}
\end{array}\right]
$$

which is also A-direct. Note that $\operatorname{Im}\left(T^{\prime}\right)=S(\operatorname{Im} T)$, hence $\operatorname{Im}\left(T^{\prime}\right)$ and $\operatorname{Im}(T)$ have the same rank; from this it follows that $\operatorname{rk}\left(\operatorname{Im} T^{\prime}\right)=\operatorname{rk}\left(\operatorname{Im} T_{0}\right)$.

But $\operatorname{Im}\left(T^{\prime}\right) \supset \alpha\left(E_{1}\right)=\operatorname{Im}\left(T_{0}\right) ;$ Lemma 2.1 gives $\operatorname{Im}\left(T^{\prime}\right)=\operatorname{Im}\left(T_{0}\right)$ and this fact implies $\delta-\gamma \alpha^{-1} \beta=0$. This proves (ii)
(iii) \Rightarrow (i) is simple; in fact, it is obvious that T is A-direct. It is also clear that $u\left(\operatorname{Ker} T_{0}\right)=\operatorname{Ker} T$, hence

$$
\begin{aligned}
A^{m} & =v^{-1}\left(\operatorname{Im} T_{0} \oplus F_{2}\right)=v^{-1}\left(\operatorname{Im} T_{0}\right) \oplus v^{-1}\left(F_{2}\right) \\
& =v^{-1} T_{0}\left(A^{n}\right) \oplus F_{2}=T u\left(A^{n}\right) \oplus F_{2}=\operatorname{Im} T \oplus F_{2}, \\
A^{n} & =u\left(\operatorname{Ker} T_{0} \oplus E_{1}\right)=u\left(\operatorname{Ker} T_{0}\right) \oplus E_{1}=\operatorname{Ker} T \oplus E_{1} .
\end{aligned}
$$

In order to complete the proof, we only need the inference (i) \Rightarrow (iv): $\alpha \in \operatorname{Iso}\left(E_{1}, \operatorname{Im} T_{0}\right)$ as in (i) \Rightarrow (ii). The rest is obvious, so the proof is complete.

We shall be concerned now with a generalization of the results in $\S 1$ of [6], we shall follow the definitions of this reference.

Let Ω be an open set in $A^{n}, F: \Omega \rightarrow A^{m}$ an holomorphic map, and $a \in \Omega$; we denote the differential of F at a by $D F(a)$.

A linear representation of F in a is an object (u, U, v, V, T) where
(i) U is a neighborhood of $0 \in A^{n}, u$ is biholomorphic from U onto $u(U)$, a neighborhood of a contained in Ω, and $u(0)=a$.
(ii) V is a neighborhood of $0 \in A^{m}, v$ is biholomorphic from V onto $v(V)$, a neighborhood of $F(a)$ and $v(0)=F(a)$
(iii) $T: U \rightarrow A^{m}$ is the restriction of an A-linear map, and $v^{-1} F u=T$.
(iv) $D u(x)$ and $D v(y)$ are A-linear maps if $x \in U, y \in V$.

We will say that the holomorphic map $F: \Omega \rightarrow A^{m}$ is locally A-direct at $a \in \Omega$ if there are closed sub-modules $E_{1} \subset A^{n}, F_{2} \subset A^{m}$ and a neighborhood U of a such that, for all $x \in U$,
(i) $D F(x)$ is A-linear
(ii) $A^{n}=E_{1} \oplus \operatorname{Ker} D F(x)$
(iii) $A^{m}=\operatorname{Im} D F(x) \oplus F_{2}$.

We have now the following:
Lemma 2.2. Let Ω be an open set in $A^{n}, F: \Omega \rightarrow A^{m}$ holomorphic and $a \in \Omega$. If F is locally A-direct at a, then there is a linear representation (u, U, v, V, T) of F in a, with $T A$-direct.

Proof. Without loss of generality we can assume that $a=0$ and $F(a)=0$; then there exist a neighborhood $\Omega_{0} \subset \Omega$ of $0 \in A^{n}$ and closed submodules $E_{1} \subset A^{n}, F_{2} \subset A^{m}$ such that

$$
A^{n}=E_{1} \oplus \operatorname{Ker} D F(x), \quad A^{m}=\operatorname{Im} D F(x) \oplus F_{2}
$$

for all $x \in \Omega_{0}$. Also, $D F(x)$ is A-linear if $x \in \Omega_{0}$.
Let $E_{2}=\operatorname{Ker} D F(0), F_{1}=\operatorname{Im} D F(0)$; we denote x_{1}, x_{2} (resp: y_{1}, y_{2}) the components of $x \in A^{n}$ (resp: $y \in A^{m}$) in the decomposition $E_{1} \oplus E_{2}$ (resp: $F_{1} \oplus F_{2}$). In a similar way we write $F(x)=f_{1}(x)+f_{2}(x)$, with $f_{1}(x) \in F_{1}$ and $f_{2}(x) \in F_{2}$.

We have

$$
D F(x)=\left[\begin{array}{ll}
D_{1} f_{1}(x) & D_{2} f_{1}(x) \\
D_{1} f_{2}(x) & D_{2} f_{2}(x)
\end{array}\right]:\left[\begin{array}{l}
E_{1} \\
E_{2}
\end{array}\right] \rightarrow\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]
$$

and so we can simplify the notation writing $\alpha_{i j}(x)=D_{i} f_{j}(x)(i, j=1,2)$. Recall that Theorem 1 gives
(a) $\alpha_{11}(x): E_{1} \rightarrow F_{1}$ is an isomorphism, and
(b) $\alpha_{22}(x)=\alpha_{12}(x) \alpha_{11}(x)^{-1} \alpha_{21}(x)$ for all $x \in \Omega_{0}$.

Define the following A-linear maps

$$
\begin{array}{ll}
S: E_{1} \rightarrow F_{1}, & S=\alpha_{11}(0), \\
T: A^{n} \rightarrow A^{m}, & T(x)=S\left(x_{1}\right), \\
c: A^{m} \rightarrow A^{n}, & c(y)=S^{-1}\left(y_{1}\right), \\
P: A^{n} \rightarrow A^{n}, & P(x)=x_{2}, \\
Q: A^{m} \rightarrow A^{m}, & Q(y)=y_{2} .
\end{array}
$$

Now define the holomorphic map $h: \Omega_{0} \rightarrow A^{n}$ by

$$
h=c F+P
$$

We have: $D h(x)$ is an A-linear map if $x \in \Omega_{0}$. In fact,

$$
\begin{aligned}
\operatorname{Dh}(x) & =\left[\begin{array}{cc}
S^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\alpha_{11}(x) & \alpha_{21}(x) \\
\alpha_{12}(x) & \alpha_{22}(x)
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
S^{-1} \alpha_{11}(x) & S^{-1} \alpha_{21}(x) \\
0 & 1
\end{array}\right]
\end{aligned}
$$

hence by the inverse function theorem $h: \Omega_{1} \rightarrow \Omega_{2}$ is biholomorphic for suitable neighborhoods of $0 \in A^{n}$.

Note that the differential of the map $F h^{-1} P: P^{-1}\left(\Omega_{2}\right) \rightarrow A^{m}$ vanishes identically, that is

$$
D\left(F h^{-1} P\right)(x)=0 \quad\left(x \in P^{-1}\left(\Omega_{2}\right)\right)
$$

In fact we can compute this differential as the composition $D F\left(h^{-1} P(x)\right) D h\left(h^{-1} P(x)\right)^{-1} P$; the calculation leads (with $\left.x^{\prime}=h^{-1} P(x)\right)$ to

$$
\begin{gathered}
{\left[\begin{array}{ll}
\alpha_{11}\left(x^{\prime}\right) & \alpha_{21}\left(x^{\prime}\right) \\
\alpha_{12}\left(x^{\prime}\right) & \alpha_{22}\left(x^{\prime}\right)
\end{array}\right]\left[\begin{array}{cc}
\alpha_{11}\left(x^{\prime}\right)^{-1} S & -\alpha_{11}\left(x^{\prime}\right)^{-1} \alpha_{21}(x) \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} \\
\quad=\left[\begin{array}{cc}
S & 0 \\
\alpha_{12}\left(x^{\prime}\right) \alpha_{11}\left(x^{\prime}\right)^{-1} S & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=0
\end{gathered}
$$

where we use the identity $\alpha_{22}=\alpha_{12} \alpha_{11}^{-1} \alpha_{21}$.
Hence we have proved
(c) $F h^{-1} P$ vanishes identically in a neighborhood of 0 (for instance, in the connected component of 0 in $\left.P^{-1}\left(\Omega_{2}\right)\right)$.

Finally we define the holomorphic mapping $g: c^{-1}\left(\Omega_{2}\right) \rightarrow A^{m}$

$$
g=F h^{-1} c+Q
$$

Then if $x=h^{-1} c(y)$ we compute

$$
D g(y)=\left[\begin{array}{cc}
1 & 0 \\
\alpha_{12}(x) \alpha_{11}(x)^{-1} & 1
\end{array}\right]
$$

and this shows that $g: \Omega_{1}{ }^{\prime} \rightarrow \Omega_{2}{ }^{\prime}$ is a biholomorphic map, where Ω_{1}^{\prime} and Ω_{2}^{\prime} are small enough neighborhoods of $0 \in A^{m}$. Also $\operatorname{Dg}(y)$ is A-linear for every $x \in \Omega_{1}{ }^{\prime}$.

In order to complete the proof, set $u=h^{-1}$ and $v=g$; we must show that the identity

$$
g T h=F
$$

holds in some neighborhood of $0 \in A^{n}$; but this follows from (c) and the computation

$$
\begin{aligned}
g T h & =\left(F h^{-1} c+Q\right) T(c F+P)=F h^{-1} c Q F \\
& =F h^{-1} c F=F h^{-1}(h-P)=F-F h^{-1} P
\end{aligned}
$$

Theorem 2. Let Ω be an open subset of A^{n}, and $F: \Omega \rightarrow A^{n}$ an holomorphic retraction that is locally A-direct at x for all $x \in \Omega$. Then $\operatorname{Im} F$ is a Banach analytic manifold, and for all $x \in \operatorname{Im} F$ the tangent space $T_{x}(\operatorname{Im} F)$ at x is $\operatorname{Im} D F(x)$.

Proof. For every $F(x) \in \operatorname{Im} F$ there is, by Lemma 2.2, a linear representation $\left(u_{x}, U_{x}, v_{x}, V_{x}, T_{x}\right)$ of F with $T_{x} A$-direct.

For all $x^{\prime} \in U_{x}$,

$$
\begin{aligned}
T_{x} & =D T_{x}\left(x^{\prime}\right)=D v_{x}^{-1}\left(F u_{x}\left(x^{\prime}\right)\right) \cdot D F\left(u_{x}\left(x^{\prime}\right)\right) \cdot D u_{x}\left(x^{\prime}\right) \\
& =\left[D v_{x}\left(T_{x}\left(x^{\prime}\right)\right)\right]^{-1} \cdot D F\left(u_{x}\left(x^{\prime}\right)\right) \cdot D u_{x}\left(x^{\prime}\right)
\end{aligned}
$$

$D v_{x}(Z)$ and $D u_{x}\left(Z^{\prime}\right)$ are A-linear isomorphisms, so $\operatorname{Im} T_{x} \simeq$ $\operatorname{Im} D F\left(u_{x}\left(x^{\prime}\right)\right)$, for all $x^{\prime} \in U_{x}$. But F is A-direct at x, so there is a neighborhood of x where $\operatorname{Im} D F(a) \simeq \operatorname{Im} D F(b)$, for a, b in this neighborhood. Hence the $\operatorname{Im} T_{z}$ for z in this neighborhood are all A-isomorphic to a fixed A-module P. Call $h_{z}: \operatorname{Im} T_{z} \rightarrow P$ these A-isomorphisms. For every $x \in \operatorname{Im} F, x=F(x)$, and U_{x}, V_{x} may be chosen so that $u_{x}\left(U_{x}\right)=$ $v_{x}\left(V_{x}\right)$. Then $v_{x}: V_{x} \cap \operatorname{Im} T_{x} \rightarrow v_{x}\left(V_{x}\right) \cap \operatorname{Im} F$ is a bijection: it is one to one over all of V_{x}, and if $v_{x}(z) \in \operatorname{Im} F$, say $v_{x}(z)=u_{x}\left(z^{\prime}\right)$,

$$
v_{x}(z)=F v_{x}(z)=F u_{x}\left(z^{\prime}\right)=v_{x} T_{x} u_{x}^{-1}\left(u_{x}\left(z^{\prime}\right)\right)=v_{x}\left(T_{x}\left(z^{\prime}\right)\right)
$$

so $v_{x}(z) \in v_{x}\left(V_{x} \cap \operatorname{Im} T_{x}\right)$.
Now define the chart near $x \in \operatorname{Im} F:\left(v_{x}\left(V_{x}\right) \cap \operatorname{Im} F, h_{x} v_{x}^{-1}\right)$. These charts are compatible. To see this, suppose

$$
U_{x y}=v_{x}\left(V_{x}\right) \cap v_{y}\left(V_{y}\right) \cap \operatorname{Im} F \neq \varnothing
$$

we then have

$$
\left(h_{y} v_{y}^{-1}\right)\left(h_{x} v_{x}^{-1}\right)^{-1}: h_{x} v_{x}^{-1}\left(U_{x y}\right) \rightarrow h_{y} v_{y}^{-1}\left(U_{x y}\right)
$$

But $\left(h_{y} v_{y}^{-1}\right)\left(h_{x} v_{x}^{-1}\right)^{-1}=h_{y} v_{y}^{-1} v_{x} h_{x}^{-1}$ is holomorphic. The same goes for the other composition. The tangent space $T_{x}(\operatorname{Im} F)$ is given by

$$
\begin{gathered}
\operatorname{Im}\left(D v_{x}(0) h_{x}^{-1}\right)=D v_{x}(0)\left(\operatorname{Im} T_{x}\right)=\operatorname{Im}\left(D v_{x}(0) T_{x}\right)=\operatorname{Im} D\left(v_{x} T_{x}\right)(0) \\
=\operatorname{Im} D\left(F u_{x}\right)(0)=\operatorname{Im}\left(D F\left(u_{x}(0)\right) D u_{x}(0)\right)=\operatorname{Im} D F(x)
\end{gathered}
$$

3. A_{M} as an analytic manifold. Here we will apply the results in the preceding paragraph to Taylor's $A_{M}[7]$ where M is a closed submanifold of an open set of \mathbf{C}^{n}.

For $a \in A^{n}$, let \hat{a} denote the function $A^{\prime} \rightarrow \mathbf{C}^{n}$ defined by $\hat{a}(\gamma)=$ $\left(\gamma\left(a_{1}\right), \ldots, \gamma\left(a_{n}\right)\right)$ for all $\gamma \in A^{\prime}$. Note that with the supremum norm in both A^{n} and $\mathbf{C}^{n},|\hat{a}(\gamma)| \leq\|\gamma\|\|a\|$. We will sometimes write ϕ^{n} for $\phi \times \cdots \times \phi$. We denote by θ_{a} the classical holomorphic functional calculus of Arens and Calderón [1]. All other functional calculus morphisms and their restrictions will be denoted by ν.

We will need the following lemma.
Lemma 3.1. Let W be an open subset of \mathbf{C}^{n}. Then A_{W} is an open subset of A^{n}.

Proof. Let $a \in A_{W}$, and $f \in \mathcal{O}(X, W)$ such that $a=\nu(f)$. Since $f(X)$ is a compact subset of W, there is an $\varepsilon>0$ such that for every $\phi \in X$, the polydisc $\left\{z \in \mathbf{C}^{n}:|f(\phi)-z|<\varepsilon\right\}$ is contained in W. Now let $U=\{b \in$ $\left.A^{n}:\|a-b\|<\varepsilon\right\} . \hat{b}(X) \subseteq W$, because

$$
|f(\phi)-\hat{b}(\phi)|=|\overrightarrow{a-b}(\phi)| \leq\|a-b\|<\varepsilon
$$

Then $\hat{b}^{-1}(W)$ is a neighborhood of X in A^{\prime}, so $\hat{b} \in \mathcal{O}(X, W)$, and $b \in A_{W}$.
The sets A_{W}, with W open, are now appropriate domains for holomorphic functions. We will need to lift holomorphic functions in \mathbf{C}^{n} to holomorphic functions in A^{n}. This will be done as follows. Let h : $W \rightarrow \mathbf{C}^{m}$ be holomorphic, and define $A_{h}: A_{W} \rightarrow A^{m}$ by $A_{h}(a)=\nu(h \circ f)$, if $a=\nu(f)$.

Lemma 3.2. A_{h} is a well-defined holomorphic function. For all $a=\boldsymbol{\nu}(f)$ $\in A_{W}, D A_{h}(a)$ is an A-module homomorphism given by $\nu(\operatorname{Dh}(f))$.

Proof. First, we will see that $\nu(f)=\nu(g)$ implies $\nu(h \circ f)=\nu(h \circ g)$.
For this, let $b_{1}, \ldots, b_{k} \in A$ be elements that finitely determine f and g, in other words, there is an open set Ω in \mathbf{C}^{k} and there are F and G in $\mathcal{O}(\Omega, W)$ such that the following diagram commutes

$\nu(f)=\nu(g)$ means that $\theta_{b}(F)=\theta_{b}(G)$, so $\operatorname{sp}\left(\theta_{b}(F)\right)=\operatorname{sp}\left(\theta_{b}(G)\right) \subseteq W$. Since $h \in \mathcal{O}\left(W, \mathbf{C}^{m}\right)$, we may write $\theta_{\theta_{b}(F)}(h)=\theta_{\theta_{b}(G)}(h)$. Then $h(F(b))=$ $h(G(b))$, so $\theta_{b}(h \circ F)=\theta_{b}(h \circ G)$ and $\nu(h \circ f)=\nu(h \circ g)$.

To prove that A_{n} is holomorphic, let $a \in A_{W}$, and $b \in A^{n}$. It will be enough to prove the existence of

$$
\begin{equation*}
\frac{\partial A_{h}}{\partial b}(a)=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left[A_{h}(a+\lambda b)-A_{h}(a)\right] \tag{1}
\end{equation*}
$$

Let $a=\nu(f), \quad b=\nu(g)$. Then $a+\lambda b=\nu(f+\lambda g)$, and (1) is $\lim _{\lambda \rightarrow 0} \lambda^{-1}[\nu(h \circ(f+\lambda g)-h \circ f)]$. Since the functional calculus is continuous, the limit (1) will exist if $\lim _{\lambda \rightarrow 0} \lambda^{-1}[h \circ(f+\lambda g)-h \circ f]$ exists in $\mathcal{O}\left(X, C^{m}\right)$. We must see that $\lambda^{-1}[h \circ(f+\lambda g)-h \circ f]$ converges uniformly over a neighborhood of X as $\lambda \rightarrow 0$. For this, set $\varepsilon>0$, and if $\lambda \in C$ with $|\lambda|<\varepsilon$ and $\gamma \in X$, let
$S(\lambda, \gamma)= \begin{cases}\frac{1}{\lambda}[h(f(\gamma)+\lambda g(\gamma))-h(f(\gamma))]-\frac{\partial h}{\partial g(\gamma)} f(\gamma), & \text { if } \lambda \neq 0 . \\ 0 & \text { if } \lambda=0 .\end{cases}$
h is holomorphic, so $\lim _{\lambda \rightarrow 0} S(\lambda, \gamma)=0$ for each $\gamma \in X$. Then there are $\delta_{\gamma}>0$ and neighborhoods V_{γ} of γ such that $|S(\lambda, \phi)|<\varepsilon$ for $\lambda \in \mathbf{C}$ with $|\lambda|<\delta_{\gamma}$ and all $\phi \in V_{\gamma}$. Being X compact, there are $\gamma_{1}, \ldots, \gamma_{p} \in X$ such that $V_{\gamma_{i}}, i=1, \ldots, p$, cover X. Let $\delta=\min \left\{\delta_{\gamma_{i}}: 1 \leq i \leq p\right\}$, and $V=$ $\bigcup_{i=1}^{p} V_{\gamma_{i}}$. Then for all $\lambda \in C$ with $|\lambda|<\delta$ and all $\gamma \in V, S(\lambda, \gamma)<\varepsilon$, so A_{h} is holomorphic. We shall denote the limit of $\lambda^{-1}[h \circ(f+\lambda g)-h \circ f]$ as $\lambda \rightarrow 0$, by $\operatorname{Dh}(f)(g)$.
$D A_{h}(a)$ is more than just a linear morphism. It is A-linear. To prove this we must show that the diagram

$\mathcal{O}(X, \mathbf{C})^{m \times n}$	\times	$\mathcal{O}(X, \mathbf{C})^{n}$	\rightarrow	$\mathcal{O}(X, \mathbf{C})^{m}$	
$\nu \downarrow$		$\nu \downarrow$		$\nu \downarrow$	
$A^{m \times n}$	\times	A^{n}	\rightarrow	A^{m}	commutes.

Here the horizontal arrows indicate matrix multiplication.
As all the arrows are continuous, and $P(\hat{A})^{k}$ is dense in $\mathcal{O}(X, \mathbf{C})^{k}$ for all k, where $P(\hat{A})$ is the algebra of polynomials in Gelfand transforms of elements of A, it will be enough to show that $\nu(p \cdot q)=\nu(p) \cdot \nu(q)$, where $p_{i j}, q_{j} \in P(\hat{A})$. Let

$$
\begin{aligned}
& p_{i j}=\sum_{(k)} \widehat{a^{i j}}(k), \quad \text { where } \widehat{a^{i j}}(k)={\widehat{a^{i j_{k_{1}}}}}_{k_{1}}^{\cdots}{\widehat{a^{i j_{k_{r}}}}}_{k_{r}}^{r} \\
& q_{j}=\sum_{\left(k^{\prime}\right)} \widehat{a^{j}}\left(k^{\prime}\right), \quad \text { where } \widehat{a^{j}}\left(k^{\prime}\right)={\widehat{a^{j}}}^{k_{k_{1}^{\prime}}^{\prime}} \cdots \widehat{a}^{k_{k_{s}^{\prime}}^{\prime}} . \\
& \boldsymbol{\nu}(p \cdot q)=\nu\left(\sum_{j=1}^{n} p_{1 j} q_{j}, \ldots, \sum_{j=1}^{n} p_{m j} q_{j}\right) \\
& =\nu\left(\sum_{j=1}^{n} \sum_{(k)} \widehat{a^{1 j}}(k) \sum_{\left(k^{\prime}\right)} \widehat{a^{j}}\left(k^{\prime}\right), \ldots, \sum_{j=1}^{n} \widehat{\left.\sum_{(k)} \widehat{a^{m j}}(k) \sum_{\left(k^{\prime}\right)} \widehat{a^{j}}\left(k^{\prime}\right)\right), ~(n)}\right. \\
& =\left(\sum_{j=1}^{n} \sum_{(k)} a^{1 j}(k) \sum_{\left(k^{\prime}\right)} a^{j}\left(k^{\prime}\right), \ldots, \sum_{j=1}^{n} \sum_{(k)} a^{m j}(k) \sum_{\left(k^{\prime}\right)} a^{j}\left(k^{\prime}\right)\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{equation*}
\nu(p) \cdot \nu(q)=\left(\sum_{j=1}^{n} \nu(p)_{1 j} \nu(q)_{j}, \ldots, \sum_{j=1}^{n} \nu(p)_{m j} \nu(q)_{j}\right) . \tag{2}
\end{equation*}
$$

But

$$
\nu(p)_{l j}=\nu\left(p_{l j}\right)=\nu\left(\sum_{(k)} \widehat{a^{l j}}(k)\right)=\sum_{(k)} a^{l^{j}}(k),
$$

and

$$
\nu(q)_{j}=\nu\left(q_{j}\right)=\nu\left(\sum_{\left(k^{\prime}\right)} \widehat{a^{j}}\left(k^{\prime}\right)\right)=\sum_{\left(k^{\prime}\right)} a^{j}\left(k^{\prime}\right)
$$

So
$(2)=\left(\sum_{j=1}^{n} \sum_{(k)} a^{1 j}(k) \sum_{\left(k^{\prime}\right)} a^{j}\left(k^{\prime}\right), \ldots, \sum_{j=1}^{n} \sum_{(k)} a^{m j}(k) \sum_{\left(k^{\prime}\right)} a^{j}\left(k^{\prime}\right)\right)=\nu(p \cdot q)$.
Then

$$
D A_{h}(a)(b)=\nu(D h(f)(g))=\nu(D h(f)) \cdot \nu(g)=\nu(D h(f))(b)
$$

So that $D A_{h}(a)=\nu(D h(f)) \in A^{m \times n}$ is an A-module morphism, for all $a \in A_{W}$.

Note that A_{h} could have been well-defined by putting $A_{h}(a)=$ $\nu(h \circ \hat{a})$, but this definition will not do for our later purposes.

Now let M be a closed submanifold of an open set of \mathbf{C}^{n}, of dimension k. We recall that by [3; Ch. VIII, C] there is an open neighborhood W of M and an holomorphic retraction $r: W \rightarrow M$. Hence we also have $A_{r}: A_{W} \rightarrow A_{M}$, the image of A_{r} being contained in A_{M} because $r \circ f \in \mathcal{O}(X, M)$ for all $f \in \mathcal{O}(X, W)$. Of course the image of A_{r} is exactly A_{M}, for if $a \in A_{M}$, then $A_{r}(a)=\nu(r \circ f)$ where $f \in \mathcal{O}(X, M)$ so $r \circ f=f$, and $A_{r}(a)=\nu(r \circ f)=\nu(f)=a \in \operatorname{Im} A_{r}$. Now we obtain our main theorem.

Theorem 3. If M is a closed submanifold of an open set of \mathbf{C}^{n}, of dimension k, then A_{M} is a Banach manifold modeled on projective A-modules of rank k.

Proof. By Theorem 2, it will clearly be enough to verify that A_{r} is A-direct at a for all a in a neighborhood of A_{M}.

Since r is a retraction, $\operatorname{Dr}(r(z)) \circ \operatorname{Dr}(z)=\operatorname{Dr}(z)$ for all $z \in W$. Therefore $\operatorname{Im} \operatorname{Dr}(z) \subseteq \operatorname{Im} \operatorname{Dr}(r(z))$, but the rank of the matrix $\operatorname{Dr}(z)$ is at least that of $\operatorname{Dr}(r(z))$ for z near $r(z)$, so that actually $\operatorname{Im} \operatorname{Dr}(z)=$ $\operatorname{Im} \operatorname{Dr}(r(z))$ for z in an open neighborhood of M. This means that $\operatorname{dim} \operatorname{Im} \operatorname{Dr}(z)=k$, and $\operatorname{dim} \operatorname{Ker} \operatorname{Dr}(z)=n-k$ near $M . \mathbf{C}^{n}$ can be written as the direct sum

$$
\mathbf{C}^{n}=\operatorname{Im} \operatorname{Dr}(r(z)) \oplus \operatorname{Ker} \operatorname{Dr}(r(z))=\operatorname{Im} \operatorname{Dr}(z) \oplus \operatorname{Ker} \operatorname{Dr}(r(z))
$$

Because of the continuity of Dr, we may also write $\mathbf{C}^{n}=\operatorname{Im} \operatorname{Dr}(z) \oplus$ $\operatorname{Ker} \operatorname{Dr}(z)$, for z near M. Note also that $\operatorname{Dr}(r(z)) \mid \operatorname{Im} \operatorname{Dr}(r(z))$ is the identity, so that $\operatorname{Dr}(z) \mid \operatorname{Im} \operatorname{Dr}(z)$ is an automorphism of $\operatorname{Im} \operatorname{Dr}(z)$ near M. We may suppose the neighborhood of M where all this is true to be W;
just discard the old W. For all $z \in W$,

$$
\alpha_{z}=\left[\begin{array}{ccc}
\operatorname{Dr}(z) & 0 \\
\cdots \ldots & 0 \\
0 & : & I
\end{array}\right]:\left[\begin{array}{c}
\operatorname{Im} \operatorname{Dr}(z) \\
\operatorname{Ker} \operatorname{Dr}(z)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} \operatorname{Dr}(z) \\
\operatorname{Ker} \operatorname{Dr}(z)
\end{array}\right]
$$

is an automorphism of \mathbf{C}^{n}. Define $\alpha: W \rightarrow \mathrm{GL}_{n}(\mathbf{C})$ by $\alpha(z)=$ the matrix of α_{z} in the canonical basis of \mathbf{C}^{n}. We will show that α is an holomorphic function. For this, let $z_{0} \in W$. There is a neighborhood U of z_{0} and there are holomorphic functions $v_{i}: U \rightarrow \mathbf{C}^{n}, 1 \leq i \leq n$, such that $v_{1}(z), \ldots, v_{k}(z)$ is a basis of $\operatorname{Im} \operatorname{Dr}(z)$ and $v_{k+1}(z), \ldots, v_{n}(z)$ is a basis of Ker $\operatorname{Dr}(z)$ for all $z \in U$. Let $\beta_{z} \in \mathbf{C}^{k \times k}$ be the matrix of $\operatorname{Dr}(z) \mid \operatorname{Im} \operatorname{Dr}(z)$ in the basis $v_{1}(z), \ldots, v_{k}(z)$ and let $c(z)$ be the matrix which changes the canonical basis of \mathbf{C}^{n} to $v_{1}(z), \ldots, v_{n}(z)$. Then

$$
\alpha(z)=c(z)^{-1} \cdot\left[\begin{array}{ccc}
\beta_{z} & \vdots & 0 \\
\cdots & \vdots & I
\end{array}\right] \cdot c(z)
$$

and it will be enough to verify that β_{z} is an holomorphic function of z in U, but this follows from the equations

$$
\operatorname{Dr}(z)\left(v_{i}(z)\right)_{t}=\sum_{s=1}^{k} \beta_{z_{t s}} v_{i}(z)_{s}, \quad i \leq i, t \leq k
$$

We therefore have $A_{\alpha}: A_{W} \rightarrow A_{\mathrm{GL}_{n}(\mathbf{C})}=\mathrm{GL}_{n}(A)$. But

$$
\left.A_{\alpha}(x)\right|_{\operatorname{Im} D A_{r}(x)}=\left.D A_{r}(x)\right|_{\operatorname{Im} D A_{r}(x)}
$$

for all $x \in A_{W}$. To see this, let $b=\nu(\operatorname{Dr}(g)(h)) \in \operatorname{Im} D A_{r}(x)$, where $x=\nu(g)$. Now $A_{\alpha}(x)(b)=\nu(\alpha \circ g) \cdot \nu(\operatorname{Dr}(g)(h))=\nu(\alpha \circ g \cdot \operatorname{Dr}(g)(h))$, but for all γ near X,

$$
\left.\alpha(g(\gamma))\right|_{\operatorname{Im} \operatorname{Dr}(g(\gamma))}=\left.\operatorname{Dr}(g(\gamma))\right|_{\operatorname{Im} \operatorname{Dr}(g(\gamma))}
$$

so

$$
\begin{aligned}
A_{\alpha}(x)(b) & =\nu(\operatorname{Dr}(g) \cdot \operatorname{Dr}(g)(h)) \\
& =\nu(\operatorname{Dr}(g)) \cdot \nu(\operatorname{Dr}(g)(h))=D A_{r}(x)(b)
\end{aligned}
$$

Then

$$
\left.D A_{r}(x)\right|_{\operatorname{Im} D A_{r}(x)}: \operatorname{Im} D A_{r}(x) \rightarrow \operatorname{Im} D A_{r}(x) \text { is an automorphism. }
$$

We prove that $A^{n}=\operatorname{Im} D A_{r}(x) \oplus \operatorname{Ker} D A_{r}(x)$ for all $x \in A_{W}$:

$$
0=\operatorname{Ker}\left(\left.D A_{r}(x)\right|_{\operatorname{Im} D A_{r}(x)}\right)=\operatorname{Im} D A_{r}(x) \cap \operatorname{Ker} D A_{r}(x)
$$

If $c \in A^{n}$, there exists $b \in \operatorname{Im} D A_{r}(x)$ such that $D A_{r}(x)(b)=D A_{r}(x)(c)$. Then $c=b+(c-b)$, with $b \in \operatorname{Im} D A_{r}(x)$ and $c-b \in \operatorname{Ker} D A_{r}(x)$. $\operatorname{Ker} D A_{r}(x)$ is closed, so the direct sum is topological.

We now know that $\operatorname{Im} D A_{r}(x)$ is a projective A-module.
We shall see that its rank is k.
First we must prove that for all $x \in A_{W}$ and $\phi \in X$,

$$
\phi^{n}\left(\operatorname{Im} D A_{r}(x)\right)=\operatorname{Im} \operatorname{Dr}\left(\phi^{n}(x)\right)
$$

and

$$
\phi^{n}\left(\operatorname{Ker} D A_{r}(x)\right)=\operatorname{Ker} \operatorname{Dr}\left(\phi^{n}(x)\right) .
$$

Take

$$
\begin{aligned}
D A_{r}(x)(b) & \in \operatorname{Im} D A_{r}(x) \cdot \phi^{n}\left(D A_{r}(x)(b)\right)=\widehat{\nu(\operatorname{Dr}(\hat{x})(\hat{b}))}(\phi) \\
& =(\operatorname{Dr}(\hat{x})(\hat{b}))(\phi)=\operatorname{Dr}\left(\phi^{n}(x)\right)\left(\phi^{n}(b)\right) \in \operatorname{Im} \operatorname{Dr}\left(\phi^{n}(x)\right) .
\end{aligned}
$$

Now take $b \in \operatorname{Ker} D A_{r}(x)$.

$$
\operatorname{Dr}\left(\phi^{n}(x)\right)\left(\phi^{n}(b)\right)=\phi^{n}\left(D A_{r}(x)(b)\right)=\phi^{n}(0)=0,
$$

so $\phi^{n}(b) \in \operatorname{Ker} \operatorname{Dr}\left(\phi^{n}(x)\right)$, and we have proven both left-to-right inclusions. We have $A^{n}=\operatorname{Im} D A_{r}(x) \oplus \operatorname{Ker} D A_{r}(x)$, and ϕ^{n} is surjective, so

$$
\mathbf{C}^{n}=\phi^{n}\left(\operatorname{Im} D A_{r}(x)\right)+\phi^{n}\left(\operatorname{Ker} D A_{r}(x)\right),
$$

but because of the inclusions we have just proven, this sum is direct. Then

$$
\begin{aligned}
\mathbf{C}^{n} & =\phi^{n}\left(\operatorname{Im} D A_{r}(x)\right) \oplus \phi^{n}\left(\operatorname{Ker} D A_{r}(x)\right) \\
& =\operatorname{Im} \operatorname{Dr}\left(\phi^{n}(x)\right) \oplus \operatorname{Ker} \operatorname{Dr}\left(\phi^{n}(x)\right),
\end{aligned}
$$

so the inclusions are actually equalities.
Now let $x \in A_{W}, P=\operatorname{Im} D A_{r}(x), Q=\operatorname{Ker} D A_{r}(x)$, and $\phi \in X$. Then $\mathrm{rk}_{\phi} P=\mathrm{rk}_{A_{\phi}} P_{\phi}=\mathrm{rk}_{A_{\phi}}\left(A_{\phi} \otimes_{A} P\right)$ is, by Nakayama's Lemma the same as $\operatorname{dim}_{\mathrm{C}}\left[\left(A_{\phi} \otimes_{A} P\right) \otimes_{A_{\phi}} \mathrm{C}\right]$, when \mathbf{C} (and also $\left.\phi^{n}(P)\right)$ has the A_{ϕ}-module structure induced by ϕ. We then have the A_{ϕ}-module morphism

$$
\begin{gathered}
q:\left(A_{\phi} \otimes_{A} P\right) \otimes_{A_{\phi}} \mathbf{C} \rightarrow \phi^{n}(P) ; \\
q\left(\sum_{j}\left(\sum_{i} \frac{a_{i j}}{b_{i j}} \otimes p_{i j}\right) \otimes \lambda_{j}\right)=\sum_{j} \sum_{i} \lambda_{j} \frac{\phi\left(a_{i j}\right)}{\phi\left(b_{i j}\right)} \phi^{n}\left(p_{i j}\right) .
\end{gathered}
$$

Let v_{1}, \ldots, v_{k} has a basis for $\phi^{n}(P)=\operatorname{Im} \operatorname{Dr}\left(\phi^{n}(x)\right)$, and let b_{1}, \ldots, b_{k} $\in P$ such that $\phi^{n}\left(b_{i}\right)=v_{i}$ for $i=1, \ldots, k$. Then $\left(1 / 1 \otimes b_{i}\right) \otimes 1, i=$ $1, \ldots, k$, are \mathbf{C}-linearly independent: if $0=\sum_{i=1}^{k} \lambda_{i}\left(1 / 1 \otimes b_{i}\right) \otimes 1$, then

$$
0=q(0)=\sum_{i=1}^{k} \lambda_{i} \phi^{n}\left(b_{i}\right)=\sum_{i=1}^{k} \lambda_{i} v_{i}
$$

and $\lambda_{i}=0$ for $i=1, \ldots, k$.
Therefore $\mathrm{rk}_{\phi} P=\operatorname{dim}_{\mathrm{c}}\left[\left(A_{\phi} \otimes_{A} P\right) \otimes_{A_{\phi}} \mathrm{C}\right] \geq k$.
In a similar manner, and since $\phi^{n}(Q)=\operatorname{Ker} \operatorname{Dr}\left(\phi^{n}(x)\right), \mathrm{rk}_{\phi} Q \geq$ $n-k . \mathrm{Butr}_{\phi} P+\mathrm{rk}_{\phi} Q=n$, $\mathrm{sork}_{\phi} P=k \forall \phi \in X$. Then rk $P=k$.

To complete our proof, let $a \in A_{M}$ and write:

$$
D A_{r}(x)=\left[\begin{array}{ll}
P(x) & Q(x) \\
R(x) & S(x)
\end{array}\right]:\left[\begin{array}{c}
\operatorname{Im} D A_{r}(a) \\
\operatorname{Ker} D A_{r}(a)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} D A_{r}(a) \\
\operatorname{Ker} D A_{r}(a)
\end{array}\right]
$$

Since $D A_{r}(a)$ is an indempotent, $\left.D A_{r}(a)\right|_{\operatorname{Im} D A_{r}(a)}$ is the identity, and $P(a)=I$. But $\operatorname{Im} D A_{r}(a)$ is a Banach space, so by the continuity of P, $P(x)$ is an automorphism of $\operatorname{Im} D A_{r}(a)$ for all x in a neighborhood U of a.

We have then verified conditions (iv) of Theorem 1 for all $x \in U$. Therefore, A_{r} is A-direct at x for all x in a neigborhood of A_{M}.

Observe that the tangent space $T_{a}\left(A_{M}\right)$ at a is $\operatorname{Im} D A_{r}(a)$. These are of course projective A-modules of rank k, but they need not be isomorphic on different connected components of A_{M}. In fact, some of these modules may be free while others may not.

Now consider for any Banach algebra A, the category $M(A)$ whose objects are analytic manifolds modeled on projective A-modules, with morphisms holomorphic functions whose differentials are A-module morphism, and the ordinary composition. Let \underline{M} be the category of closed analytic submanifolds of open subsets of finite products of \mathbf{C}. Then we have:

Proposition 3.3. $A_{(\cdot)}$ is a covariant functor from \underline{M} to $\underline{M(A)}$.
Proof. A_{M} is defined for every object in \underline{M} and is an object of $M(A)$, by Theorem 3. Now let M and N be two objects of \underline{M} and $h: M \rightarrow N$ an holomorphic function. h can be extended to an open neighborhood W of M for example by $h \circ r$. If \bar{h} is such an extension, then we can define $A_{\bar{h}}$ as before Lemma 3.2. Now define A_{h} to be the restriction of $A_{\bar{h}}$ to A_{M}, for any extension \bar{h} of h. Obviously, $\operatorname{Im} A_{h}=A_{\bar{h}}\left(A_{M}\right) \subseteq A_{N}$, and if h_{1} and h_{2} are two extensions of h, and $a \in A_{M}, a=\nu(f)$ with $f \in \mathcal{O}(X, M)$, then

$$
A_{h_{1}}(a)=\nu\left(h_{1} \circ f\right)=\nu(h \circ f)=\nu\left(h_{2} \circ f\right)=A_{h_{2}}(a)
$$

so A_{h} is well defined. The rest of the Proposition is easily verified.
There are many holomorphic functions in A^{n} whose differentials are A-module morphisms, but which are not of the form A_{h} for any h. As an example, take $a \in A$ such that there are $x \in A$, and $\phi, \psi \in X$ with $\phi(x)=\psi(x) \neq 0$ and $\phi(a) \neq \psi(a)$; and consider $L_{a}: A \rightarrow A$ defined by $L_{a}(y)=a y . L_{a}$ is A-linear, but $L_{a} \neq A_{h}$ for all h : if L_{a} were $A_{h}, a x=$ $L_{a}(x)=A_{h}(x)=\nu(h \circ \hat{x})$, so over $X, \hat{a} \hat{x}=h \circ \hat{x}$, and then

$$
\phi(a) \cdot \phi(x)=h(\phi(x))=h(\psi(x))=\psi(a) \psi(x)
$$

Hence, $\phi(a)=\psi(a)$, contrary to our assumptions.
Finally, we wish to compare A_{M} and A^{M}.

Proposition 3.4. $A^{M}=A_{M}+\operatorname{Rad}(A)^{n}$.
Proof. Let $\mathscr{N}=\left\{f \in \mathcal{O}(X, \mathbf{C}):\left.f\right|_{X}=0\right\}$. Then $\nu(\mathscr{N})=\operatorname{Rad}(A)$: if $f \in \mathcal{N}, \bar{\nu}(f)_{X}=\left.f\right|_{X}=0$, so $\nu(\mathcal{N}) \subseteq \operatorname{Rad}(A)$; on the other hand, if $a \in \operatorname{Rad}(A), a=\nu(\hat{a})$ with $\hat{a} \mid X=0$. We identify also $\operatorname{Rad}(A)^{n}$ with $\nu\left(\mathscr{N}^{n}\right)$. Note that $A^{M} \subseteq A_{W}$, for if $\hat{a}(X)=\operatorname{sp}(a) \subseteq M$, then $\hat{a} \in$ $\mathcal{O}(X, W)$. Now take $a \in A^{M}$, and put $a=A_{r}(a)+\left(a-A_{r}(a)\right) . A_{r}(a) \in$ A_{M}, and

$$
a-A_{r}(a)=\nu(\hat{a})-\nu(r \circ \hat{a})=\nu(\hat{a}-r \circ \hat{a}) \in \operatorname{Rad}(A)^{n}
$$

because $\hat{a}-r \circ \hat{a} \in \mathscr{N}^{n}$. For the other inclusion, let $b \in A_{M}$ and $c \in$ $\operatorname{Rad}(A)^{n} . c=\nu(g)$, with $g \in \mathscr{N}^{n}$. Then

$$
\begin{aligned}
\operatorname{sp}(b+c) & =\widehat{b+c}(X)=(\hat{b}+\widehat{\nu(g)})(X) \\
& =(\hat{b}+g)(X)=\hat{b}(X)=\operatorname{sp}(b) \subseteq M
\end{aligned}
$$

Corollary 3.5. A^{M} and A_{M} have the same homotopy type. If A is semisimple, then $A^{M}=A_{M} .($ See also [7; 2.8]. $)$

Proof. Let $\iota: A_{M} \rightarrow A^{M}$ denote the inclusion. $A_{r} \circ \iota$ is the identity on A_{M} and it is easily verified that $\iota \circ A_{r}$ is homotopic to the identity on A^{M}.
4. An example. We wish to consider briefly an example of a spectral set. Suppose A is semisimple, and the manifold M is given as the zero set of a holomorphic function

$$
W \xrightarrow{F} \mathbf{C}^{k}
$$

It has been established in the last paragraph that A_{M} is a Banach manifold. This would have been a much simpler matter in this particular case, but a bit more can be said. Lift F to an analytic function

$$
A_{W} \xrightarrow{A_{F}} A^{k}
$$

and the zero set of A_{F} is exactly A_{M}. To see this, let $a \in A_{M}$; then $a=\nu(f)$ with $f \in \mathcal{O}(X, M)$, and $A_{F}(a)=\nu(F \circ f)=\nu(0)=0$, so $a \in$ $A_{F}^{-1}(0)$. Now if $A_{F}(a)=0, \nu(F \circ \hat{a})=0$ and $F \circ \hat{a}=0$ over X. Hence $F(\operatorname{sp}(a))=\{0\}$, and $\operatorname{sp}(a) \subset M$. We then have $A_{M} \subset A_{F}^{-1}(0) \subset A^{M}$, but since A is semisimple, all three are the same.

Now take $W=\mathrm{GL}_{n}(\mathbf{C})$, and G a Lie subgroup of W which is the zero set of analytic functions, for instance an algebraic group. Then the corresponding zero set of the same functions in $\mathrm{GL}_{n}(A)$ is a Lie subgroup of $\mathrm{GL}_{n}(A)$.

It can in fact be shown that all Lie groups give rise to Banach Lie groups, and that these have tangent spaces which are free A-modules.

References

[1] (i)R. Arens and A. P. Calderón, Analytic functions of several Banach algebra elements, Ann. of Math., (2) 62 (1955), 204-216.
[2] I. Craw, A condition equivalent to the continuity of characters on a Fréchet algebra, Proc. London Math. Soc., 22 (1971), 452-464.
[3] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, N.J., 1965.
[4] A. Larotonda, Notas sobre variedades diferenciables, INMABB--CONICET, Bahía Blanca, 1980.
[5] E. Novodvorskii, Certain homotopical invariants of spaces of maximal ideals, Mat. Zametki, 1 (1967), 487-494.
[6] I. Raeburn, The relationship between a commutative Banach algebra and its maximal ideal space, J. Functional Anal., 25 (1977), 366-390.
[7] J. L. Taylor, Topological invariants of the maximal ideal space of a Banach algebra, Adv. in Math., 19 (1976), 149-206.
[8] _ Twisted Products of Banach Algebras and Third Čech Cohomology, in Springer Lecture Notes in Math., 575 (1977), 157-174.

Received March 8, 1984.

Universidad de Buenos Aires
Pabellon I - Ciudad Universitaria
Capital Federal (1428)
Argentina

