SPECTRAL SETS AS BANACH MANIFOLDS

ANGEL LAROTONDA AND IGNACIO ZALDUENDO

Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in C^n . We may consider the set of germs of holomorphic functions from X to M, $\mathcal{O}(X, M)$. Now let ν be the functional calculus homomorphism from $\mathcal{O}(X, C^n)$ to A^n , and $A_M = \nu(\mathcal{O}(X, M))$.

It is proven that A_M is an analytic submanifold of A^n , modeled on projective A-modules of rank = dim M.

1. Introduction. Let A be a commutative complex Banach algebra with identity, and let X be the set of all characters of A, considered as a compact subset of the topological dual A' with the weak*-topology.

If U is an open neighborhood of X, and B a complex Banach space a map $f: U \to B$ will be called holomorphic if it is locally bounded and all its complex directional derivatives exist. The set of all such functions which are also bounded on U will be denoted by $H^{\infty}(U, B)$, or simply $H^{\infty}(U)$, when B is the complex field. These are locally convex spaces with the topology of uniform convergence. We define $\mathcal{O}(X, B)$ and $\mathcal{O}(X)$ to be the inductive limit of these spaces as U ranges over all open neighborhoods of X. $\mathcal{O}(X)$ is then a topological algebra. We recall (see [2] or [7]) that there exists a continuous algebra epimorphism, the holomorphic functional calculus

$$\nu\colon \mathcal{O}(X)\to A$$

such that: the composition of ν and the Gelfand map

$$\mathcal{O}(X) \to A \to C(X)$$

is the restriction map $f \mapsto f|_X$, and the composition of the linear map $a \mapsto \tilde{a}$ and ν

$$A \to \mathcal{O}(X) \to A$$

is the identity map of A. Here \tilde{a} denotes the germ of the holomorphic map defined on A' by $\gamma \mapsto \gamma(a)$.

In [6], Raeburn has generalized previous results of Taylor and Novodvorskii ([7], [5]). He uses a generalization of the morphism ν , extending the holomorphic functional calculus to a linear map

$$S: \mathcal{O}(X, B) \to A \otimes B.$$

If $M \subset B$ denotes a Banach submanifold, $\mathcal{O}(X, M)$ is defined and so is the set

$$A_M = \{ S(f) : f \in \mathcal{O}(X, M) \} \subset A \otimes B.$$

Raeburn shows that if M is a discrete union of Banach homogeneous spaces the set A_M is locally path connected and the generalized Gelfand map

$$A_M \to C(X, M)$$

induces a bijection on the set of components

$$[A_M] \xrightarrow{\tilde{\rightarrow}} [X, M].$$

In this note, in §3, we take $B = \mathbb{C}^n$ and M a closed submanifold of an open set of \mathbb{C}^n , and prove that the set A_M is in fact an analytic submanifold of A^n . This was first stated by Taylor in [8]. A_M is modeled on projective A-modules of rank = dim M. We also prove that A_M and $A^M = \{a \in A^n: \operatorname{sp}(a) \subset M\}$ have the same homotopy type. Note that with $B = \mathbb{C}^n$, we have $S = \nu \times \cdots \times \nu$ and $A \otimes B = A^n$.

In order to do this we first prove in §2 a version of the constant rank theorem.

2. The constant rank theorem. In this paragraph we give a version of the constant rank theorem valid for A-modules; the whole paragraph is an adaptation of the results in [4].

We will be dealing with submodules of the free module A^n , and A-module morphisms $T: A^n \to A^m$. A submodule E of A^n will be called A-direct if it is closed and there is another closed submodule E' of A^n such that $A^n = E \oplus E'$; obviously, this is equivalent to the fact: E = Ker p(resp: E = Im p), for some continuous A-linear projector $p: A^n \to A^n$.

Note that in this case E is a projective module, but not necessarily free.

If $T: A^n \to A^m$ is an A-module morphism, we say that T is A-direct (also called "split") if Ker T and Im T are A-direct.

Assume that

$$A^n = E_1 \oplus E_2, \quad F_1 \oplus F_2 = A^m$$

for some closed submodules E_1 , E_2 , F_1 , F_2 ; if $T: A^n \to A^m$ is an A-morphism we shall use the notation

$$T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \colon \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} \to \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

402

with $T_{ij} \in \text{Hom}_A(E_j, F_i)$ (i, j = 1, 2), meaning that if

$$x = x_1 + x_2$$
 $(x_1 \in E_1, x_2 \in E_2),$

then

$$T(x) = [T_{11}(x_1) + T_{12}(x_2)] + [T_{21}(x_1) + T_{22}(x_2)]$$

is the expression of T(x) as a sum of elements in F_1 and F_2 .

We shall need the following elementary lemma, which we state without proof.

LEMMA 2.1. Let P_1 , P_2 be A-direct submodules of A^n of the same rank. Then $P_1 \subset P_2$ implies $P_1 = P_2$.

THEOREM 1. Suppose $T_0: A^n \to A^m$ is an A-direct morphism and let E_1 and F_2 be closed submodules of A^n and A^m respectively such that

$$A^n = E_1 \oplus \operatorname{Ker} T_0, \quad \operatorname{Im} T_0 \oplus F_2 = A^m$$

If

$$T = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} : \begin{bmatrix} E_1 \\ \operatorname{Ker} T_0 \end{bmatrix} \to \begin{bmatrix} \operatorname{Im} T_0 \\ F_2 \end{bmatrix}$$

then the following are equivalent

- (i) T is A-direct, $A^n = E_1 \oplus \text{Ker } T$ and $A^m = \text{Im } T \oplus F_2$.
- (ii) $\alpha \in \operatorname{Iso}(E_1, \operatorname{Im} T_0)$ and $\delta = \gamma \alpha^{-1} \beta$.

(iii) There exist A-linear automorphisms u: $A^n \to A^n$, v: $A^m \to A^m$ such that $T_0 = vTu$ and

$$u|E_1 = \operatorname{id}_{E_1} \quad v|F_2 = \operatorname{id}_{F_2}$$

(iv) T is A-direct, $\alpha \in \text{Iso}(E_1, \text{Im } T_0)$ and $\text{rk}(\text{Im } T_0) = \text{rk}(\text{Im } T)$.

Proof: Suppose (i) and consider the diagram

where ϕ is the isomorphism $v \to (v_1, v_2)$; here v_1 (resp: v_2) is the projection of v onto E_1 (resp: Ker T) with kernel Ker T (resp. E_1). We define ψ

in a similar way. Then we have

$$\phi = \begin{bmatrix} 1 & \tau \\ 0 & \theta \end{bmatrix} : \begin{bmatrix} E_1 \\ \operatorname{Ker} T_0 \end{bmatrix} \to \begin{bmatrix} E_1 \\ \operatorname{Ker} T \end{bmatrix}$$

and

$$\psi = \begin{bmatrix} \mu & 0 \\ \nu & 1 \end{bmatrix} : \begin{bmatrix} \operatorname{Im} T \\ F_2 \end{bmatrix} \to \begin{bmatrix} \operatorname{Im} T_0 \\ F_2 \end{bmatrix}$$

with $\tau \in \operatorname{Hom}_{\mathcal{A}}(\operatorname{Ker} T_0, E_1), \nu \in \operatorname{Hom}_{\mathcal{A}}(\operatorname{Im} T, F_2)$ and $\theta \in \operatorname{Iso}_{\mathcal{A}}(\operatorname{Ker} T_0, \operatorname{Ker} T), \mu \in \operatorname{Iso}_{\mathcal{A}}(\operatorname{Im} T, \operatorname{Im} T_0)$. On the other hand we also have

$$w = \begin{bmatrix} \lambda & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} E_1 \\ \text{Ker } T \end{bmatrix} \to \begin{bmatrix} \text{Im } T \\ F_2 \end{bmatrix}$$

with $\lambda \in \operatorname{Iso}_{\mathcal{A}}(E_1, \operatorname{Im} T)$.

The commutativity of the diagram implies

$$\begin{bmatrix} \mu & 0 \\ \nu & 1 \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & \tau \\ 0 & \theta \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix},$$

hence $\mu\lambda = \alpha$ (which implies that α is an isomorphism) and $\delta = \nu\lambda\tau = \nu\lambda(\lambda^{-1}\mu^{-1})\mu\lambda\tau = \gamma\alpha^{-1}\beta$, and we have (ii). Now assume (ii): if

$$T_0 = \begin{bmatrix} \lambda & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} E_1 \\ \text{Ker } T_0 \end{bmatrix} \to \begin{bmatrix} \text{Im } T_0 \\ F_2 \end{bmatrix}$$

with $\lambda \in \operatorname{Iso}_{\mathcal{A}}(E_1, \operatorname{Im} T_0)$ we define

$$u = \begin{bmatrix} 1 & -\alpha^{-1}\beta \\ 0 & 1 \end{bmatrix} \colon \begin{bmatrix} E_1 \\ \operatorname{Ker} T_0 \end{bmatrix} \to \begin{bmatrix} E_1 \\ \operatorname{Ker} T_0 \end{bmatrix}$$

and

$$v = \begin{bmatrix} \lambda \alpha^{-1} & 0 \\ -\gamma \alpha^{-1} & 1 \end{bmatrix} : \begin{bmatrix} \operatorname{Im} T_0 \\ F_2 \end{bmatrix} \to \begin{bmatrix} \operatorname{Im} T_0 \\ F_2 \end{bmatrix}$$

and a routine calculation gives (iii).

Now suppose we have (iv) and define the automorphism $S: A^m \to A^m$ by

$$S = \begin{bmatrix} 1 & 0 \\ -\gamma \alpha^{-1} & 1 \end{bmatrix} : \begin{bmatrix} \operatorname{Im} T_0 \\ F_2 \end{bmatrix} \to \begin{bmatrix} \operatorname{Im} T_0 \\ F_2 \end{bmatrix}.$$

Then we have the composition

$$T' = ST = \begin{bmatrix} \alpha & \beta \\ 0 & \delta - \gamma \alpha^{-1} \beta \end{bmatrix} : \begin{bmatrix} E_1 \\ \text{Ker } T_0 \end{bmatrix} \rightarrow \begin{bmatrix} \text{Im } T_0 \\ F_2 \end{bmatrix}$$

which is also A-direct. Note that Im(T') = S(Im T), hence Im(T') and Im(T) have the same rank; from this it follows that $\text{rk}(\text{Im } T') = \text{rk}(\text{Im } T_0)$.

But $\text{Im}(T') \supset \alpha(E_1) = \text{Im}(T_0)$; Lemma 2.1 gives $\text{Im}(T') = \text{Im}(T_0)$ and this fact implies $\delta - \gamma \alpha^{-1} \beta = 0$. This proves (ii)

(iii) \Rightarrow (i) is simple; in fact, it is obvious that T is A-direct. It is also clear that $u(\text{Ker } T_0) = \text{Ker } T$, hence

$$A^{m} = v^{-1}(\operatorname{Im} T_{0} \oplus F_{2}) = v^{-1}(\operatorname{Im} T_{0}) \oplus v^{-1}(F_{2})$$
$$= v^{-1}T_{0}(A^{n}) \oplus F_{2} = Tu(A^{n}) \oplus F_{2} = \operatorname{Im} T \oplus F_{2},$$
$$A^{n} = u(\operatorname{Ker} T_{0} \oplus E_{1}) = u(\operatorname{Ker} T_{0}) \oplus E_{1} = \operatorname{Ker} T \oplus E_{1}.$$

In order to complete the proof, we only need the inference (i) \Rightarrow (iv): $\alpha \in \text{Iso}(E_1, \text{Im } T_0)$ as in (i) \Rightarrow (ii). The rest is obvious, so the proof is complete.

We shall be concerned now with a generalization of the results in ¹ of [6], we shall follow the definitions of this reference.

Let Ω be an open set in A^n , $F: \Omega \to A^m$ an holomorphic map, and $a \in \Omega$; we denote the differential of F at a by DF(a).

A linear representation of F in a is an object (u, U, v, V, T) where

(i) U is a neighborhood of $0 \in A^n$, u is biholomorphic from U onto u(U), a neighborhood of a contained in Ω , and u(0) = a.

(ii) V is a neighborhood of $0 \in A^m$, v is biholomorphic from V onto v(V), a neighborhood of F(a) and v(0) = F(a)

(iii) T: $U \to A^m$ is the restriction of an A-linear map, and $v^{-1}Fu = T$.

(iv) Du(x) and Dv(y) are A-linear maps if $x \in U, y \in V$.

We will say that the holomorphic map $F: \Omega \to A^m$ is *locally A-direct* at $a \in \Omega$ if there are closed sub-modules $E_1 \subset A^n$, $F_2 \subset A^m$ and a neighborhood U of a such that, for all $x \in U$,

(i) DF(x) is A-linear

(ii) $A^n = E_1 \oplus \operatorname{Ker} DF(x)$

(iii) $A^m = \operatorname{Im} DF(x) \oplus F_2$.

We have now the following:

LEMMA 2.2. Let Ω be an open set in A^n , $F: \Omega \to A^m$ holomorphic and $a \in \Omega$. If F is locally A-direct at a, then there is a linear representation (u, U, v, V, T) of F in a, with T A-direct.

Proof. Without loss of generality we can assume that a = 0 and F(a) = 0; then there exist a neighborhood $\Omega_0 \subset \Omega$ of $0 \in A^n$ and closed submodules $E_1 \subset A^n$, $F_2 \subset A^m$ such that

$$A^n = E_1 \oplus \operatorname{Ker} DF(x), \qquad A^m = \operatorname{Im} DF(x) \oplus F_2$$

for all $x \in \Omega_0$. Also, DF(x) is A-linear if $x \in \Omega_0$.

Let $E_2 = \text{Ker } DF(0)$, $F_1 = \text{Im } DF(0)$; we denote x_1, x_2 (resp: y_1, y_2) the components of $x \in A^n$ (resp: $y \in A^m$) in the decomposition $E_1 \oplus E_2$ (resp: $F_1 \oplus F_2$). In a similar way we write $F(x) = f_1(x) + f_2(x)$, with $f_1(x) \in F_1$ and $f_2(x) \in F_2$.

We have

$$DF(x) = \begin{bmatrix} D_1 f_1(x) & D_2 f_1(x) \\ D_1 f_2(x) & D_2 f_2(x) \end{bmatrix} : \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} \rightarrow \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

and so we can simplify the notation writing $\alpha_{ij}(x) = D_i f_j(x)$ (*i*, *j* = 1, 2). Recall that Theorem 1 gives

(a) $\alpha_{11}(x)$: $E_1 \to F_1$ is an isomorphism, and

(b) $\alpha_{22}(x) = \alpha_{12}(x)\alpha_{11}(x)^{-1}\alpha_{21}(x)$ for all $x \in \Omega_0$. Define the following *A*-linear maps

$$S: E_{1} \to F_{1}, \qquad S = \alpha_{11}(0),$$

$$T: A^{n} \to A^{m}, \qquad T(x) = S(x_{1}),$$

$$c: A^{m} \to A^{n}, \qquad c(y) = S^{-1}(y_{1}),$$

$$P: A^{n} \to A^{n}, \qquad P(x) = x_{2},$$

$$Q: A^{m} \to A^{m}, \qquad Q(y) = y_{2}.$$

Now define the holomorphic map $h: \Omega_0 \to A^n$ by

$$h = cF + P.$$

We have: Dh(x) is an A-linear map if $x \in \Omega_0$. In fact,

$$Dh(x) = \begin{bmatrix} S^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_{11}(x) & \alpha_{21}(x)\\ \alpha_{12}(x) & \alpha_{22}(x) \end{bmatrix} + \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} S^{-1}\alpha_{11}(x) & S^{-1}\alpha_{21}(x)\\ 0 & 1 \end{bmatrix},$$

hence by the inverse function theorem $h: \Omega_1 \to \Omega_2$ is biholomorphic for suitable neighborhoods of $0 \in A^n$.

Note that the differential of the map $Fh^{-1}P$: $P^{-1}(\Omega_2) \to A^m$ vanishes identically, that is

$$D(Fh^{-1}P)(x) = 0 \qquad (x \in P^{-1}(\Omega_2)).$$

406

In fact we can compute this differential as the composition $DF(h^{-1}P(x))Dh(h^{-1}P(x))^{-1}P$; the calculation leads (with $x' = h^{-1}P(x)$) to

$$\begin{bmatrix} \alpha_{11}(x') & \alpha_{21}(x') \\ \alpha_{12}(x') & \alpha_{22}(x') \end{bmatrix} \begin{bmatrix} \alpha_{11}(x')^{-1}S & -\alpha_{11}(x')^{-1}\alpha_{21}(x) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} S & 0 \\ \alpha_{12}(x')\alpha_{11}(x')^{-1}S & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0,$$

where we use the identity $\alpha_{22} = \alpha_{12}\alpha_{11}^{-1}\alpha_{21}$.

Hence we have proved

(c) $Fh^{-1}P$ vanishes identically in a neighborhood of 0 (for instance, in the connected component of 0 in $P^{-1}(\Omega_2)$).

Finally we define the holomorphic mapping $g: c^{-1}(\Omega_2) \to A^m$

$$g=Fh^{-1}c+Q.$$

Then if $x = h^{-1}c(y)$ we compute

$$Dg(y) = \begin{bmatrix} 1 & 0 \\ \alpha_{12}(x)\alpha_{11}(x)^{-1} & 1 \end{bmatrix}$$

and this shows that $g: \Omega_1' \to \Omega_2'$ is a biholomorphic map, where Ω_1' and Ω_2' are small enough neighborhoods of $0 \in A^m$. Also Dg(y) is A-linear for every $x \in \Omega_1'$.

In order to complete the proof, set $u = h^{-1}$ and v = g; we must show that the identity

$$gTh = F$$

holds in some neighborhood of $0 \in A^n$; but this follows from (c) and the computation

$$gTh = (Fh^{-1}c + Q)T(cF + P) = Fh^{-1}cQF$$

= $Fh^{-1}cF = Fh^{-1}(h - P) = F - Fh^{-1}P.$

THEOREM 2. Let Ω be an open subset of A^n , and $F: \Omega \to A^n$ an holomorphic retraction that is locally A-direct at x for all $x \in \Omega$. Then Im F is a Banach analytic manifold, and for all $x \in \text{Im } F$ the tangent space $T_x(\text{Im } F)$ at x is Im DF(x).

Proof. For every $F(x) \in \text{Im } F$ there is, by Lemma 2.2, a linear representation $(u_x, U_x, v_x, V_x, T_x)$ of F with T_x A-direct.

For all
$$x' \in U_x$$
,

$$T_x = DT_x(x') = Dv_x^{-1} (Fu_x(x')) \cdot DF(u_x(x')) \cdot Du_x(x')$$

$$= [Dv_x(T_x(x'))]^{-1} \cdot DF(u_x(x')) \cdot Du_x(x').$$

 $Dv_x(Z)$ and $Du_x(Z')$ are A-linear isomorphisms, so $\operatorname{Im} T_x \approx \operatorname{Im} DF(u_x(x'))$, for all $x' \in U_x$. But F is A-direct at x, so there is a neighborhood of x where $\operatorname{Im} DF(a) \approx \operatorname{Im} DF(b)$, for a, b in this neighborhood. Hence the $\operatorname{Im} T_z$ for z in this neighborhood are all A-isomorphic to a fixed A-module P. Call h_z : $\operatorname{Im} T_z \to P$ these A-isomorphisms. For every $x \in \operatorname{Im} F$, x = F(x), and U_x, V_x may be chosen so that $u_x(U_x) = v_x(V_x)$. Then v_x : $V_x \cap \operatorname{Im} T_x \to v_x(V_x) \cap \operatorname{Im} F$ is a bijection: it is one to one over all of V_x , and if $v_x(z) \in \operatorname{Im} F$, say $v_x(z) = u_x(z')$,

$$v_x(z) = Fv_x(z) = Fu_x(z') = v_x T_x u_x^{-1}(u_x(z')) = v_x(T_x(z'))$$

so $v_x(z) \in v_x(V_x \cap \operatorname{Im} T_x)$.

Now define the chart near $x \in \text{Im } F$: $(v_x(V_x) \cap \text{Im } F, h_x v_x^{-1})$. These charts are compatible. To see this, suppose

$$U_{xy} = v_x(V_x) \cap v_y(V_y) \cap \operatorname{Im} F \neq \emptyset$$

we then have

$$(h_y v_y^{-1})(h_x v_x^{-1})^{-1} \colon h_x v_x^{-1}(U_{xy}) \to h_y v_y^{-1}(U_{xy}).$$

But $(h_y v_y^{-1})(h_x v_x^{-1})^{-1} = h_y v_y^{-1} v_x h_x^{-1}$ is holomorphic. The same goes for the other composition. The tangent space $T_x(\text{Im } F)$ is given by

$$\operatorname{Im}(Dv_{x}(0)h_{x}^{-1}) = Dv_{x}(0)(\operatorname{Im} T_{x}) = \operatorname{Im}(Dv_{x}(0)T_{x}) = \operatorname{Im} D(v_{x}T_{x})(0)$$
$$= \operatorname{Im} D(Fu_{x})(0) = \operatorname{Im}(DF(u_{x}(0))Du_{x}(0)) = \operatorname{Im} DF(x).$$

3. A_M as an analytic manifold. Here we will apply the results in the preceding paragraph to Taylor's A_M [7] where M is a closed submanifold of an open set of \mathbb{C}^n .

For $a \in A^n$, let \hat{a} denote the function $A' \to \mathbb{C}^n$ defined by $\hat{a}(\gamma) = (\gamma(a_1), \ldots, \gamma(a_n))$ for all $\gamma \in A'$. Note that with the supremum norm in both A^n and \mathbb{C}^n , $|\hat{a}(\gamma)| \le ||\gamma|| ||a||$. We will sometimes write ϕ^n for $\phi \times \cdots \times \phi$. We denote by θ_a the classical holomorphic functional calculus of Arens and Calderón [1]. All other functional calculus morphisms and their restrictions will be denoted by ν .

We will need the following lemma.

LEMMA 3.1. Let W be an open subset of \mathbb{C}^n . Then A_W is an open subset of A^n .

408

Proof. Let $a \in A_W$, and $f \in \mathcal{O}(X, W)$ such that $a = \nu(f)$. Since f(X) is a compact subset of W, there is an $\varepsilon > 0$ such that for every $\phi \in X$, the polydisc $\{z \in \mathbb{C}^n : |f(\phi) - z| < \varepsilon\}$ is contained in W. Now let $U = \{b \in A^n : ||a - b|| < \varepsilon\}$. $\hat{b}(X) \subseteq W$, because

$$|f(\phi) - \hat{b}(\phi)| = |\widehat{a - b}(\phi)| \le ||a - b|| < \varepsilon.$$

Then $\hat{b}^{-1}(W)$ is a neighborhood of X in A', so $\hat{b} \in \mathcal{O}(X, W)$, and $b \in A_W$.

The sets A_W , with W open, are now appropriate domains for holomorphic functions. We will need to lift holomorphic functions in \mathbb{C}^n to holomorphic functions in A^n . This will be done as follows. Let h: $W \to \mathbb{C}^m$ be holomorphic, and define $A_h: A_W \to A^m$ by $A_h(a) = \nu(h \circ f)$, if $a = \nu(f)$.

LEMMA 3.2. A_h is a well-defined holomorphic function. For all $a = v(f) \in A_W$, $DA_h(a)$ is an A-module homomorphism given by v(Dh(f)).

Proof. First, we will see that v(f) = v(g) implies $v(h \circ f) = v(h \circ g)$.

For this, let $b_1, \ldots, b_k \in A$ be elements that finitely determine f and g, in other words, there is an open set Ω in \mathbb{C}^k and there are F and G in $\mathcal{O}(\Omega, W)$ such that the following diagram commutes

$$\hat{b}^{-1}(\Omega) \xrightarrow{f(\operatorname{resp.} g)} W \xrightarrow{h} \mathbf{C}^{m}$$

$$\hat{b} \downarrow \xrightarrow{}_{F(\operatorname{resp.} G)}$$

 $\nu(f) = \nu(g)$ means that $\theta_b(F) = \theta_b(G)$, so $\operatorname{sp}(\theta_b(F)) = \operatorname{sp}(\theta_b(G)) \subseteq W$. Since $h \in \mathcal{O}(W, \mathbb{C}^m)$, we may write $\theta_{\theta_b(F)}(h) = \theta_{\theta_b(G)}(h)$. Then h(F(b)) = h(G(b)), so $\theta_b(h \circ F) = \theta_b(h \circ G)$ and $\nu(h \circ f) = \nu(h \circ g)$.

To prove that A_n is holomorphic, let $a \in A_W$, and $b \in A^n$. It will be enough to prove the existence of

(1)
$$\frac{\partial A_h}{\partial b}(a) = \lim_{\lambda \to 0} \frac{1}{\lambda} [A_h(a + \lambda b) - A_h(a)].$$

Let $a = \nu(f)$, $b = \nu(g)$. Then $a + \lambda b = \nu(f + \lambda g)$, and (1) is $\lim_{\lambda \to 0} \lambda^{-1} [\nu(h \circ (f + \lambda g) - h \circ f)]$. Since the functional calculus is continuous, the limit (1) will exist if $\lim_{\lambda \to 0} \lambda^{-1} [h \circ (f + \lambda g) - h \circ f]$ exists in $\mathcal{O}(X, C^m)$. We must see that $\lambda^{-1} [h \circ (f + \lambda g) - h \circ f]$ converges uniformly over a neighborhood of X as $\lambda \to 0$. For this, set $\varepsilon > 0$, and if $\lambda \in C$ with $|\lambda| < \varepsilon$ and $\gamma \in X$, let

$$S(\lambda, \gamma) = \begin{cases} \frac{1}{\lambda} \left[h(f(\gamma) + \lambda g(\gamma)) - h(f(\gamma)) \right] - \frac{\partial h}{\partial g(\gamma)} f(\gamma), & \text{if } \lambda \neq 0. \\ 0 & \text{if } \lambda = 0. \end{cases}$$

h is holomorphic, so $\lim_{\lambda \to 0} S(\lambda, \gamma) = 0$ for each $\gamma \in X$. Then there are $\delta_{\gamma} > 0$ and neighborhoods V_{γ} of γ such that $|S(\lambda, \phi)| < \varepsilon$ for $\lambda \in \mathbb{C}$ with $|\lambda| < \delta_{\gamma}$ and all $\phi \in V_{\gamma}$. Being X compact, there are $\gamma_1, \ldots, \gamma_p \in X$ such that V_{γ_i} , $i = 1, \ldots, p$, cover X. Let $\delta = \min\{\delta_{\gamma_i}: 1 \le i \le p\}$, and $V = \bigcup_{i=1}^p V_{\gamma_i}$. Then for all $\lambda \in C$ with $|\lambda| < \delta$ and all $\gamma \in V$, $S(\lambda, \gamma) < \varepsilon$, so A_h is holomorphic. We shall denote the limit of $\lambda^{-1}[h \circ (f + \lambda g) - h \circ f]$ as $\lambda \to 0$, by Dh(f)(g).

 $DA_h(a)$ is more than just a linear morphism. It is A-linear. To prove this we must show that the diagram

Here the horizontal arrows indicate matrix multiplication.

As all the arrows are continuous, and $P(\hat{A})^k$ is dense in $\mathcal{O}(X, \mathbb{C})^k$ for all k, where $P(\hat{A})$ is the algebra of polynomials in Gelfand transforms of elements of A, it will be enough to show that $\nu(p \cdot q) = \nu(p) \cdot \nu(q)$, where $p_{ij}, q_i \in P(\hat{A})$. Let

$$p_{ij} = \sum_{(k)} \widehat{a^{ij}}(k), \text{ where } \widehat{a^{ij}}(k) = \widehat{a^{ij}_{k_1}} \cdots \widehat{a^{ij}_{k_r}},$$

$$q_j = \sum_{(k')} \widehat{a^{j}}(k'), \text{ where } \widehat{a^{j}}(k') = \widehat{a^{j}_{k_1'}} \cdots \widehat{a^{j}_{k_s'}}.$$

$$\nu(p \cdot q) = \nu \left(\sum_{j=1}^n p_{1j}q_j, \dots, \sum_{j=1}^n p_{mj}q_j\right)$$

$$= \nu \left(\sum_{j=1}^n \sum_{(k)} \widehat{a^{1j}}(k) \sum_{(k')} \widehat{a^{j}}(k'), \dots, \sum_{j=1}^n \sum_{(k)} \widehat{a^{mj}}(k) \sum_{(k')} \widehat{a^{j}}(k')\right)$$

$$= \left(\sum_{j=1}^n \sum_{(k)} a^{1j}(k) \sum_{(k')} a^{j}(k'), \dots, \sum_{j=1}^n \sum_{(k)} a^{mj}(k) \sum_{(k')} a^{j}(k')\right).$$

On the other hand,

(2)
$$\nu(p) \cdot \nu(q) = \left(\sum_{j=1}^{n} \nu(p)_{1j} \nu(q)_{j}, \dots, \sum_{j=1}^{n} \nu(p)_{mj} \nu(q)_{j}\right).$$

But

$$\nu(p)_{lj} = \nu(p_{lj}) = \nu\left(\sum_{(k)}\widehat{a^{lj}}(k)\right) = \sum_{(k)}a^{lj}(k),$$

and

$$\nu(q)_j = \nu(q_j) = \nu\left(\sum_{(k')} \widehat{a^j}(k')\right) = \sum_{(k')} a^j(k').$$

So

$$(2) = \left(\sum_{j=1}^{n} \sum_{(k)} a^{1j}(k) \sum_{(k')} a^{j}(k'), \dots, \sum_{j=1}^{n} \sum_{(k)} a^{mj}(k) \sum_{(k')} a^{j}(k')\right) = \nu(p \cdot q).$$

Then

$$DA_h(a)(b) = \nu(Dh(f)(g)) = \nu(Dh(f)) \cdot \nu(g) = \nu(Dh(f))(b).$$

So that $DA_h(a) = \nu(Dh(f)) \in A^{m \times n}$ is an A-module morphism, for all $a \in A_W$.

Note that A_h could have been well-defined by putting $A_h(a) = \nu(h \circ \hat{a})$, but this definition will not do for our later purposes.

Now let M be a closed submanifold of an open set of \mathbb{C}^n , of dimension k. We recall that by [3; Ch. VIII, C] there is an open neighborhood W of M and an holomorphic retraction $r: W \to M$. Hence we also have $A_r: A_W \to A_M$, the image of A_r being contained in A_M because $r \circ f \in \mathcal{O}(X, M)$ for all $f \in \mathcal{O}(X, W)$. Of course the image of A_r is exactly A_M , for if $a \in A_M$, then $A_r(a) = \nu(r \circ f)$ where $f \in \mathcal{O}(X, M)$ so $r \circ f = f$, and $A_r(a) = \nu(r \circ f) = u(f) = a \in \text{Im } A_r$. Now we obtain our main theorem.

THEOREM 3. If M is a closed submanifold of an open set of \mathbb{C}^n , of dimension k, then A_M is a Banach manifold modeled on projective A-modules of rank k.

Proof. By Theorem 2, it will clearly be enough to verify that A_r is A-direct at a for all a in a neighborhood of A_M .

Since r is a retraction, $Dr(r(z)) \circ Dr(z) = Dr(z)$ for all $z \in W$. Therefore Im $Dr(z) \subseteq$ Im Dr(r(z)), but the rank of the matrix Dr(z) is at least that of Dr(r(z)) for z near r(z), so that actually Im Dr(z) =Im Dr(r(z)) for z in an open neighborhood of M. This means that dim Im Dr(z) = k, and dim Ker Dr(z) = n - k near M. Cⁿ can be written as the direct sum

 $\mathbf{C}^n = \operatorname{Im} Dr(r(z)) \oplus \operatorname{Ker} Dr(r(z)) = \operatorname{Im} Dr(z) \oplus \operatorname{Ker} Dr(r(z)).$

Because of the continuity of Dr, we may also write $\mathbb{C}^n = \operatorname{Im} Dr(z) \oplus \operatorname{Ker} Dr(z)$, for z near M. Note also that $Dr(r(z)) | \operatorname{Im} Dr(r(z)) |$ is the identity, so that $Dr(z) | \operatorname{Im} Dr(z)$ is an automorphism of $\operatorname{Im} Dr(z)$ near M. We may suppose the neighborhood of M where all this is true to be W;

just discard the old W. For all $z \in W$,

$$\alpha_{z} = \begin{bmatrix} Dr(z) \stackrel{!}{\vdots} 0\\ \cdots \cdots \\ 0 \stackrel{!}{\vdots} I \end{bmatrix} : \begin{bmatrix} \operatorname{Im} Dr(z)\\ \operatorname{Ker} Dr(z) \end{bmatrix} \to \begin{bmatrix} \operatorname{Im} Dr(z)\\ \operatorname{Ker} Dr(z) \end{bmatrix},$$

is an automorphism of \mathbb{C}^n . Define $\alpha: W \to \operatorname{GL}_n(\mathbb{C})$ by $\alpha(z) =$ the matrix of α_z in the canonical basis of \mathbb{C}^n . We will show that α is an holomorphic function. For this, let $z_0 \in W$. There is a neighborhood U of z_0 and there are holomorphic functions $v_i: U \to \mathbb{C}^n$, $1 \le i \le n$, such that $v_1(z), \ldots, v_k(z)$ is a basis of Im Dr(z) and $v_{k+1}(z), \ldots, v_n(z)$ is a basis of Ker Dr(z) for all $z \in U$. Let $\beta_z \in \mathbb{C}^{k \times k}$ be the matrix of $Dr(z) | \operatorname{Im} Dr(z)$ in the basis $v_1(z), \ldots, v_k(z)$ and let c(z) be the matrix which changes the canonical basis of \mathbb{C}^n to $v_1(z), \ldots, v_n(z)$. Then

$$\alpha(z) = c(z)^{-1} \cdot \begin{bmatrix} \beta_z & \vdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \vdots & I \end{bmatrix} \cdot c(z)$$

and it will be enough to verify that β_z is an holomorphic function of z in U, but this follows from the equations

$$Dr(z)(v_i(z))_t = \sum_{s=1}^k \beta_{z_{ts}} v_i(z)_s, \quad i \le i, t \le k.$$

We therefore have A_{α} : $A_W \rightarrow A_{\operatorname{GL}_n(\mathbb{C})} = \operatorname{GL}_n(A)$. But

$$A_{\alpha}(x)|_{\operatorname{Im} DA_{r}(x)} = DA_{r}(x)|_{\operatorname{Im} DA_{r}(x)}$$

for all $x \in A_W$. To see this, let $b = \nu(Dr(g)(h)) \in \text{Im } DA_r(x)$, where $x = \nu(g)$. Now $A_{\alpha}(x)(b) = \nu(\alpha \circ g) \cdot \nu(Dr(g)(h)) = \nu(\alpha \circ g \cdot Dr(g)(h))$, but for all γ near X,

$$\alpha(g(\gamma))|_{\operatorname{Im} Dr(g(\gamma))} = Dr(g(\gamma))|_{\operatorname{Im} Dr(g(\gamma))}$$

so

$$A_{\alpha}(x)(b) = \nu(Dr(g) \cdot Dr(g)(h))$$

= $\nu(Dr(g)) \cdot \nu(Dr(g)(h)) = DA_r(x)(b).$

Then

 $DA_r(x)|_{\operatorname{Im} DA_r(x)}$: Im $DA_r(x) \to \operatorname{Im} DA_r(x)$ is an automorphism.

We prove that $A^n = \text{Im } DA_r(x) \oplus \text{Ker } DA_r(x)$ for all $x \in A_W$:

$$0 = \operatorname{Ker}(\left. DA_r(x) \right|_{\operatorname{Im} DA_r(x)}) = \operatorname{Im} DA_r(x) \cap \operatorname{Ker} DA_r(x)$$

If $c \in A^n$, there exists $b \in \text{Im } DA_r(x)$ such that $DA_r(x)(b) = DA_r(x)(c)$. Then c = b + (c - b), with $b \in \text{Im } DA_r(x)$ and $c - b \in \text{Ker } DA_r(x)$. Ker $DA_r(x)$ is closed, so the direct sum is topological. We now know that $\text{Im } DA_r(x)$ is a projective A-module. We shall see that its rank is k.

First we must prove that for all $x \in A_W$ and $\phi \in X$,

$$\phi^n(\operatorname{Im} DA_r(x)) = \operatorname{Im} Dr(\phi^n(x))$$

and

$$\phi^n(\operatorname{Ker} DA_r(x)) = \operatorname{Ker} Dr(\phi^n(x)).$$

Take

$$DA_r(x)(b) \in \operatorname{Im} DA_r(x) \cdot \phi^n(DA_r(x)(b)) = \widetilde{\nu(Dr(\hat{x})(\hat{b}))}(\phi)$$
$$= (Dr(\hat{x})(\hat{b}))(\phi) = Dr(\phi^n(x))(\phi^n(b)) \in \operatorname{Im} Dr(\phi^n(x)).$$

Now take $b \in \text{Ker } DA_r(x)$.

$$Dr(\phi^n(x))(\phi^n(b)) = \phi^n(DA_r(x)(b)) = \phi^n(0) = 0,$$

so $\phi^n(b) \in \text{Ker } Dr(\phi^n(x))$, and we have proven both left-to-right inclusions. We have $A^n = \text{Im } DA_r(x) \oplus \text{Ker } DA_r(x)$, and ϕ^n is surjective, so

$$\mathbf{C}^{n} = \phi^{n} (\operatorname{Im} DA_{r}(x)) + \phi^{n} (\operatorname{Ker} DA_{r}(x)),$$

but because of the inclusions we have just proven, this sum is direct. Then

$$\mathbf{C}^{n} = \phi^{n} (\operatorname{Im} DA_{r}(x)) \oplus \phi^{n} (\operatorname{Ker} DA_{r}(x))$$
$$= \operatorname{Im} Dr(\phi^{n}(x)) \oplus \operatorname{Ker} Dr(\phi^{n}(x)),$$

so the inclusions are actually equalities.

Now let $x \in A_W$, $P = \text{Im } DA_r(x)$, $Q = \text{Ker } DA_r(x)$, and $\phi \in X$. Then $\text{rk}_{\phi} P = \text{rk}_{A_{\phi}} P_{\phi} = \text{rk}_{A_{\phi}}(A_{\phi} \otimes_A P)$ is, by Nakayama's Lemma the same as $\dim_{\mathbb{C}}[(A_{\phi} \otimes_A P) \otimes_{A_{\phi}}\mathbb{C}]$, when C (and also $\phi^n(P)$) has the A_{ϕ} -module structure induced by ϕ . We then have the A_{ϕ} -module morphism

$$q: (A_{\phi} \otimes_{A} P) \otimes_{A_{\phi}} \mathbb{C} \to \phi^{n}(P);$$
$$q\left(\sum_{j} \left(\sum_{i} \frac{a_{ij}}{b_{ij}} \otimes p_{ij}\right) \otimes \lambda_{j}\right) = \sum_{j} \sum_{i} \lambda_{j} \frac{\phi(a_{ij})}{\phi(b_{ij})} \phi^{n}(p_{ij}).$$

Let v_1, \ldots, v_k has a basis for $\phi^n(P) = \text{Im } Dr(\phi^n(x))$, and let $b_1, \ldots, b_k \in P$ such that $\phi^n(b_i) = v_i$ for $i = 1, \ldots, k$. Then $(1/1 \otimes b_i) \otimes 1$, $i = 1, \ldots, k$, are C-linearly independent: if $0 = \sum_{i=1}^k \lambda_i (1/1 \otimes b_i) \otimes 1$, then

$$0 = q(0) = \sum_{i=1}^{k} \lambda_i \phi^n(b_i) = \sum_{i=1}^{k} \lambda_i v_i$$

and $\lambda_i = 0$ for $i = 1, \dots, k$.

Therefore $\operatorname{rk}_{\phi} P = \dim_{\mathbb{C}}[(A_{\phi} \otimes_{A} P) \otimes_{A_{\bullet}} \mathbb{C}] \geq k.$

In a similar manner, and since $\phi^n(Q) = \text{Ker } Dr(\phi^n(x))$, $\text{rk}_{\phi}Q \ge n - k$. But $\text{rk}_{\phi}P + \text{rk}_{\phi}Q = n$, so $\text{rk}_{\phi}P = k \ \forall \phi \in X$. Then rk P = k.

To complete our proof, let $a \in A_M$ and write:

$$DA_r(x) = \begin{bmatrix} P(x) & Q(x) \\ R(x) & S(x) \end{bmatrix} : \begin{bmatrix} \operatorname{Im} DA_r(a) \\ \operatorname{Ker} DA_r(a) \end{bmatrix} \to \begin{bmatrix} \operatorname{Im} DA_r(a) \\ \operatorname{Ker} DA_r(a) \end{bmatrix}.$$

Since $DA_r(a)$ is an indempotent, $DA_r(a)|_{\operatorname{Im} DA_r(a)}$ is the identity, and P(a) = I. But $\operatorname{Im} DA_r(a)$ is a Banach space, so by the continuity of P, P(x) is an automorphism of $\operatorname{Im} DA_r(a)$ for all x in a neighborhood U of a.

We have then verified conditions (iv) of Theorem 1 for all $x \in U$. Therefore, A_r is A-direct at x for all x in a neighborhood of A_M .

Observe that the tangent space $T_a(A_M)$ at *a* is Im $DA_r(a)$. These are of course projective *A*-modules of rank *k*, but they need not be isomorphic on different connected components of A_M . In fact, some of these modules may be free while others may not.

Now consider for any Banach algebra A, the category $\underline{M}(A)$ whose objects are analytic manifolds modeled on projective A-modules, with morphisms holomorphic functions whose differentials are A-module morphism, and the ordinary composition. Let \underline{M} be the category of closed analytic submanifolds of open subsets of finite products of C. Then we have:

PROPOSITION 3.3. $A_{(\cdot)}$ is a covariant functor from <u>M</u> to M(A).

Proof. A_M is defined for every object in \underline{M} and is an object of $\underline{M}(A)$, by Theorem 3. Now let M and N be two objects of \underline{M} and $h: M \to \overline{N}$ an holomorphic function. h can be extended to an open neighborhood W of M for example by $h \circ r$. If \overline{h} is such an extension, then we can define $A_{\overline{h}}$ as before Lemma 3.2. Now define A_h to be the restriction of $A_{\overline{h}}$ to A_M , for any extension \overline{h} of h. Obviously, Im $A_h = A_{\overline{h}}(A_M) \subseteq A_N$, and if h_1 and h_2 are two extensions of h, and $a \in A_M$, $a = \nu(f)$ with $f \in \mathcal{O}(X, M)$, then

$$A_{h_1}(a) = \nu(h_1 \circ f) = \nu(h \circ f) = \nu(h_2 \circ f) = A_{h_2}(a),$$

so A_h is well defined. The rest of the Proposition is easily verified.

There are many holomorphic functions in A^n whose differentials are *A*-module morphisms, but which are not of the form A_h for any *h*. As an example, take $a \in A$ such that there are $x \in A$, and ϕ , $\psi \in X$ with $\phi(x) = \psi(x) \neq 0$ and $\phi(a) \neq \psi(a)$; and consider $L_a: A \to A$ defined by $L_a(y) = ay$. L_a is *A*-linear, but $L_a \neq A_h$ for all *h*: if L_a were A_h , $ax = L_a(x) = A_h(x) = \nu(h \circ \hat{x})$, so over *X*, $\hat{a}\hat{x} = h \circ \hat{x}$, and then

$$\phi(a) \cdot \phi(x) = h(\phi(x)) = h(\psi(x)) = \psi(a)\psi(x).$$

Hence, $\phi(a) = \psi(a)$, contrary to our assumptions.

Finally, we wish to compare A_M and A^M .

PROPOSITION 3.4. $A^M = A_M + \operatorname{Rad}(A)^n$.

Proof. Let $\mathcal{N} = \{ f \in \mathcal{O}(X, \mathbb{C}) : f |_X = 0 \}$. Then $\nu(\mathcal{N}) = \operatorname{Rad}(A)$: if $f \in \mathcal{N}, \ \overline{\nu(f)}|_X = f |_X = 0$, so $\nu(\mathcal{N}) \subseteq \operatorname{Rad}(A)$; on the other hand, if $a \in \operatorname{Rad}(A), \ a = \nu(\hat{a})$ with $\hat{a}|X = 0$. We identify also $\operatorname{Rad}(A)^n$ with $\nu(\mathcal{N}^n)$. Note that $A^M \subseteq A_W$, for if $\hat{a}(X) = \operatorname{sp}(a) \subseteq M$, then $\hat{a} \in \mathcal{O}(X, W)$. Now take $a \in A^M$, and put $a = A_r(a) + (a - A_r(a))$. $A_r(a) \in A_M$, and

$$a - A_r(a) = \nu(\hat{a}) - \nu(r \circ \hat{a}) = \nu(\hat{a} - r \circ \hat{a}) \in \operatorname{Rad}(A)^n,$$

because $\hat{a} - r \circ \hat{a} \in \mathcal{N}^n$. For the other inclusion, let $b \in A_M$ and $c \in \operatorname{Rad}(A)^n$. $c = \nu(g)$, with $g \in \mathcal{N}^n$. Then

$$sp(b+c) = \widehat{b+c}(X) = (\widehat{b} + \widehat{\nu(g)})(X)$$
$$= (\widehat{b} + g)(X) = \widehat{b}(X) = sp(b) \subseteq M.$$

COROLLARY 3.5. A^M and A_M have the same homotopy type. If A is semisimple, then $A^M = A_M$. (See also [7; 2.8].)

Proof. Let $\iota: A_M \to A^M$ denote the inclusion. $A_r \circ \iota$ is the identity on A_M and it is easily verified that $\iota \circ A_r$ is homotopic to the identity on A^M .

4. An example. We wish to consider briefly an example of a spectral set. Suppose A is semisimple, and the manifold M is given as the zero set of a holomorphic function

 $W \xrightarrow{F} \mathbf{C}^k$.

It has been established in the last paragraph that A_M is a Banach manifold. This would have been a much simpler matter in this particular case, but a bit more can be said. Lift F to an analytic function

$$A_W \xrightarrow{A_F} A^k$$

and the zero set of A_F is exactly A_M . To see this, let $a \in A_M$; then $a = \nu(f)$ with $f \in \mathcal{O}(X, M)$, and $A_F(a) = \nu(F \circ f) = \nu(0) = 0$, so $a \in A_F^{-1}(0)$. Now if $A_F(a) = 0$, $\nu(F \circ \hat{a}) = 0$ and $F \circ \hat{a} = 0$ over X. Hence $F(\operatorname{sp}(a)) = \{0\}$, and $\operatorname{sp}(a) \subset M$. We then have $A_M \subset A_F^{-1}(0) \subset A^M$, but since A is semisimple, all three are the same.

Now take $W = \operatorname{GL}_n(\mathbb{C})$, and G a Lie subgroup of W which is the zero set of analytic functions, for instance an algebraic group. Then the corresponding zero set of the same functions in $\operatorname{GL}_n(A)$ is a Lie subgroup of $\operatorname{GL}_n(A)$.

It can in fact be shown that all Lie groups give rise to Banach Lie groups, and that these have tangent spaces which are free A-modules.

References

- [1] (i)R. Arens and A. P. Calderón, Analytic functions of several Banach algebra elements, Ann. of Math., (2) 62 (1955), 204-216.
- [2] I. Craw, A condition equivalent to the continuity of characters on a Fréchet algebra, Proc. London Math. Soc., 22 (1971), 452–464.
- [3] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, N.J., 1965.
- [4] A. Larotonda, *Notas sobre variedades diferenciables*, INMABB--CONICET, Bahía Blanca, 1980.
- [5] E. Novodvorskii, Certain homotopical invariants of spaces of maximal ideals, Mat. Zametki, 1 (1967), 487–494.
- [6] I. Raeburn, *The relationship between a commutative Banach algebra and its maximal ideal space*, J. Functional Anal., **25** (1977), 366–390.
- [7] J. L. Taylor, *Topological invariants of the maximal ideal space of a Banach algebra*, Adv. in Math., **19** (1976), 149–206.
- [8] _____, Twisted Products of Banach Algebras and Third Čech Cohomology, in Springer Lecture Notes in Math., 575 (1977), 157–174.

Received March 8, 1984.

Universidad de Buenos Aires Pabellon I - Ciudad Universitaria Capital Federal (1428) Argentina