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THE ISOTROPY REPRESENTATION

FOR HOMOGENEOUS SIEGEL DOMAINS

X E. D'ATRI, J. DORFMEISTER, AND ZHAO YAN DA

This paper gives several new characterizations of symmetric do-
mains among the class of homogeneous Siegeί domains. These char-
acterizations involve the commutativity of the algebra of invariant dif-
ferential operators, the transitivity of the action of the isotropy group on
the Silov boundary, and the representation of the almost complex
structure by the infinitesimal isotropy action, respectively.

Homogeneous Siegel domains (equivalently, homogeneous bounded
domains) are important geometric objects to study. They are more general
than Hermitian symmetric spaces. They form a special class of homoge-
neous Kahler manifolds which would be one of the three building blocks
of an arbitrary homogeneous Kahler manifold according to a conjecture
of Gindikin and Vinberg. But they have also certain properties which are
typical for arbitrary homogeneous Riemannian manifolds of non-positive
curvature (NC algebras).

In this paper we investigate certain relations between homogeneous
Siegel domains and the three different types of homogeneous spaces
mentioned above. In particular, as the main result of this paper we give
five different new characterizations of symmetric domains amongst the
class of homogeneous Siegel domains. So if D is a homogeneous Siegel
domain, G the identity component of the automorphism group of D, and
K the isotropy subgroup at a point b of Z>, then the following are
equivalent:

(a) D is symmetric
(b) The almost complex structure map on the tangent space ThD aϊb

is in the image of the infinitesimal isotropy representation.
(c) There exist no nontrivial G invariant vector fields
(d) The algebra of G invariant differential operators on D is com-

mutative
(e) The isotropy group acts transitively on the Silov boundary
(f) There exists a vector field X in the center of the isotropy algebra at

the basepoint b of D c Cn so that the differential of X is invertible as a
linear transformation on C".
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Note that the following characterization is already known to be
equivalent with (a) [6]; (g) All sectional curvatures of D are nonpositive in
the Bergman metric.

As in the proof of the equivalence of (g), substantial progress can be
made on our main result using only the machinery of normal /-algebras.
However, again as in the previous proof, we reach crucial points where it
seems necessary to use the algebraic structures of Dorfmeister [7-12] and
Vinberg [30,31]. In this case, we also use intensively the linear isotropy
representation of K and Lie K in terms closely related to the NC algebra
theory of Azencott-Wilson [1,2]. Altogether, we have to combine parts of
three different, very technical and refined theories to prove our main
results. As this situation is likely to arise again and as these three theories
have not yet been interrelated, we include enough material to establish the
relations between them. Due to the nature of these theories, it is unavoida-
ble that this paper is also notationally difficult; however, we feel that the
results justify the effort. Moreover, building on this paper, the second
author described all homogeneous Kahler structures on D [14] and proved
a special case of the aforementioned Gindikin-Vinberg conjecture [15].

We now describe the organization of our paper. Section 3 gives the
proofs of the equivalences. The proof of characterization (b) (Theorem 5)
is easy and depends only on the introductory paragraph of section 2 on
the isotropy representation. The proofs of characterizations (c) and (d)
(Theorems 7 and 8) follow easily from Theorem 3 of §2, which is of
independent interest as a refined structure theorem for normal y-algebras.
However, the proof of Theorem 3 is not direct. A proof may be given
using only normaly-algebras but it would be quite computational. It is the
proof of characterizations (e) and (f) (Theorem 6 with the following
Remarks and Theorem 9) which finally decides the methods to be used in
this paper since we could find no way of effectively computing the orbits
of the isotropy group on the Silov boundary using only normal j-algebras
(and the problem of further analyzing the structure of the algebra of
invariant differential operators in the noncommutative case also seems to
require these more complicated tools, see §3.1). Thus our method is based
firstly on Theorem 1 of §2 (implicit in the work of Azencott-Wilson [2]
and similar to a result in the unpublished thesis of H. L. Williams [32])
which says that under certain technical conditions, the image of the
infinitesimal isotropy representation is spanned by all skew-symmetric
derivations and certain covariant derivatives, which can be determined by
computations within the Lie algebra of a simply transitive group. Sec-
ondly, it is necessary to develop enough of the algebraic theory of [7-12]
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to show that the conditions of this Azencott-Wilson type theorem are
satisfied to prove Theorem 3 (which in turn requires reinterpreting things
in the normal y-algebra context), and to explicitly compute the infinitesi-
mal isotropy representation (Theorem 4); this is done in §1 and the rest of
§2. Finally, §4 contains examples which may be useful.

1. Let D = {(Z, ί / ) 6 f c x f : I m Z - F(U, U) e Ω} be the ho-
mogeneous Siegel domain determined by the homogeneous regular cone
(i.e. open convex and not containing any entire straight line) Ω in the real
(finite dimensional) vector space y\ the complex (finite dimensional)
vector space ^ and the Ω-hermitian form F: <%X °U-* i^c = ^ Θ ii^,
[27]. Let G be the identity component of the automorphism group of D
with Lie algebra g. Every X ^ g determines a real vector field X* on D by
X*\p = d/dt\t=0(exp tX) p and the map X -> X* is real linear injective
with [X*, Y*] = -[X, 7]*. The superscript * will in general denote the
image of this map so, for example, the grading (see [21]) 9 = 9 ^ 8 8-1/2
θ g o θ g 1 / 2 θ Qλ gives ag* = Q*X θ Q*1/2 θ g* θ gf/2 θ gf of the Lie
algebra g* of vector fields (direct sums are always as vector spaces unless
otherwise indicated). For l e g * , the preimage in g will be denoted by
X+. In general, a real vector space is identified naturally with its tangent
space at each point and each element V of the vector space determines an
obvious vector field denoted £¥ (directional derivative). When this nota-
tion is used for a complex vector space, it refers to the underlying real
structure.

In general, we use the notation of [12] but denote the cone by Ω
(instead of K), the Ω-hermitian form by F (instead of S), the fundamental
algebra (on the underlying vector space i^) by J27 (instead of s/), and the
left multiplication in <£?by L(X) (instead of A(X)). One also has the
mutation multiplication operators LX(Y) = L(XY) — [L(X), L(Y)] (in-
stead of AX(Y)). The Bergman kernel function B is determined by a
function η (abbreviated from ηκs) by

B(Zλ + Ul9 Z2 + U2) = ηfoiy1^ - Z2) - F(Ul9 U2)).

The identity of JSPwill be a point e in Ω with η(e) = 1. The algebra
structure on JSP and a real inner product σ are defined on ^(and extended
C linearly to rc) by

' '
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We also have on °lί the hermitian form ρ(U, V) = σ(F(U, V), e). If g

denotes the Bergman metric of Z), then

(1) gie{Zγ + Ul9 Z2 + U2) = 2cRe(iσ(Z l 9 Z 2) + p(Ul9 U2%

Zκ e ^*c, ί/̂  e φ.

Here c is a positive constant and conjugation in ?^c is with respect to Y*

as real part.

REMARKS (1) The Bergman metric is Einstein with Ric = -(l/c)g for

the constant c above. Different normalizations are in use, e.g. c = 1 in

[3-6,22] and c = 1/2 in [18]. We will use c = 1/2.

(2) ίΩ is a totally geodesic submanifold of (D9 g). The obvious

diffeomorphism Ω -^ zΏ then induces a Riemannian metric on Ω from g.

With respect to the Riemannian connection, the covariant derivative of Δy

in the direction Δ* at e is (-Δ^y) e where XY is the product in JS?.

With the identification of each (real) tangent space of i r C X %

with i r C X °ll, we can identify a vector field on D with a function
c x ^ . We use this to define vector fields

(2) jr_J
(3) X_1/

and have g*x = {^_x[α]: a e ^ } , g*1/2 = {X_ι/2[d]: d G Φ}. For any

Γ G g l ( ^ ) , we always extend Γ C-linearly to ^ c and let f denote an

element of gI(^,C) for which T(F(U, V)) = F(TU, V) + F(U, TV). The

Lie algebra of G1(D) (the linear automorphism group of D) is g0 c

{(Γ, f): T e g l(^)} and (Γ, f )* is the function (Z, ί/) -> (ΓZ, fί/).

For consistency and to avoid confusion, set

(4) X0(T, t) = ((Z, U) -» (TZ, TU)) = (Γ, t)*.

Finally, there are vector subspaces &x c Ϋ", ^ 1 / 2 c fy so that g*/2 =

{ ^ 1 / 2 [ J ] : J e ^ 1 / 2 } , gf = { Jfjα]: α e ^ } where

(5) X 1 / 2[J] = ((Z, U)-+(2F{U,φ{Z)d),

iφ(Z)d+2φ(F(U,d))U))

(6) Λi[β] = ((Z, t/) - ((L β(Z))(Z), φ(Z)φ( Ω )ί/))

and ψ is defined by p(φ(X)U, V) = 0(^(17, F), X), X^rc,U,V^ <%.

We extensively use [12, §6] which gives the bracket products of these

vector fields (i.e. the Lie product on g*). Note that all these vector fields

canonically extend to Ψ~c X °ll. For

X* = Λ-.Jfl] + X_ι/2[d] + X0(T, f) + X1/2[d'] + Xx[a'\,
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one has X* = (a — ar + iTe, d — d') since φ(e) = /. In particular, if K is

the isotropy subgroup of G at ie with corresponding subalgebra ϊ, then

Since G is connected and D is simply connected, we have that K is

connected. We also define a bilinear form ( , ) on g by
/o\ / Y γ\ _ σ ( Y* γ*\

Following [12, §3], we have idempotents ell9...9egg of JS? giving a

Peirce decomposition J5?= ®1<i<.< «Ŝ  y where each JS?f/ is a formally real

Jordan algebra with respect to σ and e = Σeir To be consistent with the

notation of [3-6], we will reverse the ordering of the idempotents as used

in [7-12]. Thus ^ is an ideal of S£qq whose orthogonal complement in &gg

will be d e n o t e d ^ . Let

We need the following result from [12, Corollary 3.11] (given in our new

ordering)

(9) If X e sejj: Y e &.. and / < j , then (LX(Y)9 $φ(Y)φ(X)) e g0.
Our aim now is to construct a graded subalgebra § of g _x θ g _ 1 / 2 θ g 0

(the Lie algebra of the affine group of D) which will have the structure of

a normal y-algebra (cf. [28] for definition). For this, we need a complete

set {dl9...,dr} of primitive orthogonal idempotents of «5f giving a finer

Peirce decomposition. More precisely, choose the new idempotents to lie

in the simple formally real summands of the spaces J^ n , c5?22,... 9&gg9 &x

and indexed increasingly in that order. Note that e = Σdr Let o5P=

® i<i< <r^ΐj d e n o t e ^ e P e i r c e decomposition of££relative to {d l 9 . . . ,d r }.

Then l~ά~J= Rdr and SSi} c <eΌYf whenever di e Seυυ, dj e SPWW. Motivated

by [8; Theorem 5.1] and [12; Lemma 3.10] and using (9) (note the effect of

the opposite ordering), one defines an element (Γ(6 l 7), Γ(6 l 7)) G g 0 for

each bjj e ^ / y by

(10) (r(z>/7),f(z>/7))

if/ =7

More generally, for b e J2?, let (Γ(6), f(6)) = Σ ^ / Γ ί ^ ) , f(6/jf.)) where
fe.y. e ^ l 7 are the components of b. One checks that (T(e)9 f(e)) = (/, ^/)
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and T(b)e = b. Thus

(11) (XQ(T(b),t(b)))ie = ib, b^r.

Now set

(12) § = Q _ 1 Θ g _ 1 / 2 Θ § 0

We will show that § 0 , and hence g, is a Lie subalgebra with § Π f = 0 and
dim § = dimR D. Thus 5 = exp §> acts simply-transitively on Z> (cf. the
argument in [1], Lemma 2.4). The diffeomorphism S ^ s -* s(ie) ̂  D is
equivariant with respect to the left S actions so S inherits a left-invariant
Riemannian metric, determined by ( , ) \s, and a left-invariant complex
structure determined by a mapy: § -» §. Since (7X)*, = i(X^), we have

(13) 7(^-i[*]) + - (T(b),t(b))t ί e f

To demonstrate our claim, first note that i f = φ 1 &tu defines
' l<i<j<r ιJ

an r-Peirce decomposition in the sense of [7, 1.3] and, by [12, Theorem

3.1], we even know thatJSf^ θ 1 < m < w < &mn is a (q — /^-decomposition

(relative to elv..., eqq). Define /, c {1,..., r} by en = Σ * e 7. </*. Then

J m ,and [7, Lemma l.l.a] shows that Ldi{bij) = L^b^) if / G Jm
7m n ^ = 0 a n d *o G ^ o W e d e f i n ^ t h e vector"spaces gfπ, g^, g^, g^
as in [7, §3] but with reversed order of the subscripts, i.e. we consider the
adjoints of endomorphisms of [7]. Let now m < n, then / < j if i G Im and
y G /n whence

9 l = φ ^ and βf, c g^.

This implies n : = φ < g ^ / 2

c 9 ^ . From the definition of the space gf^,
it is clear that L^b^ G gfw if i, ; € / „ . Hence g ^ c ^ . By [7, Theorem
3.3], we know that g^is a Lie algebra with [g^, π] c π and [gfm, gf^] = 0
iί m Φ n. Now let 7\, Γ2 be elements of Qa. To prove [7\, Γ2] is in g^, we
may assume that each Tk is in some g^. We also may assume Γj, Γ2 ί n.
Therefore 7\ e gfm, T2 G flfΛ. If m Φ n9 we get [7\, Γ2] = 0, so we may
assume m = n. It therefore suffices to prove that g^Πgf n is a Lie
algebra. From [7, Lemma 1.1], we know that §fn acts trivially on JS?/m if
77 £ {/, m} and from [7, Lemmas 2.3 and 3.1], we find that the map
(L(bnn)\&nn) -» {L(bnn)\&np), n Φ p, • induces a homomorphism
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nP

 o f L i e algebras. Hence, to see that g^Π qfn is a

Lie algebra we only have to consider (g^ Π qfn) \3?nn. But now we use the

fact that ( g ^ Π afn)\&nn = βT> where ^ is the Peirce decomposition

induced on Jδf)1Λ from 9&9 and apply [10, Lemma 4.2 (a)] to conclude that

g°̂ , and hence g^, is a Lie algebra. Finally, we apply [12, Lemma 3.10] to

see that § 0 is a Lie algebra.

We note from the definition of Ld{xij), i <j\ that these endomor-

phisms are block matrices (in the obvious base) having zeroes in and

below the diagonal. Therefore n is a nilpotent Lie algebra. Moreover,

[Qa

9 Qa]a n whence g^ is solvable and hence so is So. Finally, note that

(L( X)9 \φ( X)), X G 2C 9 has only real eigenvalues so §>0 is in fact split over

R. By standard results of Koszul [25] (cf. discussion in [28], pp. 47-48),

this shows that (§,./) is a normal y-algebra with admissible form ω

determining the Bergman metric. We also deduce that the product aΔb =

T(a)bis the Vinberg (clan) algebra on Ψ*m

Let α denote the abelian subalgebra of % given by

(14) α= φR(T(dk),t(dk)).

Define linear functionals εk on α by

(15) ek(jX,) = δkl where X, - ( X +

For each linear functional a on α, let na be the root space of the adjoint

action of α on §. Then § is the orthogonal direct sum of n 0 = α and the

root spaces (some of which may be null)

for 1 < k < r,

(kίV {
r n . , for 1 < k < I < r.

One sees that n = [§,§] and that n is the orthogonal complement of α.

Further, with our normalization, we have ω(Xk) = \o{dk, dk) and σ(e, e)

= dim R (o^ c ) + d i m c ^ (compare [3, Th. 4] which uses a different nor-

malization, also, the last formula is given incorrectly in [11,12]).
Now we want to relate the above constructions to the work of

Azencott and Wilson. Following [12; §7.,3], let Ϋ"r = &>l9 Φ = ^ 1 / 2 ,

F' = F\°Ur X ^ r , Ω' equal the projection of Ω onto Ψ*' (with respect to σ)

and D' - {(Z, t/) G ( ^ ' ) C X ̂ r : Im:Z - F(ί/, t/) G Q'}. Then D' is a



302 J. E. D Ά T R I , J. DORFMEISTER AND ZHAO YAN DA

symmetric Siegel domain and the algebra defined thereby on i^' agrees
with the subalgebra structure of &1 from £P. In general, the superscript'
will denote objects defined by D'. e.g. ef will be the identity of &' = 3>x

and g' will be the Lie algebra of Aut(Z>') Note that on each simple factor
of D\ σ is a multiple of σ'. There is a graded subalgebra g" of g so that
the map X* -*X*\D' (i.e., first X* is extended to a vector field on
i^c X ^ a n d then restricted to Df) is a Lie isomoφhism onto (g')* More
precisely, g" = g^ θ g'_'1/2 θ g£ θ g" where

(17)

01/2 = 01/2»

and go is a subalgebra of g0.
D' is not contained in D, however, letting e0 = e — e' one has

Ω' + ^0 c Ω so D" = D' + ie0 is an equivalent submanifold of D. One
knows T(e0) = 0 for (Γ, f ) e g^ and Φ(eo)d = 0 for d e ^ 1 / 2 . Using
this one proves

(18) ^ U c / , = ^l(z+^. t/, for (Z,t/)ei) ' ,X eg",

which shows how the isomorphism (g")* — (flO* relates the various
structures. For example, the Cartan involution on g' relative to the
symmetry at ie' is known from [11]. Pulling this back to g" (or (g/r)*)
gives a Cartain involution θ defined by

(19) θ(Xλ[a]) = X.λ[a] forλ= ± \ 9 ± 1 , a e

where the superscript / denotes adjoint with respect to σ and p. The
compact part of the corresponding Cartan decomposition is just the
isotropy subalgebra ϊ Π g" for Z)". This is meaningful since we also see
that exp g" leaves D" invariant and is transitive. [18, p. 178] then implies
that the metric induced on D" from (D, g) is symmetric and hence on
each irreducible component of D" is a multiple of its Bergman metric.

Now let q be the sum of the semi-simple parts of the structure
algebras of JS?n, J5?22,.. .,J5?^ and let c\u be the semi-simple part of the
compact algebra ta (note tfl c ! 0 ; see [12, §7.2] for definition). The
elements of q can be canonically extended so that q θ qv becomes a
subalgebra of g0. Let r be the radical of g which is a graded ideal of the
form

— r_i Φ t _ 1 / 2 Φ r 0
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where g_x = r_x Θ Q% g_1/2 = r_1/2 Θ g"1 / 2 (orthogonal with respect to

(20) 9 0 = r 0 θ g£ θ q Φ qσ

r o = n φ θ L(center(.fθ ^ J ) Φ center ta

dim π φ = dim &- dim &.

In addition (cf. (7)), ϊ 0 = ( f o n fl") θ Σf0</ ® ta where foy =

span{[L(Xy 7), L(YJJ)]: X^Ύ^^Se^ is isomoφhic to DerJS^ (clearly,

the center of ϊ0 is the sum of the centers of the summands of ϊ o ; we note

center ( t f l ) = ϊ 0 Π r 0 ) .

We now define

(21) β01 = {(T(b)9 t(b)): b G ^ } =y(g'Λ)

§0 2 = span{{(r(6/y), t{bu)): i <j, bu G Λιy c

U {(T(b), t(b)): b = Σbu, K e ^ , c ^

andσ(i,center(^*θ ^ ) ) = 0 H

r_ 1 / 2 θ n ψ θ L (center(^θ

By [12, Theorem 7.8], g = (t)ss θ q^) θ r is a Levi decomposition of g,

ί)ss is the sum of the noncompact ideals of the semi-simple component,

and ί)ss = g" θ q is a direct sum of ideals. One checks that

(22) s " is a subalgebra of g" with 9/ ; = (f Π g ^ θ ^

£ 0 2 is a subalgera of q with q = (f Π q ) θ ^ 0 2

(23) § is the orthogonal direct sum %ss θ %r of the subalgebra

^ S 5 = § Π ί) s s and the ideal %r= §> Γ) x.

Now a Cartan involution θ on ί) ss is given by (19) and

(24) Θ(T, f) = - ( Γ r , TO for (Γ, f ) G q.
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By standard results about structure algebras of formally real Jordan

algebras, f Π q is the fixed point algebra of θ\q. As before, [18, p. 178]

shows that the orbit exp q (ie) = expsO2(/e) is Riemannian locally sym-

metric with respect to the induced metric. Further, (23) and the standard

covariant derivative formula

(25) 2( VXY, Z) = ([X, Y],Z) + ([Z, X], Y) + ([Z, Y],X),

X,Y,Z e £

show that the orbit exp %ss(ie) = exp ϊ)ss(ie) is totally geodesic in (Z), g)

and then exp %"(ie) and exp q(ie) are also seen to be totally geodesic.

Let

(26) n w = n n § M , nr = nnzr

and observe that (23) implies

(27) n = n 5 , θ n r , [ « „ , « „ ] = nss.

Similarly, let

(28) ass = a n $ s s , a r = a n $ r

and observe that

(29) a = ass®ar, $ss = ass θ n w , 3 r = α r θ n r

follow easily from α = π"1, (23) and (27). We may order the idempotents

{J,.} so that {*/!,...,</,} c ί θ ^ , {J 5 + 1,. . .,J r} c ^ and further

( 1 , . . . ,5} is the disjoint union UIJ where each / ' is a set of consecutive

indices and ΣkGί>dk = cj is the identity of a simple factor of SCO &v Then

c e n t e r (3TΘ ^ λ ) = s ρ a n { c y ) a n d a r = ® R ( T ( c j ) 9 t ( c j ) ) . A l s o i f i < j

and ^ z 7 c 3CQ SPλ then ^ is actually in one of these simple factors.

These observations imply

(30) nss is the sum of the root spaces na, a Φ 0, a\ar = 0.

Now for any 7 G nss, (25) and (30) imply that there exists ί ί e ass so

that the curvature R(H, Y)H Φ 0. It follows that exp α55(/e) is a maximal

flat totally geodesic subspace of the Riemannian locally symmetric space

exp fyss(ie) which thus has rank equal to dim ass. Let ϊss θ )ρss9 ϊss =

f Π ί) w , be the Cartan decomposition of t)ss with respect to θ. Since

multiplicaiton in Jέfis a symmetric operator with respect to σ, one gets that

θ\ass = -/. Thus ass c $>M and is maximal abelian. From (30) and the

form of the roots α, it is clear that we can order a basis of ass so that nss is

contained in the sum of the positive root spaces of the ass action on ί)M.

Since ί)ss = ϊss θ 3S5, it follows that

(31) %ss is an Iwasawa subalgebra of ί) ss.
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Note also that (26)-(29) imply that for any nonzero H e ass, adn^ H
is not identically 0.

For a later theorem, we require the following technical lemma.

LEMMA. (ad§ X)' = -ad,ΘX for X e ΐ>M.

Proof, The computation will be done in g* with 0 and ( , ) pulled
back to §fs and §*, respectively.

If ϊ e ^ n o . ! , then X* = X_λ[a] for α e 9X and 0X* =

*il>] G flf S i n c e [βi>(SΓ)-i/2 + (δΓ)0] c (fli/2 Φ Si) Π r = 0 and since
the graded components of £ are orthogonal, it suffices to prove

where X_J&] is a typical element of r_*x (so σ(b, ̂ x) = 0) and X0(Γ, f ) is
a typical element of (δ r)jj. But

, Te),

-Λal Xo(T> T)]) = (X.dblX-i[Ta]) = \o{b, To).

Now T' = 2L(Γe) - Γ [7, p. 88] and Γ ' ^ = 0 (it suffices to assume
T e n, whence Γ = Lej(bu), i <j, and use Le ( ^ J = 0 by [7, Lemma
1.1a, p. 82]) so σ(b, To) = σ(T% a) = 2σ(L(Te)b, a) = 2σ(ab, Te), pro-
ving this case.

If X e ί)M n g_1/2, then X* = X_ι/2[d] for </ ε ^ 1 / 2 and ΘX* =
g*/2 Arguing as before, it suffices to prove

] + X_1/2[w]}, X_1/2[W] + X0(T,t))

Xι/2[w},[X-ι/2[d], X_1/2[w'} + X0(T,f))

for be0>i,w,wfe 0>f/2, (T, t) ε (§,)*. But

x.ι/2[w}], x_1/2[w'} + xo{τ, t))

-2(F{w,φ(Z)d) + F{φ(Z)d,w),

-φ(F(U, w))d + φ(F(w, d))U + φ(F(U, d))w),

X.1/2[W]+X0(T,f))

= gie{-iφ{b)d - 2(2iRcF(w, d)), w' + iTe)

= Re(-σ(Re* (w, d), Te) - p(iφ(b)d, w'))
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while

(X^b] + Xι/2[w],[x_ι/2[d], X_ι/2[w'] + X0(T,t)])

= {x^[b\ +X1/2[w},X_1[-41mF(d,w')} + X_ι/2[fd])

= gie(b + w,-Aim F{d,w') + td)

= Re(-σ(b,lmF(d,w')) + p(w,td)).

Now

-Rep(iφ(b)d,w')

= Im p(φ(b)d,w') = \\m{p{φ{b)d,w') - p(φ(b)w',d))

= Re(l/2i)σ(b, F(d, w') - F(w', d)) = Reσ(Z>,Im F(d, w')).

Also

-Reσ(ReF(w, d),Te) = -Reσ(f(w, d), Te)

= -Reσ(F(w,d),T*e) = -Reσ(TF(w, d), e)

= -Reσ(F(fw, d) + F(w,fd),e)

= -Rep(fw, d) - Rep(w, td)

and note that p(tw, d) = 0 since t*\&>1/2 = 0. (This follows from the
form of (T, t) e (§Γ) and φ(Xqq)φ(ejJ)U = 0 ύj Φ q [12; §3].)

Finally, if X e t)ss n g0, the X* = X0(T, t) and ^X* = -X0{T', t').
Then

(32) ([-X0(T', t<), X^[a) + X.1/2[J] + X0(R, R)},

X^[a']+X_1/2[d']+X0(R',R'))

= ( xjT'a] + X.1/2[t'd] + X0([T', R],[t', k]),

X^[a'] + X_1/2[d'] +X0(R',R'))

= \σ{T'a, a') + p(t'd, d') + \σ{{τ', R] e, R'e)

while

(33) {X.M+X-X/lW+X^R),

[X0(T, t), X^a'] + X.1/2[d'] + X0(R', R')\)

= -iσ(a, Ta') - p(d, td') - ±σ(Re, [T, R']e).

Now as before, one has U' = 2L(Ue) — U for any (U,U) e go; in
particular, Ue = U'e. Thus

(34) σ([R, R']e, Te) = σ{[R, R') 'e, Te) = σ((R')'R'e - R'(R')'e, Te)

= σ(Re, R'Te) - σ(R'e, RTe).



ISOTROPY REPRESENTATION 307

By assumption, (R, k), (R\ R') e nφ θ L(center(^θ &>λ)) so

([R, R'],[R, R'\) e nφ.Now

Te€:@l ®{b e a Γ θ ^ 1 : σ ( 6 , c e n t e r ( ^ θ ^ 1 ) ) = 0}

while from the definition of nφ, [R, R']e is orthogonal to X. Thus (34)

vanishes. Using this, Te = ΓV, and expanding the terms in (32) and (33)

involving i?, R\ Γ, one shows (32) = -(33), as required.

REMARK. In a forthcoming paper we will include the proof that g is a

complete isometry algebra in the sense of [2].

2, Isotropy representations. Suppose G is the identity component

of the isometry group of a Riemannian space (D, g), K is the isotropy

subgroup at a point H ΰ , and S is a Lie subgroup of G acting simply

transitively on D. Let g, f, § be the corresponding Lie algebras and ( , >

the inner product on £ corresponding to the Riemannian metric via

(35) B I ^ X*\htΞ ThD.

Let

A:K-*Θ(TbD9gb), A(k) = k*\h

( 3 6 ) λ k S ( T D ) λ(X)λ:k-*So(TbD,gb)9
A(exptX) -

be the isotropy representations. Here ad X*\b means that for any V e ThD

and any vector field V extending V9 we have

(37) λ(X)V= ~[χ*9v]b= VVX*.

We consider Λ and λ as representations on §> via (35). Properties of Λ and

λ are detailed in [2, §2]. In fact, the following theorem is implicit in the

work of Azencott-Wilson; we have extracted from [2] just what is needed

for the proof. A similar theorem is explicitly given in the thesis of H. L.

Williams [32]. Since we are only concerned with the conclusions about the

isotropy representation our formulation can be more general.

THEOREM 1. With the notation above, suppose there are subalgebras §>v

UjL, u, s>2 of Q such that

(1.1) g is the vector space direct sum §>λ Θ u x Θ u θ § 2 .

(1.2) §>2 is an idealand[u, £>J = 0.

(1.3) f = n x θ u is the isotropy subalgebra at b.

(1.4) i)x = § x θ u x is a semi-simple subalgebra with no compact ideals

and §>x θ n1 is an Iwasawa decomposition with solvable factor §>x and

maximal compact factor nv

(1.5) Letting §> = §x θ §>2 and S the corresponding analytic subgroup of

(ϊ, S acts simply transitively on D.
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Let θ be the Cartan involution with Cartan decomposition t)ι =
ux θ )ρv Let P, resp. Q, be projections of ί̂  onto pl9 resp. ul9 so P =
j ( / — θ), Q = \(I + θ). Let β be a bilinear form on ί)x which is the
(orthogonal) sum of multiples of the Killing form on each simple ideal.

We further assume that
(1.6) The inner product ( , ) obtained from the Riemannian metric

via (35) satisfies
(1.6.1) (a19a2)=o
(1.6.2) (X9Y) = β(PX, PY) for I J G ^
(1.6.3) (ad$2Xy = -ad§20X for X G § l 5 where transpose is with

respect to ( , ).
Let m1 = {X e ux: ad X(§>λ) c §x} and lλ = { I G U^ β(X, mj =

Oj.Then
(1.7) λ(X) = ad§ Xfor J E πtj θ u and λ(mι θ u) is the algebra of

skew-symmetric derivations of ( § , ( , ) )

REMARK, (a) Condition (1.6.2) just says that the induced metric on
exp £x b is Riemannian locally symmetric.

(b) One easily derives for X e f a unique representation λ( X) = Vfl

+ ad I), β e n l 5 έ e m2 + u.
(c) As i)x contains no compact ideals it is easy to see that ux is

generated by lv

Proof. Clearly m 1 θ u = { l E f : a d l ( g ) c ^ } and then (1.7) fol-
lows from [2, Cor. 2.13]. For I G ^ , (25) shows that V^(§i) c gχ,
V x (£ 2 ) c § 2 . Then, for X, Y, Z e § l 5

2< v^r, z) = i8(p[z, r], PZ) + iβ(p[z, x], pr) + β(p[z, Y],PX)

= β([PX9 QY],PZ) + β([QX, PY],PZ) + β([PZ, QX]9PY)

+ β{[QZ, PX]9PY) 4- β([PZ9 QY]9PX) + β([QZ9 PY]9PX)

= β([PX9 QY]9PZ) + β([QX9 PY]9PZ) + β(PZ, [βJT, PΓ])

-β(PX9 [QZ9 PY]) - β(PZ9 [PX9 QY}) + β([QZ9 PY]9 PX)

so

(38) vxY

For X e §j, 7, Z e §2, one has
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since ([Z, Y], X) = 0 by (1.6.1). Thus

(39) VXY= i (ad § 2 X-(ad § 2 X) ' )y { O Γ I E ^ J G ^ .

Let Σ the projection of g onto 3 with respect to the decomposition
g = §> Θ f. As in [2, Prop. 2.9], one has

(40) λ(Z) = Σoad § Z f o r Z e ϊ .

In particular, for X e §1? we can apply (40) to Z = (λY G UX C f. For

7 €= s t, we have [βJT, 7] e i)x and P{[βX, Y] - {P\^)ιP[QX, Y]} = 0

so

Σ([QX9 Y]) = (P\^Y1P[QX, Y] = (P\^yι[QX, PY] - VXΓ

from (38). For Y e δ2, we have [βX, 7] e £2 so

Σ[QX,Y] =

by (40). Thus

(41)

Now let αλ be the maximal abelian subspace of pτ corresponding to

the Iwasawa decomposition u x Θ %v Then KeriQl^J = αx and Imίβl^!)

= /1? as is well known. With (41), this proves (1.8).

Next we consider % := {X e g; v ^ e λ(f)}. From (1.8) we get r^ c y.

Moreover, (41) shows V^ = 0 for X e αx := §x θ nv Hence § x c £. Put

j 2 : = { X ^ § 2 ; Vx$ι = 0, Vj is a skew-symmetric derivation of §2} We

claim

Ϊ = «l + Ϊ2

Clearly ι2 c %. Let now X e § 2 ? v ^ e λ(f). By (b) of the above remark
we know v ^ = Vn + ad(m + n) where n e nx, m G m1? w e u. Hence
V(^_rt) = ad(m 4- M) is a skew-symmetric derivation of §> that annihilates
αv From the definition of v y we derive that the ^-component of
V{X-n)Xι, Xι G δ^ is V_nXv Hence Vrt is a skew-symmetric derivation
of δp Therefore, by (41), Qn e ^ and Λ = 0 follows. So we have v x =
ad(m 4- u). From the definition of Vx we derive V ^ c ^ 2 whence
a d m ^ c g 2. This implies [m, ^ J = 0 and m = 0 follows. Consequently
Vx = ad w. This proves I G Ϊ 2 .

From now on, we consider the case of a homogeneous Siegel domain

as in §1. The following result is immediate.

THEOREM 2. Let D be α homogeneous Siegel domain with Bergman

metric g. In the notation of%\, the hypotheses of Theorem 1 are satisfied with

b = ie, ΐ)i = ί)ss9 u x = ΐss = f Π ί>w, δ x = 8 W , § 2 = g r, αwJ u = t β .
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For now, we reserve the notation §, V, λ, etc. for the specific normal

y-algebra and related objects constructed in §1. Suppose S is any

simply-transitive split-solvable subgroup of G with corresponding normal

y-algebra % c g. By [28, p. 46], we know S and S are conjugate by an

element of G. Since G = KS, we may assume S = k0Sk^1 for some

k0 e K. Let ft = [δ, δ] with orthogonal complement α, let V be the

covariant derivative operator induced on δ, let λ: ϊ -> §o(δ) be the

induced isotropy representation, etc. One easily checks that

(42) Ad k0: § -> § is a Lie algebra isomorphism preserving

inner products and j operators, hence also roots and root

spaces

(43) λ(Adko(X)) = Adk0o\(X)oAd{kά1)\§ forXef

(44) Ad k0 o v x o Ad ko1 = VAd Λo w f o r l G g .

Let m = { X G f: ad X(§) c §} and let S be the algebra of skew-symmet-

ric derivations on §. From [2, Cor. 2.13], we know λ maps m onto 5. It is

also easy to see that Ad k0 maps m, resp. t^ = nss, resp. α, onto m, resp.

π l 9 resp. α, and that

(45) S c β o .

Since the action of K on D is by holomorphic maps, we also have

(46) Each Γ G b commutes withy.

For T e S, we get Γ(ft) c ft, hence T(ά) c α. For any root α j e ftα,

and H G α, we get

r, yβ] + [JΪ, ττ β ]

+ Σfi(H)(TYa)nfi9

β

which implies

(47) T\ά = 0 and Γ(ftβ) c ha for Γ G d.

As in [3], one has

(48) v ^ = 0 <=> Vx\a Ξ O ^ I G Q .

In particular, no nontrivial V^is in b. Let n1 = {X G ft: v ^ G λ(f)}.

THEOREM 3. L^/ D be a homogeneous Siegel domain with Bergman

metric and § tf«y corresponding normal j-algebra with ω the form on %

associated to the Bergman metric by ω[jX, Y]= (X9Y). Then % is the

orthogonal direct sum of a subalgebra %λ and an ideal §>2 where §,- = δ f θ ftf ,

ai = a Π §., ft,. = [δ f , δ f ] = ft Π δ., (ft! defined as above) and

(3.1) λ ( f ) = b θ { v x : X ^ n ι }
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(3.2) exp §>x (ie) is a totally geodesic Riemannian locally symmetric
submanifold (so in particular, I , 7 G %λ implies VXY ^ ^ )

(3.3) n1 = Σana where the sum is over the (nonzero) roots a such that
a I α 2 = 0 and a 2 is the maximal subspace of α with this property

(3.4) Fork<l,0Φ n(εk+ει)/2 c n ^ π ( ε / t_ ε / ) / 2 θ nEk θ fte/ c ftx

(3.5) 0 Φ n£k/2 c n ^ nH c ftx

(3.6) fteA c ft1 =» ftεjt/2 θ Σ^^ft^i^/2 c fti, although some of the
spaces may be trivial

(3.7) Fork<l,0Φ n ( β Λ_e / ) / 2 c fl1 =* ω(Xk) = ω(*,).

REMARK. From (42)-(44), we may pull everything back to §>. It is only
important to know the values of the form ω on the elements Xt G nε/

defined in (15); in fact ω must vanish on the orthogonal complement of
α θy'α. The values of ω on Xι may be determined from [3, Theorem 4].
With our present normalization, one has

ω(Xι) = iσid^df) = iσ(e, ^ ) and σ(e,e) = d i m R ^ c -f dimc °ll.

The last equality was given incorrectly in [11,12,13].

Proof. The first assertions and (3.1)-(3.3) are obvious from Theorem
2 and (42)-(48). The main problem with the rest is in comparing the
indexing of the roots of §> with those of § (although the roots themselves
are related by λ = λ °(Ad ko)'λ). However, it is clear that roots of the
form εm, resp. \zm, resp. \(εm - εn), resp. \(em + ε j correspond. Thus if
0 Φ π(εA+e/)/2 c Ai> then the corresponding nonzero space n ( e + ε ) / 2 must
be in nγ = nss, hence in Q"19 which implies dm, dn G ̂ 1 # This gives
n ( e + ε ) / 2 θ n ε θ nεM c n/r c nss. Transferring back to § gives (3.4).
Similar arguments give (3.5) and (3.6).

To prove (3.7), we again consider the corresponding nonzero space
π(ε - ε >/2 c n i = ΐ 1^' whose elements must be of the form
(T(bm

n

n), t(bmn)\ m<n, bmn e X, by (21). From the definition of &ij9

we know dm9 dn G # and J m X = iX = rfM A' for X G ̂ W W . Moreover
X2 = αJ m -f ^8JW, α, ̂ 8 real, for such X. As $*is a Jordan algebra, we know
X2X2 = X(XX2) and a simple computation now gives a = β. Therefore,
choosing 0 # I e &mn> w e have

ασ(Jn, dn) = a(d n, X2) = = \o{X, X) > 0

and

ασ(rfm, rfm) = σ(rfm, X2) = \o{X9 X) > 0

whence a > 0 and σ(dm, dm) = o(dn, dn). From the remark above, we get
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REMARK. Properties (45)-(47) and Theorem 3 hold for any of the
admissible Kahler metrics on S (i.e. left invariant metrics obtained from a
form ω by (X, Y) = ω[jX, Y]), not just the Bergman metric. A direct
proof can be given by computations within the normal j-algebra % using
[2, Prop. 28]. For example (3.7) may be proved by computing 0 =
((VzR){jXh jZ)JZ, Z) where Z e n ( ^_ e / ) / 2

 c fti Another proof can
probably be obtained by generalizing the work of the second author.

THEOREM 4. Let D be a homogeneous Siegel domain with Bergman
metric and suppose § is an associated normal j-algebra satisfying

9-i Θ 9-1/2 c ^ c 9-i © θ-i/2 Θ 9o =

Then the isotropy representation λ : ϊ - » £ o ( B ) / s given onϊ$ (see (7)) by

(49) HX-M+Xilaiy-rtx^ar Mae^

(50) HX-1/2[d] + X1/2[rf]) + = 2vx_i/Λd]+ ford& &ι/2.

Furtherλ(k0) = b θ { Vx: I e n , Π g 0 }.

Proof. Let W = (X_x[a\ + X^a])*. For X_Ύ[c] + e q_v (37) implies
that

\(W)(X_Ac} + ) - -[W*, X.rlc]]\lt = X0(2La(c),φ(c)φ(a))\ie

= 2iLa(c)e = liac.

Now by (25) VA- i (Λ]+X_1[c]+ is in g 0 so we may set Vx i[a]+X_1[c] + =
X0(T,t)\Ύhenby(25)

\o{Te, Ue) = (XO(T, f) + , X0(U, U) +

= \{σ{Ua, c) + σ(a, Uc)} = \σ{L{Ue)a, c) = \o(Ue, ac),

where at the end, we use the formula for U + U' given after (33). Thus
Te = ac, hence X0(T, t)\ie = iac. This proves (49) on the subspace g_x.

With the same Wbut X_1/2[c] + e 0_i/2> (37) now implies that

,. = Jr1 / 2[-ιφ(β)c]| / β

= iφ(a)c.
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Now by (25), V* ι[aγX-ι/2[cΫ is in g_1/2 so we may set Vx_ι[aγX.ι/2[cγ

= X_1/2[d]+. Then by (25)

= (vx_ι[a]+X.1/2[c]\X_1/2[f}+

= iσ(lm F(f, c), a) = i Rep(/φ(α)c, /) .

Thus έ/ = \iφ(a)c, hence X-ι/2[d]\ιe = \iφ(a)c. This proves (49) on the

subspace g_1 / 2.

Since both sides of (49) commute with j and y(g_1) = S Π g 0 , this

proves(49) on §.

The proof of (50) is similar

As b c f0, whence λ(b) = b, the last statement is clear.

REMARK. If we consider a vector field l o n ΰ a s a function from D to

i^c θ °U, then we may take its differential dieX at the point ie, which will

be a linear transformation on TieD = Tie(irC θ <2f) for X G ϊ*. With this

interpretation, λ(X+) = dieX. This gives an alternate way of doing some

of the calculations of the proof above.

In the case where §> is a normal y'-algebra of a homogeneous Siegel

domain we can give a more precise description of

As a consequence of Theorem 1 we have shown £ = %λ + £ 2 where

ί 2 c § 2 consists of X e 1 2 so that W is a skew-symmetric derivation of

§. From (48) we get £ 2 = α 2 = § 2 θ [δ 2 , §2] whence £ = §x + α 2 .

3. Applications of the isotropy representation.

THEOREM 5. Let D be a homogeneous Siegel domain with Bergman

metric. Then the almost complex structure map is in the image of the

infinitesimal isotropy representation if and only if the domain is symmetric.

Proof. Let b be a point of D and λ: f -> §>o(ThD, gh) the infinitesimal

isotropy representation and let j : ThD -> ThD be the almost complex

structure map at b. Let S be any simply-transitive Lie subgroup of G with

corresponding subalgebra § (not necessarily the S, § of §1). Identify % with

TbD as usual. For any skew-symmetric operator L: §> -» §> and any I e § ,

let

(51) C ^ ( L ) = [ L , V X ] - VLX
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where the operator V* on § is defined by (25). By [2; 2.8], λ(f) is the
largest subspace of skew-symmetric operators of § whose elements annihi-
late the curvature tensor and which is invariant under all Cx. Clearly j is a
skew-symmetric operator which annihiliates the curvature tensor but
(using the Kahler property) j e λ ( ! ) implies -VJX = [j9 Vx] — VyΛr =
Cx(j) e λ(f), for all X e §. Therefore v y e λ(ϊ) for all Y e § whence
(V Y R) = 0 for all 7 e § and Z> is symmetric.

Note that the proof only uses that g is an S-invariant Kahler metric.

The converse is well known.

REMARK. Let §_1 / 2 = θ n e A / 2 . Let T: % -» § be defined by 7Ί§_ 1 / 2 =
7l^-i/2 a n c * ^Ί(^-i/2)± = = 0. Then an application of the Kahler condition
(see [3, p. 64]) shows that Γis always a skew-symmetric derivation of §. In
fact, Γis the skew-symmetric derivation induced from (0, /Id) G g 0 which
is obviously in f (and even in m). We shall denote this derivation by
713-1/2 O Γ sύπϋar notation.

THEOREM 6. Let D be a homogeneous Siegel domain. Then the dimen-
sion of the orbit of the origin 0 under K equals the dimension of the Silov
boundary B if and only if D is symmetric.

Proof. Using the notations and constructions of §1, an element Y* of
ϊ* is of the form (X_x[a] + Xλ[a]) + (X1/2[d] + X.1/2[d]) + X0(T9 f)
where a e ^ 1 ? d e ^ 1 / 2 , (Γ, f ) e g0 with 7β = 0 (see (7)). From (2)-(6),
one has Y* \ 0 = α + d so
(52) { 7 * | 0 : 7 G f } = ^ + ^ 1 / 2

and dim AT 0 = dim ^ + dim ^ 1 / 2 while dim 5 = dim ^ + dim # .
Thus dim 5 = dim ^ 0 implies dim ^ = dim T^and dim ^ 1 / 2 = dim °U.
By [21, Th. 4, p. 484], this implies r_x = r_1/2 = 0 which in turn r 0 = 0
since [r 0, g_J c v_v But radical r = 0 implies D is symmetric. The
converse is well known.

REMARK. We consider one reason to study K 0. Let S(η, ξ) be the
Szegό kernel of D and let Pη(ξ) = P(η, ξ) = \S(η, ξ)\2/S(ξ, I), ^ ϋ ,
ξ e i ) be the Poisson kernel (see Gindikin [16], Koranyi-Stein [24], and
Koranyi [23]). Let Δ be the Laplacian of the Bergman metric. Koranyi [23]
has shown that APη = 0 for all η e B if D is symmetric, Xu Yichao [33]
has shown the converse. Our interest is in the set {(ΪJ, ^) G 5 X I):
(ΔPη)(ξ) = 0} or, less ambitiously, the set

(53) Bp
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where b = ie is our base point. Suppose D is a tube domain. Then we have
checked that (ΔP0)(Z?) = 0 (even this can fail for a non symmetric, non
tube domain). Further, it is easy to see that the square of the Szegό kernel
is a constant multiple of the Bergman kernel in this case. Using known
invariant properties of the Bergman kernel, one has Pgη(gζ) =
μ(g, η)Pη(ξ) for η G B, ξ G D, g G G (when g η is defined); the point is
that μ(g, 77) does not depend on £. For k G K, since Δ is preserved by the
isometry /c, one gets

= ((ΔPk.0)ok)(b) = (Δ(Pk.0ok))(b)

Thus Bp^> K - Q. We have computed examples to show that 2?̂  can be
significantly larger than K 0.

REMARK. Even in the symmetric case, the action of K on B is not
globally defined if one uses the unbounded (Siegel) domain realization
rather than the bounded domain realization. However

f* = (ϊ* n(g")*) θ ( D e r ( ^ θ ^ ) ) θ t*

is a direct sum of Lie algebras so the isotropy group K at ie is a product of
three commuting groups. It is known (e.g. [21, Th. 10]) that each biholo-
morphic map of D is birational. Then an element g G K can be written as
a product g = gχg2g3 where each gz is birational and g2g3 is in fact linear.
Here gλ G exp(f Π g"), g2 G exρ(Der(^*θ ^ ) ) , g3 G exp tfl. One defines

K 0 = {g(0): g ^ Kand the denominator of g does not vanish at 0}

where clearly the denominator of g does not vanish at 0 if and only if the
same is true for gλ and, in that case, g(0) = g^O). We claim that the
denominator of gλ vanishes at 0 if and only if the denominator of
gxl^f X ^ 1 / 2 vanishes at 0. Now a theorem of Kaup (cf. [20, Th. 6.1])
says Aut D = F JT GL(Z>) 3Γ where SΓ= exp(g_! θ g_1/2), Jf =
exp(g_ 1 / 2 θ gx). It is clear we need only consider denominators for
elements oίJί. Using the notation and results of [11, p. 557, (6.8")], and
the relation exp Dwm = m + (0, iφ(mv)w), we see that

g(m):= exp Xι/2[w] exp X^xlim)

= exp X1/2[w](mx) = e x p ΰ j ( m x ) 5 ] ,

where s = w — iF(w, w). From a result of Loos [26, 8.16], we know that
the denominator of a "quasi-inverse" ah is N(a9 b) as defined in [26, 16.9].
Thus the denominator of g(ra) above is

N(mx, w — iF{w, w)) = N(m, x + w — iF(w, w))N(m, x)
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(cf. [26, 16.11]). Finally applying [26, 16.13] and [11, Th. 5.6], we see that

the denominator of g(m) just depends on the orthgonal projection of m

on &>£ θ ^ 1 / 2 . Thus an element in ̂ Γhas the same denominator as its

restriction to 0*^ θ ^ 1 / 2 This proves our claim.

Combining the above claim with the action of exp(f Π g"), we see

that K - Q = Kx - 0, where Kλ is the isotropy group of the symmetric

"subdomain" Df at the point ie\ and Kλ 0 is in turn precisely what is

familiar from the symmetric case, namely, the Silov boundary of Df which

is just 8Pχ θ 8Pχ,2. Thus we have the following refinement of Theorem 6,

KΌ = 0>

ιθ &>1/2 = Silov boundary of D\

Now we consider the algebra of G invariant differential operators (see

[18, Ch. 10]). The problem of finding G invariant first order operators

obviously reduces to that of finding G invariant first order operators

without constant term, i.e. G invariant vector fields. Let S be any

simply-transitive subgroup of G. The isometry S -^ D implies that each

left invariant vector field Y on S determines an S invariant vector field,

also denoted Y, on D by

d
(54) Y

s-b dt
( s e x p ί Γ b ) , s e S 9 Y e §>

=o

where b is our chosen base point. Since G = SK = KS, to find G invariant

vector fields, we need only find those 7 G ^ which are also K invariant.

Suppose 7 e g and A(k)Yh = Yh for all k e K. For any point ξ e Z), we

have s e S so that s b = £ and for any k e K, we have kγ e K, sτ G 5

with &s = 51/:1 (and hence fc ^ = sλ Z>). Thus

k.(γξ) = k*(γs.h) = Ar#j.(y6) = M M M = Y,ι(b) = Yk.(

so y is AT invariant. Finally, we note K is connected. Treating the isotropy

representations as represented on §, we get

(55) b = { 7 E ^ : λ ( ! ) 7 = 0 } = { 7 E § : Λ ( ^ ) y = Y}

= set of G invariant vector fields on Z>.

REMARK. It is clear that 6 is actually a /-invariant Lie subalgebra

which, by (51) is closed under (X, Y) -> VXY.

THEOREM 7. Lei D be a homogeneous Siege I domain with Bergman

metric. Then there exist nontriυial G invariant vector fields if and only if D is

not symmetric.

Proof. We use the notation and construction of Theorem 3 without

the over symbol" If α 2 = 0, then (3.3) implies n = nl9 and (48) and [2,
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Prop. 2.8] imply vR = 0. Hence if D is nonsymmetric, we have 0 Φ

H e α 2 and for any skew-symmetric derivation T of §, T(H) = 0 by

(46). On the other hand, if na is a root space in ttx and 7 e π a , then (47)

and (30) show that VγH = VHY + [Y, H] = -<x(H)Y = 0. Thus

λ( f) H = 0 by Theorem 3. By (55), H is a G invariant vector field on D.

The converse is well known since the algebra of G invariant operators

is generated by operators of even order in the symmetric case.

Now suppose a vector field Y on D, considered as a first order

differential operator, commutes with the Laplacian. Then the local one-

parameter groups generating Y leave the Laplacian invariant, hence must

be isometries. Thus Y is a Killing vector field.

LEMMA. NO nonzero vector field Y G § is a Killing vector field.

Proof. We will actually prove this for any normal y-algebra £ associ-

ated to D and any admissible metric on §. If Y G §> is Killing, then for all

V,W<E$,one has (V, VWY) = ~(W, VVY) which implies
(56) {VWV9Y) = -(v^,7>, V,W^$.

As in [3], let Xι be the unique vector in n£[ so that ε^jX^ = 8lm. Choosing

Y= W = Xt and noting VX(X{ =jXh (56) yields 0 = (jXh 7 ) , so Y e n.

For any root α, choosing V = Ha (the vector in α dual to a with respect

to < , » and W^ na9 (56) yields 0 = {VwHa9 Y) - a{Ha)(W, Y) so

(W, Y) =0. Hence, 7=0.

THEOREM 8. Let D be a homogeneous Siegel domain. Then the algebra

of G invariant differntial operators is commutative if and only if D is

symmetric.

Proof. If D is nonsymmetric, Theorem 7 implies there is a nontrivial G

invariant vector field Y. If Y commutes with the Laplacian, it is Killing,

which contradicts the Lemma. The converse is well known.

3.1. The set b of G invariant vector fields. In this subsection, we study

the set b defined in (55). We identify § with Ψ*c Θ ^(as vector spaces) so

that / ) G f corresponds to (X_1[b]) + E: g_x and d e °U corresponds

to (X-ι/2[d]) + ̂  9-1/2- From the remark after Theorem 4, we get b =

{z e r c θ Φ: dieX{Z) = 0 for all X G f}. In particular, z G b

implies (Γ, f )(z) = 0 for all (Γ, f ) G Ϊ O . But (0, /Id) G f O, whence z G b

implies z G ^ C . For a e &>v X = X.λ[a] + XJα] is in f (cf. (7)) so z G b

implies

0 = <//e*(z) = (2Lβ(ιe),φ(fe)φ(α))z = 2Lfl(/e)z = 2iαz.
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Choosing a = ef gives z G ^0(ef) = {w G OS?C: e'w = 0}. An easy compu-
tation now shows that

b = {z <E.S?0(e'): (7\ f )z = 0 for all (Γ, t) e Der(#θ ^ ) θ t f l } .
We write .SΓθ ^ = ®lZ\^kk where the #Λ Λ are the simple summands of
iΓθ &v We put c g:= e', ck:= unit of ^ ^ and consider the Peirce
decomposition of j£?c relative toci,...,c f f, J ? c = 0 ^ J . For z ^ b.

L s I <i <j <g ιJ

the results above imply z = Σx^^g-xZ^ where ztj G ^ . Moreover z^λ

is annihilated by all derivations of ^^k. But up to scalar multiple, the only
vector with this property for all derivations of a simple formally real
Jordan algebra is its identity. Thus zkk G Cck. It is easy to see that Cck is
actually contained in b. Thus

g-ι

(57) 6= 0Cq
/c = l

It is known ([7, Lemma 3.1] and [9, Th. 8.6]) that the map

Vkk B z - 2L(z) |«^ G Sym(^ r , ( , » , k Φ r,
is a homomorphism of Jordan algebras. Also, Der ^kk is spanned by the
commutators of left multiplications. The corresponding Lie algebra of
skew-adjoint endomorphisms, extended C linearly to # £ will be denoted

LEMMA. If rank ^kk > 2, then the only vector in Ή^ annihilated by 3)kr

is the zero vector.

Proof. We split ^ into irreducible subspaces relative to the given
representation of the Jordan algebra. The space of vectors annihiliated by
S)kr splits accordingly. Thus, we may assume ^ is irreducible. If <&kk =
SymO, F), for F = R, C, or H (Quaternions), then <#kr = Fn and L(z)u =
zu. The commutators of the L(z) contain at least all skew-symmetric real
amtrices. These simultaneously annihilate no common vector if n > 2. The
case ^kk = Sym(3, Cayley) does not occur so it remains to consider the
case ^kk = Y&kk, μ, ck]. In this case, the representation z-> ψ(z) =
L(z)\<tfkr satisfies ψ(z)2 = o(z, z) Id on (z G <$kk; σ(z,ck) = 0). Thus
ψ(y)ψ(z) -h ψ(z)χP(y) = 2Id if σ(j, z) = 0. In particular [ψ(j/), ψ(z)]
= 2ψ(j)ψ(z) and this is invertible. So in this case, Bkr also annihilates
no nonzero vector.

As an easy consequence of this Lemma, we get

(58) 0 Φ b Π ^ c

r (kΦr)=> <gkk - ίfrr - R.

Further, we note that e — ef and T(e — ef) are in 6 and b is a subalgebra
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It is clear from the above that it is of great importance ot determine h

in case X = R Θ R. This corresponds — essentially — to all homogeneous

Siegel domains over a circular cone, the second author hopes to pursue

this topic in a forthcoming publication.

3.2. The center of f. In this subsection we collect some results on the

structures of the center of f which will lead to another characterization of

the symmtric case. Actually we do our computations in the isomorphic

algebra ϊ* of vector fields on D and use the splitting of (7) with the

notation

(59) ff= {X-M+XM .be^}

ϊf/2 = [X-i/ild] + Xι/2[d]: d e 9>λ/7\.

We fix Z G 3(ϊ*) = center(f*) with Z = Zλ + Z 1 / 2 + Z o, Zλ =

X_λ[a] + Xx[a]9 Z 1 / 2 = X_ι/2[d] + X1/2[d], and Z o = X0(T, t) for

some a G ̂ 1 ? J e ^ 1 / 2 , and (Γ, f ) G g0 with Te = 0.

Now X0(0, /Id) is always in ϊ j (provided g_1/2 # 0) and we have (see

[12, §6]) 0 = [Z, Ao(O, /Id)] = [Z 1 / 2 , Zo(0, /Id)] = X.1/2[/rf] + Xι/2[id].

This implies J = 0 and hence Z 1 / 2 = 0.

Now pick Y = X_x[b] H- Xx[b] G f *. Taking components of 0 =

[Z, Y] with respect to the splitting (7) and again using the explicit bracket

product formulas of [12, §6], we get

(60) 0= [Zl9 Y] = X0(2Lb(a), φ(a)φ(b)) - X0(2La(b)9 φ(b)φ(a))

= X0(4[L(a),L(b)]Λφ(a),φ(b)])

(61) 0 = [Zo, Y] = ~(X-ιlTb] + X1[Tb]).

Then (60) implies that 0 = [L(a)9 L(b)] = [φ(a)9 φ(b)] for all b G @V In

particular, standard facts of Jordan theory imply a is in the center of @v

Further, (61) for all Yis equivalent to T\0>λ = 0.

For an arbitrary element XQ = XQ(R, R) G f J, the condition 0 =

[Z, JΓ0] implies 0 = [Z 1 ,^ o ] and 0 = [Zo, Xo], which in turn gives

(62) 0 = Ra

(63) 0 = [T9R].

Condition (62) is automatically satisfied whenever a is in the center of &x

and (63) is equivalent to the condition that Z o is in center (f J) = δ(ϊ*)

Finally, for an arbitrary element W = ^C1/2[w] + ^Γ1/2[w] G ff/2, we

get

0 = [Z, ΪΓ] = X_ι/2[iφ(a)w - tw] + X1/2[iφ(a)w - 7W]
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which is equivalent to

(64) fw = iφ(a).

Combining these results we have

(65) a(λ:*)= [X-Λa] + XΛ<*] + X0(T, t): a G c e n t e r ^ ) ,

X0(Γ, f ) G 8 ( * ), T\»λ = 0, Γ |^ 1 / 2 = iφ(a

By (20) we know

X0(T, t) = Z0(Γ", f") + ΣXo(Tj> Tj) + X*iTn tt)

where the summands are in the obvious sub spaces of δ(ϊ*) From our

conditions we obviously get T"\&x = 0 and t"\£Pλ/1 = iφ(a). Hence

(66) center(f*) = center t* θ £ center f̂

{f.Jfl] + Xλ[a] + X0(Γ, f ) : a e center^ ,

0 (Γ, f ) G center g^*5 Γ | ^ = 0,

REMARK (a) It is clear that XQ(T, f) in the last summand is uniquely

determined. However, a more precise description requires a considerable

effort that seems not to be appropriate for the purposes of this paper.

(b) center ϊQj is nontrivial only if ££n contains special simple ideals of

rank 2.

(c) It is clear that (66) splits canonically into the irreducible sum-

mands of a given homogeneous Siegel domain.

We note that to each a G c e n t e r ^ ) there exists J 0 ( Γ , f ) e gj so

that X_λ[a] + Xλ[a] + XQ(T, f) G center(f *). This stems from the fact

that such an element exists for the symmetric domain D' and that it

extends naturally to an element of gj.

THEOREM 9. Let D be a homogeneous Siegel domain in i^c X °lί and ΐ

the isotropy algebra at a point b G D. Then D is symmetric if and only if

there exists X G center(f *) so that dhX is inυertible as linear transformation

on Th{i^Q X<%) = -rc X <%.

Proof. We may assume without restriction z = ie. If D is symmetric

then we choose X so that dieX is the complex structure on i^c X ύU.

Assume now we have X G center(f) so that dieXis invertible in i^c X fy.

Then from (66) we derive ^ θ &x = 0 (otherwise the identity of ^ θ &>λ

would be annihiliated by dieX). This says that D is quasisymmetric. We

may assume that D is irreducible. If D is not symmetric then 2Pχ = 0, a

contradiction. This proves the theorem.
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4. Examples.

4.1. Consider the Vinberg cones

Ω = {(M, N): M, N real, 2 x 2 , symmetric positive definite matrices}

Ω' = {M: Mis real, 3 x 3 , symmetric positive definite matrix

withM3

2 = M2

3 = 0}.

Imbed these as open subset of R5 so that (Xk) e R5 corresponds to

' X1 X2 X^
X1 X2\ X1 X

Ω,
X X I \x X n \χ4 Q χ 5 }

X2 X3 0 Ω'.

These cones are dual with respect to the inner product

X Y = XιYι + 2X2Y2 + X3Y3 + 2X 4 7 4 4- Z 5 7 5 .

We identify the group of complex affine transformations of C 5 with
the subgroup

A τ\ / Λ
Λ t hi4 e GL(5 ?C), T e C >
0 1/ I

and similarly for the Lie algebras. Let 77 Ξ C5 be the column vector with 1
in the /th position and 0 elsewhere and £ m £ g ί(5, C) the matrix with 1 in
the /th row, mth column, 0 elsewhere.

4.1.1. Let D be the tube domain over Ω. Let

* 1 =
0 M v _ / 0 τ5\ „ 10
o o j ' ^ l o o

0\ H / \E« + E55 0

,o 0/ lo 0

Hl = 0 0

0 0

13 I 0 0/ I 0 0
These elements form a basis for a normaly'-algebra (g, 7) associated to D.
Herej(Xk) = HkJ(Ykl) = ZΛ/, α = span{//l9 /ί2, if3}. If ε̂  is defined on
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α by εk(H/) = δkl for k, I = 1,2,3, then the root spaces are

= 1,2,3 n ( ε Λ + ε 3 ) / 2

» A: = 1,2.

Since the root spaces are all one dimensional, (46) shows that the space b

of skew-symmetric derivations is trivial. From [3], we find that, up to

constant multiple, the form ω defining the Bergman metric is given by

Since ω(Xτ) Φ ω(X3), ω(X2) Φ ω(X3), (3.7) shows n ( ε i ± ε 3 ) / 2 Θ n ( ε 2 ± ε 3 ) / 2

c n 2 (in the notation of Theorem 3). Then (3.6) implies also n ε θ n ε c

n 2 . Now one can check directly that Vχ3R = 0 and Cx( Vx) e R V ^ 3 for

all X e §> to conclude from (2.8) that λ(f) = Rv^3 (alternatively, from

other computations, one knows that dim Aut D > dimR D). In any case,

one now gets

Πi = π ε 3 , n 2 = n ε i φ π ε 2 θ n ( e ι ± β 3 ) / 2 Φ n ( ε 2 ± ε 3 > / 2

aλ = Ri/ 3 , α 2 =

and dim f = 1.

By the proof of Theorem 7 and the preceding Remark, we know that

any vector field Y e α 2 θ y α 2 i s annihilated by the infinitesimal isotropy

representation and so is G-invariant. Direct computation shows that

a 2 θ j a 2 is the full subspace of § annihiliated by λ( f).

In this case, one can easily compute the isotropy representation on the

group level, namely A(K) = {etVχκ t e R} leaves invariant each space

n a θ 7 ' n α (for each nonzero root a) and acts there by

etv^\(naΘjna)= {{cos t\a(H3)\)I + (sin t\a(H3)\)j}.

4.1.2. Now let D be the tube domain over the dual cone Ω'. A very

similar computation shows that there is an associated normal y'-algebra §>

of rank 3 (i.e. dim α = 3) and the root spaces are again all one dimen-

sional but now have the form

* V k = 1,2,3; π ( ε i ± ε / ) / 2 , / = 2 , 3 .

As before, the space b of skew-symmetric derivations is trivial. However,

when we now compute (from [3]) the form ω giving the Bergman metric,

we get, up to constant multiple,

ω(X 1) = 2, ω(X2) = ω(X3) = 3/2.

Since ω(Xλ) Φ ω(X2)y ω(X1) Φ ω(X3), we conclude as before that
n(ε1 + ε2)/2 φ n( ε i±ε3)/2 c Π2 a n c ^ hence also π^ c n 2 . Direct computation

shows that VX~R = Vχ3R = 0 and C^(Rv^2 θ Rv^3) c Rv^2XR Vχ3R 0 and C^(Rv^2
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for all X e §. Thus

Πi = π ε 2 θ πε 3, n 2 = πe i θ n ( e i ± β 2 ) / 2 θ π ( e i ± e 3 ) / 2

αx = Ri/2 θ Ri/3, α2 = RHλ

and dim f = 2.
One can compute the Szegό kernel S(z, z) (up to constant multiple)

by knowing its invariance properties under Aίΐ(D). In this case, letting
z = (zk) be the natural complex coordinate on C5, one gets that the Szegό
kernel is a constant multiple of

( z 3 - z 3 ) 1 / 2 ( z 5 - z 5 ) 1 / 2 ( d e t ( Z - Z ) Γ 2

where Z is the 3 x 3 matrix corresponding to z. Let Δ be the Laplacian of
the Bergman metric and Pη(z) the Poisson kernel. A straightforward but
messy calculation shows that (APv)(iI) = 0 for η = (η\0> η3,0, η5)' (and
possibly for other values of η in the Silov boundary). In this case, the
action of exp(aXι + bX2 + cX3) on C5 is translation by the constant
vector (a, 0, 6,0, c)'. In fact, one can compute that if 0 = PL = {η G R5:
η = (0,0,7j3,0, T]5)^} so J5p is certainly larger than K 0 (cf. Theorem 6
and the following remark).

4.2. Let Z> be Py at etskii-Shapiro's 8 (real)-dimensional example. As
computed in [3], an associated normal y-algebra §> is of rank 2 (so
dim α = 2) with root spaces nek, k = 1,2, of dimension 1: n /2 of (real)
dimension 2; n ( ε + ε )/2 of dimension 1. Since all root spaces except π ε / 2

are one dimensional, every skew-symmetric derivation is trivial except
possibly on π / 2 . It is easy to check that the algebra of skew-symmetric
derivations is

Computing the form ω definining the Bergman metric as in [3], we get
(up to constant multiple)

ω(Z1) = l, ω(X2) = 3/4.

Since ω(Xτ) Φ ω(X2), (3.4)-(3.7) imply that

Direct computation shows that (V^2Λ)(π(ei + e 2 ) / 2, n ε i / 2 ) π ( ε i + ε 2 ) / 2 φ 0 so
we also get nεi c n2. Thus

nx = 0, π 2 = n

αx = 0, α2 = α.

Again, dim ϊ = 1.
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Since λ(f) = R(y |n ε i / 2 ) , the subspace of £ annihilated by λ(f) is the

6-dimensional space (nει/2)
± . This gives the G-invariant vector fields, as

in Theorem 7. The proof of Theorem 7 only guarantees that the 4-dimen-

sional space α 2 θ y α 2 is G-invariant.

4.3. Let y be the space of real symmetric 2 x 2 matrices and Ω

the cone of positive definite matrices in if. Let Φ = C 2 , F(U,V) =

\{JJVι + VU') and D the corresponding Siegel domain. This is example

B2 (with r = 2, s = 1) of [13] and Example C II (with m = 2) of [27]

where however there are errors in the computation of g1# The example is

known to be quasisymmetric nonsymmetric homogeneous so g 1 / 2 = gx =

0; by [13, p. 41] one finds dim g 0 = 5. Thus dim f = dim f 0 = dim g 0 —

dim τ T = 2 .

The corresponding normal y-algebra §> has rank = dim α = 2 with

root spaces nε^, k = 1,2, of dimension 1; π ε ^ / 2 , fc = 1,2 of (real) dimen-

sion 2; Π( ε i ± ε 2)/2 °f dimension 1. By the Remark after Theorem 5,

J\(n

ει/2 φ ne2/i) ^s a skew-symmetric derivation. Using bracket product

relations between n e i / 2 and n ε 2 / 2 and the fact that the other root spaces

are one dimensional, one gets

Since we are only missing one dimension in f, relations (3.3)-(3.6) show

that

*i = n ( £ l -, 2 )/2 ? n 2 = n ε i θ π ε 2 θ n ε i / 2 θ n ε 2 / 2 θ n ( ε i + ε 2 > / 2

aλ = Rj(X1 - X2)9 a2 = RjiX, + X2).

Note that in this case, (3.7) gives no information because ω(Z x ) = ω(X2)9

(which also follows from aλ ± α 2 ) .

In this example, if we take any deformation of the Bergman metric by

using ω(Xx) = 1, ω(X2) = t, we get a one parameter family of Kahler

metrics. In all cases, we still have b = R(./ | (n ε i / 2 θ n β 2 / 2 )) but (3.7) now

implies § 1 = n 1 = Oforr¥=l . Thus we have a jump in the dimension of f

at t = 1 (the Bergman metric).

Returning to the Bergman metric, one computes that the space

annihilated by λ ( ϊ ) = b θ Vn / z is exactly α 2 θ y α 2 , the minimum

possible by the proof of Theorem 7.
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