
PACIFIC JOURNAL OF MATHEMATICS

Vol. 120, No 2,1985

SPECTRAL SETS AS BANACH MANIFOLDS

ANGEL LAROTONDA AND IGNACIO ZALDUENDO

Let A be a commutative Banach algebra, X its spectrum, and M a
closed analytic submanifold of an open set in Cn. We may consider the
set of germs of holomorphic functions from X to M, Φ(X, M). Now let v
be the functional calculus homomorphism from Φ(X, C") to An, and

It is proven that AM is an analytic submanifold of A", modeled on
protective A-modules of rank = dim M.

1. Introduction. Let A be a commutative complex Banach algebra
with identity, and let X be the set of all characters of A, considered as a
compact subset of the topological dual A' with the weak*-topology.

If U is an open neighborhood of X, and B a complex Banach space a
map f:U~*B will be called holomorphic if it is locally bounded and all
its complex directional derivatives exist. The set of all such functions
which are also bounded on U will be denoted by H°°(U, B), or simply
//°°(t/), when B is the complex field. These are locally convex spaces with
the topology of uniform convergence. We define Θ(Xy B) and Φ( X) to be
the inductive limit of these spaces as U ranges over all open neighbor-
hoods of X. Θ( X) is then a topological algebra. We recall (see [2] or [7])
that there exists a continuous algebra epimorphism, the holomorphic
functional calculus

P:Θ(X) -> A

such that: the composition of v and the Gelfand map

Φ(X) -*A^ C(X)

is the restriction map f-*f\X9 and the composition of the linear map
a *-» a and v

A -> 0(X)-* A

is the identity map of A. Here a denotes the germ of the holomorphic map
defined on A' by γ •-» y(a).

In [6], Raeburn has generalized previous results of Taylor and
Novodvorskii ([7], [5]). He uses a generalization of the morphism v,
extending the holomorphic functional calculus to a linear map

S:Θ{X,B) ->A®B.

401



402 ANGEL LAROTONDA AND IGNACIO ZALDUENDO

If M c B denotes a Banach submanifold, Φ(X, M) is defined and so is
the set

Raeburn shows that if M is a discrete union of Banach homogeneous
spaces the set AM is locally path connected and the generalized Gelfand
map

induces a bijection on the set of components

In this note, in §3, we take B = Cn and M a closed submanifold of an
open set of C", and prove that the set AM is in fact an analytic
submanifold of An. This was first stated by Taylor in [8]. AM is modeled
on projective A -modules of rank = dim M. We also prove that AM and
AM = {a & An: sp(β) c M) have the same homotopy type. Note that
with B = Cn, we have S = v X X v and A έ B = An.

In order to do this we first prove in §2 a version of the constant rank
theorem.

2. The constant rank theorem. In this paragraph we give a version
of the constant rank theorem valid for A -modules; the whole paragraph is
an adaptation of the results in [4].

We will be dealing with submodules of the free module An, and
A -module morphisms T: An -> Am. A submodule E of An will be called
A-direct if it is closed and there is another closed submodule E' of An such
that An = E Θ E'\ obviously, this is equivalent to the fact: E = Kerp
(resp: E = Im p), for some continuous A -linear projector/?: An -> An.

Note that in this case E is a projective module, but not necessarily
free.

If T: An -> Am is an A -module morphism, we say that T is A-direct
(also called "split") if Ker T and Im T are A -direct.

Assume that

J7
2 ? 1

= AAn — p a) F J7 m F
JΊL — •'•"'1 ^ ^ 2 ? 1 2

for some closed submodules Ev E2, Fv F2; if Γ:
phism we shall use the notation

is an A -mor-

T =
11 [ 12

ι 2 2 .
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with Ttj e ¥LomA(Ep F,) (ι, j = 1,2), meaning that if

x = xx 4- x 2 (A:X e 2?!, x 2 G £ 2 ) ,

403

then

T(x) = [ΓπίxO + Γ1 2(*2)] + [ Γ 2 1 ( Λ l ) + Γ22(x2)]

is the expression of T(x) as a sum of elements in Fx and F2.

We shall need the following elementary lemma, which we state

without proof.

LEMMA 2.1. Let P 1 ? P2 be A-direct submodules of An of the same rank.

Then Px c P2 implies Px = P2.

THEOREM 1. Suppose To: An -> Am is an A-direct morphism and let Eλ

and F2 be closed submodules of An and Am respectively such that

An = Ex® Ker To, Im To Θ F2 = Am

γ S ' Kerr 0

ImΓ0

the following are equivalent

(i) Γ w A-direct, An = £ x Θ Ker Γ

(ii) a e Iso(£ 1? Im Γo) α/w/ δ = γα" 1^.

(iii) There exist AΊinear automorphisms u: An

= Im Γ Θ

n , t;: Am such

that To == vTu and

u\Ex = id £ i v\F2 = i

(iv) T is A-direct, a e I s o ί ^ , Im Γo) Γo) = rk(Im Γ).

Proof: Suppose (i) and consider the diagram

Ex X

φ

Ex

KerΓ

T

θ Ker To I Im

ImΓ

4

Γo Φ

X

4>

F2

Fi

=

where φ is the isomorphism 0 -> (υl9 v2); here ϋ1 (resp: υ2) is the projec-

tion of v onto £Ί (resp: Ker T) with kernel Ker T (resp. £'1). We define ψ
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in a similar way. Then we have

and

: ; •

ImΓ ImΓ0"

with T e Hom,,(Ker To, Ex), v e H o m ^ I m T, F2) and 0 e
lsoA(KeτT0, KerΓ), μ e Iso^ίlm Γ, Im Γo). On the other hand we also
have

w =
λ 0

0 Oj LKerΓ

ImΓ

withλ <= ^ ί ^ )
The commutativity of the diagram implies

μ OlΓλ OlΓl T

v 1 0 0 0 β
α

γ δ\'

hence μλ = α (which implies that α is an isomorphism) and δ = v\r =
i'λ(λ~1μ"1)iιiλτ = yoί~ιβ, and we have (ii). Now assume (ii): if

with λ

λ 0

0 0

i 1 } Im To) we define

KerΓn

u =
-| _'

0 1 Ker7;

and

-γα

1 0
-1 l

KerΓn

ImΓ0

and a routine calculation gives (iii).
Now suppose we have (iv) and define the automorphism S: A'

by

S =
1

-γα"

0

1

ΊmΓ0"
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Then we have

T

the composition

•?ηn I

"τ~ o δ-
β

γα -lβ Ker

ΓlmΓ0"

which is also .4-direct. Note that ϊm(Γ') = S(Im Γ), hence Im(Γ') and
Im(Γ) have the same rank; from this it follows that rk(Im T') = rk(Im Γo).

But Im(Γ') 3 α(£Ί) = Im(Γ0); Lemma 2.1 gives Im(7") = Im(Γ0)
and this fact implies 8 — ya~ιβ = 0. This proves (ii)

(iii) ==> (i) is simple; in fact, it is obvious that T is A -direct. It is also
clear that w(Ker Γo) = Ker Γ, hence

Am = v~l(lm To Θ F2) - υ'ι(ίm To) Θ ^ (

- v'%(An) Θ F 2 = Tu(An) θ F2 - Im T φ F 2,

^4" = w(Ker Γo φ E j = w(Ker Γo) θ £ x = Ker T φ £ x .

In order to complete the proof, we only need the inference (i) => (iv):
a e Iso(jB1?Im TQ) as in (i) ==> (ii). The rest is obvious, so the proof is
complete.

We shall be concerned now with a generalization of the results in §1
of [6], we shall follow the definitions of this reference.

Let Ω be an open set in An, F: Ω -> Am an holomorphic map, and
α G Ω; we denote the differential of F at a by DF(a).

A linear representation of Fin a is an object (w, ί/, υ,V,T) where
(i) U is a neighborhood of 0 G yίw, w is biholomorphic from J7 onto

w(t/), a neighborhood of # contained in Ω, and u(0) = α.
(ii) F is a neighborhood of 0 e ^4m, t; is biholomorphic from V onto

y(F), a neighborhood of i^α) and v(0) = F(«)
(iii) Γ: U -> Ami$ the restriction of an A -linear map, and v~ιFu = Γ.
(iv) Du(x) and 2MjO are ̂ 4-linear maps if JC G ί / j G F.
We will say that the holomoφhic map F: Ω -* ^4m is locally A-direct at

α G Ω if there are closed sub-modules Eλ c: An, F2 a Am and a neighbor-
hood U of a such that, for all x G t/,

(i) DF(JC) is Λi-linear

(iii)^w = Im DF(x) φ F2.
We have now the following:

LEMMA 2.2. Let Ω £e #rc op^« set in An, F: Ω, -* Am holomorphic and

a G Ω. // F w locally A-direct at a, then there is a linear representation

(M, ί/, ι;, F, Γ) of Fin a, with T A-direct.
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Proof. Without loss of generality we can assume that a = 0 and

F(a) = 0; then there exist a neighborhood Ωo c Ω of 0 E ̂ " and closed

submodules Eλ c An, F2 c Am such that

An = Eλ θ Ker DF(x), Am = Im DF(x) θ F 2

for all x G Ω O . Also, DF(x) is v4-linear if x G ΩO .

Let £ 2 = Ker 2λF(0), i^ = Im DF(0); we denote x1? x 2 (resp: yl9 y2)

the components of x G An (resp: y ^ Am) in the decomposition Eλ θ E2

(resp: Fλ θ F2). In a similar way we write F(x) = fι(x) +/2( x)? with

Λ(x) e /i mdf2(x) e F2.
We have

x) /)2Λ(χ)l

^iΛ(^) ^2/2Wj"

and so we can simplify the notation writing ct/y(x) = DJj(x) (/, j = 1,2).

Recall that Theorem 1 gives

(a) α u ( x ) : ^ -> /^ is an isomorphism, and

(b) α 2 2 (x) = «i2( ̂ )«ii( x)"1«2i(Λ :) f o r a 1 1 ̂  G Ω o

Define the following^-linear maps

Now define the holomorphic map h: Ωo -> A" by

We have: Dh{x) is an A -linear map if x e Ωo. In fact,

1 - 1

Dh{x) =
0

0 0 a12(x) α2

S-'a^x) S'^ix)

0 1

0 0

0 1

hence by the inverse function theorem h: Ωt -> Ω2 is biholomorphic for

suitable neighborhoods of 0 e A".

Note that the differential of the map Fh~ιP: P" 1 (Ω 2 ) -»^4m vanishes

identically, that is

D{Fh-ιP){x) = 0 (xeP-HΩJ).
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In fact we can compute this differential as the composition

DF(h~ιP(x))Dh(h-ιP(x))-ιP; the calculation leads (with x' = h~ιP(x))

to

\-l
-«n(

ί°
[o

X')" '« 2 1 (JC)

1

o"
1

_

= o,

0

0

0

1

s -•

)

0

al2(x')an(x')-lS 0

where we use the identity α 2 2 = «12α{1

1α21.

Hence we have proved

(c) Fh~ιP vanishes identically in a neighborhood of 0 (for instance, in

the connected component of 0 in P~1(Ω2)).

Finally we define the holomoφhic mapping g: c"1(Ω2) -> Am

g = Fh~ιc + Q.

Then if x = h~ιc{y) we compute

Γ 1 01
Dg(y)= al2{x)an{xyl l l

and this shows that g: Ω/ -> Ω2' is a biholomoφhic map, where Q[ and Ω2

are small enough neighborhoods of 0 e Am. Also Dg{y) is ^4-linear for

every x ^ Ω/.

In order to complete the proof, set u = /Γ1 and i; = g; we must show

that the identity

holds in some neighborhood of 0 e An\ but this follows from (c) and the

computation

gTh = (Fh~ιc + Q)T(cF + P) = FhιcQF

= Fh~xcF - JΛ-^λ ~ P ) = F - FhιP.

THEOREM 2. Let Ω 6e α« ςpβ/i subset of An, and F: Ω -* An an

holomorphic retraction that is locally A-direct at x for all x e Ω. Then Im F

is a Banach analytic manifold, and for all x e l m i 7 the tangent space

Tx(lm F) at x is Im DF(x).

Proof. For every F(x) e Im F there is, by Lemma 2.2, a linear

representation (u x , Uχ9 uχ9 Vx, Tx) of F with Tx A -direct.
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For all x' e Ux,

Tx = DTx(x') = DυZx{Fux{x')) • DF{ux{x')) • Dux{x')

= [Dotfcίx'))]-1 • DF{ux(x')) • Dux{x').

Dvx(Z) and Dux(Z') are A -linear isomorphisms, so Im Tx —
Im DF(ux(x'))9 for all xf e [4. But F is ^4-direct at x, so there is a
neighborhood of x where Im DF(a) = Im DF(b), for a, b in this neigh-
borhood. Hence the Im 7̂  for z in this neighborhood are all yl-isomorphic
to a fixed A -module P. Call hz\ Im Γz -> P these Λ -isomorphisms. For
every * e Im F, x = F(x), and Uχ9 Vx may be chosen so that ux(Ux) =
vx(Vx). Then υx\ Vx Π Im Tx -> ̂ ( ί^) Π Im i7 is a bijection: it is one to
one over all of Vχ9 and if υx(z) e Im i7, say ̂ (z) = wx(zr),

ϋ χ (z) = Fvx(z) = Fux(z>) = vxTxu?(ux{z>)) = vx{Tx(z>))

so υx(z) e ^ ( ί ς n Im 7;).
Now define the chart near x G l m F : (υx(Vx) (Λλm F, hxυ~ι). These

charts are compatible. To see this, suppose

Uxy = vx(Vx)nυy{Vy)nlmFΦ 0

we then have

But (hyv~ι)(hxv~ιYι = hyυ~Ύυxh~x

λ is holomorphic. The same goes for the
other composition. The tangent space 7^(Im F) is given by

imiDvMh-1) = Dvx(0)(lmTx) = lm(Dvx(0)Tx) = lmD(υxTx)(θ)

= ImD(Fux)(0) = lm{DF(ux(0))Dux(0)) = Im DF(x).

3. AM as an analytic manifold. Here we will apply the results in the
preceding paragraph to Taylor's AM [7] where M is a closed submanifold
of an open set of C".

For a e An

9 let a denote the function A' -> C" defined by ά(y) =
{y^a^,... ,y(an)) for all γ E / . Note that with the supremum norm
in both An and C\ |<2(γ)| < ||γ|| ||α||. We will sometimes write φn for
φ X X φ. We denote by θa the classical holomorphic functional cal-
culus of Arens and Calderόn [1]. All other functional calculus morphisms
and their restrictions will be denoted by v.

We will need the following lemma.

LEMMA 3.1. Let Wbe an open subset of Cn. Then Awis an open subset
of A".
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Proof. Let α G ^ ^ a n d / e φ(X9 W) such that a = *>(/)• Since/(X)
is a compact subset of W, there is an ε > 0 such that for every φ e l , the
polydisc { z e Crt: |/(φ) - z| < ε} is contained in PF. Now let U = {£ e
ΛΛ: ||α - 6|| < ε}. £ ( * ) c W, because

ε.
Then έΓ^ W) is a neighborhood of X'm A', so 5 e 0(X, HP), and J E ^ ^ .

The sets A lV9 with JF open, are now appropriate domains for holo-
morphic functions. We will need to lift holomorphic functions in Cn to
holomoφhic functions in A". This will be done as follows. Let h:
W -* C m be holomoφhic, and define Ah: Aw -> Am by >4Λ(β) = v(h<>f)9

if a = r(f).

LEMMA 3.2. 4̂Λ is a well-defined holomorphic function. For all a = v(f)
G Aw, DAh{a) is an A-module homomorphism given by v(Dh(f)).

Proof. First, we will see that *>(/) = v(g) implies v(h° f) = v(h © g).
For this, let 61 ?... ,6^ G yl be elements that finitely determine/and g,

in other words, there is an open set Ω in Ck and there are F and G in
, IF) such that the following diagram commutes

) IF Λ C »

^ ^F(resp.O)

= Kg) means that βft(F) = θh(G), so sp(^(F)) = sp(θh(G)) c JF.
Since Λ e C(ίΓ,Cm), we may write θβΛF)(h) = θθι>(G)(h). Then h(F(b)) =
Λ(G(*)), so «6(A o F) = ^6(Λ o G) and KA «/) =V(A ° g).

To prove that v4n is holomorphic, let a ^ Aw, and Z> e A". It will be
enough to prove the existence of

(1) ^ ( α ) = lίm ±[Ah(a

Let a = v(f), b = ^(g). Then a + λb = p(f + λg), and (1) is
lίmλ_>0 λ~1[^(Λ ° ( / + λg) — Λ °/)]. Since the functional calculus is con-
tinuous, the limit (1) will exist if lim λ_0 λ~ι[h °(f + λg) — h ° /] exists in
Θ(X, Cm). We must see that λ-χ[h°(f + \g) - h<> f) converges uni-
formly over a neighborhood of X as λ -> 0. For this, set ε > 0, and if
λ e C with |λ| < ε and γ G l , let

^ if λ ^ °
ifλ = O.
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h is holomorphic, so limλ_+05'(λ, γ) = 0 for each γ G X. Then there are

δ γ > 0 and neighborhoods Fγ of γ such that |S(λ, φ)\ < ε for λ G C with

|λ| < δ γ and all φ G F γ . Being X compact, there are γ l 9 . . . 9yp G X such

that Fγ., z = \9...9p9 cover X Let δ = min{δγ; 1 < i <p}9 and V =

Uf= 1F γ, ' Then for all λ G C with |λ| < δ and all γ e F, 5(λ, γ) < ε9 so ΛA

is holomorphic. We shall denote the limit of λ~ι[h °(f + λg) — h ° f] as

λ - > 0 , b y / ) λ ( / ) ( g ) -
DAh(a) is more than just a linear morphism. It is ^-linear. To prove

this we must show that the diagram

Θ(XX)mX
X

X

c)- -
I
" ->

Θ(χ,cy

Am
commutes.

Here the horizontal arrows indicate matrix multiplication.

As all the arrows are continuous, and P(A)k is dense in Θ(X9 C)k for

all k, where P(A) is the algebra of polynomials in Gelfand transforms of

elements of A9 it will be enough to show that v(p q) = v(p) v(q)9

wherepij9 qj G P(A). Let

Σ^W w h e r e ^ W = aijk - aijkr

j = Σ a\k')9 where aJ(k') = ajk[ a

jK.

ΣPlj1j>- -> Σ
7 = 1 7 = 1

= V Σ Σa

= Σ Σ*1J(k)ΣaJ(k')9...9 Σ ΣamWΣaJ(k')

On the other hand,

(2) „(/>) v{q) = ( I Fί^xXίr),,..., f p(p)mJp(q)j).

But

= "f
(k)
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and

So

(2)= Σ Σ« ly(*)Σ«y(*'), . , Σ Σ*mJ(k)Σ*J(k') q)
\y = l (Λ) (A:') 7 = 1 (*)

Then

Λ4Λ(*)(*) = v(Dh(f)(g)) = v{Dh{f))

So that DAh{a) = v{Dh(f)) e ,4mX/1 is an ̂ -module morphism, for all

Note that Ah could have been well-defined by putting Ah{a) =
*>(/* ° <2), but this definition will not do for our later purposes.

Now let M be a closed submanifold of an open set of C", of
dimension k. We recall that by [3; Ch. VIII, C] there is an open
neighborhood W of M and an holomorphic retraction r: W -> M. Hence
we also have Ar: Aw-* AM, the image of Ar being contained in AM

because r ° / G Θ( X, M) for all/ e 0( X, W). Of course the image of Ar is
exactly AM, for if α e AM, then ^4r(α) = v(r ° f) where / e (9(X? M) so
r © /' = /, and ̂ 4r(tf) = v(r ° f) ~ v(f) — a e Im ^4r. Now we obtain our
main theorem.

THEOREM 3. // M ώ a closed submanifold of an open set of C", of
dimension k, then AMis a Banach manifold modeled on projective A-modules
of rank k.

Proof. By Theorem 2, it will clearly be enough to verify that Ar is
A -direct at a for all a in a neighborhood of AM.

Since r is a retraction, Dr(r(z))° Dr(z) = Dr(z) for all z^W.
Therefore Im Dr{z) c Im Dr(r(z)), but the rank of the matrix Dr(z) is at
least that of Z>r(r(z)) for z near r(z), so that actually Imΰr(z) =
Im Dr(r(z)) for z in an open neighborhood of M. This means that
dimlm Dr{z) == fc, and dimKer Dr(z) = n — k near M. Cn can be writ-
ten as the direct sum

C* = Im 2>r(r(z)) θ KerDr(r(z)) - ImZ)r(z) θ KerDr(r(z)).

Because of the continuity of Dr, we may also write C" = Im Dr(z) θ
KerDr(z), for z near M. Note also that Dr{r{z))| Im Dr(r(z)) is the
identity, so that Dr(z)\ Im Dr(z) is an automorphism of Im Dr(z) near
M. We may suppose the neighborhood of M where all this is true to be W;
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just discard the old W. For all z G W,

Dr(z)

0

0 ϊmDr(z)

Ker Dr(z)

lmDr(z)

KerZ>r(z)

is an automoφhism of Cn. Define a: W -> GLn(C) by a(z) = the matrix
of az in the canonical basis of C". We will show that a is an holomoφhic
function. For this, let z0 e W. There is a neighborhood U of z0 and there
are holomorphic functions υf. U -> C", 1 < i < n, such that
y1(z),...,yA:(z) is a basis of ImDr(z) and vk+ι(z),...,υn(z) is a basis of
Ker Dr(z) for all z G ί/. Let βz e C / : X / : be the matrix of Dr(z)|Im Z)r(z)
in the basis vλ{z),... ,ϋ^(z) and let c(z) be the matrix which changes the
canonical basis of Cn to vλ(z)9.. .9un(z). Then

0'
α(z) = c(z)

- 1

Lo
c(z)

and it will be enough to verify that βz is an holomoφhic function of z in
U, but this follows from the equations

Dr(z){υXz))t = < k.

We therefore have Aa: Aw . But

for all TO see this, let b = v{Dr{g){h)) where

but for all γ near X,

α(g(γ))|lmZMg(γ)) =

SO

Then

DAr(x)\ιmDAr{xy Im DAr(x) -* Im DAr(x) is an automoφhism.

We prove that An = Im i>^r(x) θ Ker DAr(x) for all X E ^ ^ :

0 = Ker( /)^Γ(jc)| I m l ) i 4 r W) = Im DAr(x) Π KeτDAr(x).

If c e v4Λ, there exists ftGlm I>^4r(x) such that Dy4r(^:)(6) = Λ4r(.x;)(c).
Then c = 6 + (c - &), with 6 G Im /)^4r(x) and c - b t
Ker 2)̂ 4 r(;c) is closed, so the direct sum is topological.
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We now know that Im DAr(x) is a projective A -module.

We shall see that its rank is k.

First we must prove that for all x e A w and φ e X,

φ"(lrnDAr(x)) = Im Dr(φn(x))

and

φΛ(tfer Λ4 r (x)) = Kcr Dr(φn(x)).

Take

Now take r ( )

= φ"(0) = 0,

so Φ"(6) G KerZ>r(φ"(Λ:)), and we have proven both left-to-right inclu-

sions. We haveA" = Im DAr{x) Θ Ker DAr(x), and φn is surjective, so

Cn = φΛ(lm /)^ r(jc)) + φπ(KerZ)4 r(jc)),

but because of the inclusions we have just proven, this sum is direct. Then

Cn = φ"(lm DAr(x)) θ φn(KεrDAr(x))

= Im Dr{φn(x)) θ KcvDr(φn(x)),

so the inclusions are actually equalities.

Now let x^Aw, P = Im DAr(x), Q = KerZ)^(r(jc), and ψ e l

Then r k φ P = rk^ Pφ = rk^ (^4φ ®AP) is, by Nakayama's Lemma the

same as dim c[(ylφ ®AP) ®A C], when C (and also Φn(P)) has the ^ - m o d -

ule structure induced by φ. We then have the ^4φ-module morphism

Let U!,. . . 9vk has a basis for φn{P) = Im Dr(φw(x)), and let bv...,bk

e P such that φII(6|.) = ι;. for / = 1,...,A:. Then (1/1 0 bt) 0 1, / =

1,... ,/c, are C-linearly independent: if 0 = Σ f ^ λ ^ l / l <E> Z?z) ® 1, then

i - l i - l

and λ, = 0 for i = 1,... ,k.

Therefore r k φ P = dim c[(Λφ ®AP) ®A C] > k.

In a similar manner, and since φn{Q) = KerDr(φn(JC)), rk(

n - k. But r k φ P + τkφQ = n, so r k φ P = k Vφ e X Then rk P = A:.
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To complete our proof, let a e AM and write:

λ X )

l \]
R(x) S(x)\ [KerDAr(a)\ J

Since DAr(a) is an indempotent, DAr(a)\lmDA^a) is the identity, and
P(a) = /. But Im DAr(a) is a Banach space, so by the continuity of P,
P(x) is an automorphism of Im DAr(a) for all x in a neighborhood t/ of

We have then verified conditions (iv) of Theorem 1 for all x e U.
Therefore, Ar is yί-direct at x for all x in a neigborhood of AM.

Observe that the tangent space Ta(AM) at a is Im DAr(a). These are
of course projective A -modules of rank k, but they need not be isomor-
phic on different connected components of AM. In fact, some of these
modules may be free while others may not.

Now consider for any Banach algebra A, the category M(A) whose
objects are analytic manifolds modeled on projective ^4-modules, with
morphisms holomorphic functions whose differentials are ^4-module mor-
phism, and the ordinary composition. Let M be the category of closed
analytic submanifolds of open subsets of finite products of C. Then we
have:

P R O P O S I T I O N 3.3. ^ t ( ) is a covariant functor from M to M(A).

Proof. AM is defined for every object in M and is an object of M(A)9

by Theorem 3. Now let M and N be two objects of M and h: M -> N an
holomorphic function, h can be extended to an open neighborhood W of
M for example by h ° r. If h is such an extension, then we can define A-h as
before Lemma 3.2. Now define Ah to be the restriction of A-h to AM, for
any extension Ίi of h. Obviously, Im Ah = A-h(AM) c AN9 and if hλ and h2

are two extensions of Λ, and a G AM, a = v(f) with/ e Θ(X9 M), then
Λhι(a) = v{hχof) = v(hof) = v(h2of)=Ah2(a),

so Ah is well defined. The rest of the Proposition is easily verified.
There are many holomorphic functions in An whose differentials are

A -module morphisms, but which are not of the form Ah for any h. As an
example, take a ^ A such that there are x E i , and φ, ψ e X with
φ(x) = ψ(x) Φ 0 and φ(a) Φ ψ(a); and consider La\ A -» A defined by
La(y) = ay. La is ^4-linear, but La Φ Ah for all h: if La were Ah, ax =
La{x) = Ah(x) = v{h ° Jc), so over X, άx = h ° x9 and then

φ(a) φ(x) = A(φ(x)) = A(ψ(x)) = ψ
Hence, φ(α) = ψ(β), contrary to our assumptions.

Finally, we wish to compare AM and AM.
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PROPOSITION 3.4. AM = AM + Rad(A)n.

Proof. Let JT= {/e Θ(X,C): f\x = 0}. Then v(JT) = Rad(Λ): if
fejV, v(f)\χ=f\x=0, so V{JV) C Rad(Λ); on the other hand, if
a e Rad(Λ), a = ?(α) with <2|X = 0. We identify also Rad(Λ)" with
v{JT"). Note that AMQAW, for if ά{X) = sp(α) c M, then α e
0(X, W). Now take α e AM, and put α = Λr{ά) + (a - Ar{a)). Ar(a) e
AM, and

α - Ar(a) = y(a) - v{r ° a) = v{ά - r ° a) (= Rad(^l)",

because α — r ° a e ^"" . For the other inclusion, let b ^ AM and c e
Rad(Λ)". c = »»(g), withg e ^Γ". Then

COROLLARY 3.5. AM and AM have the same homotopy type. If A is
semisimple, then AM = AM. (See also [7; 2.8].)

Proof. Let ι\ AM -» AM denote the inclusion. Ar © ι is the identity on
^4M and it is easily verified that i ° Ar is homotopic to the identity on

4. An example. We wish to consider briefly an example of a
spectral set. Suppose A is semisimple, and the manifold M is given as the
zero set of a holomorphic function

It has been established in the last paragraph that AM is a Banach
manifold. This would have been a much simpler matter in this particular
case, but a bit more can be said. Lift F to an analytic function

and the zero set of AF is exactly AM. To see this, let a & AM; then
a = v(f) with / G 0(Jf, M), and ΛtF(a) = v(Fof) = ^(0) = 0, so 0 e
^^(0). Now if >4F(έϊ) = 0, K ί 1 ^ ) = 0 and F ° α = 0 over X. Hence
F(sp(α)) = {0}, and sp(α) c M. We then have ^ c ^ ( O ) c AM, but
since A is semisimple, all three are the same.

Now take W = GLn(Q, and G a Lie subgroup of ίF which is the zero
set of analytic functions, for instance an algebraic group. Then the
corresponding zero set of the same functions in GLn(A) is a Lie subgroup
of GLn(A).

It can in fact be shown that all Lie groups give rise to Banach Lie
groups, and that these have tangent spaces which are free A -modules.
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