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REARRANGEMENTS AND CATEGORY

R. G. BILYEU, R. R. KALLMAN, AND P. W. LEWIS

Kolmogorov stated, and Zahorski proved, that there exists an L2-
Fourier series such that some rearrangement of it diverges almost
everywhere. Kac and Zygmund asked if the set of rearrangements which
make this Fourier series diverge almost everywhere is first category or
second category. A general theorem is proved which has as a special case
that the set of rearrangements in question is residual.

1. Introduction. Let G be the group of all permutations of the

positive integers, and let H be the normal subgroup consisting of all

permutations which are the identity outside of a finite set. G is a

topological group in the compact open topology, and H is a countable

dense subgroup. In this topology a basic open set consists of all permuta-

tions which agree with a fixed permutation on a finite set of integers. One

can check that this topology is metrizable with the metric

d(<π, IT') = Σ 2- n (^(τr , IT') + dn{m'\ TΓ'" 1 )),
n>\

where

dn(τr,<iτ') =\π(n) - π'(n)\/(l +\π(n) - ττ'(n)\).

G with the metric d( , ) is a Polish space.

The main purpose of this paper is to prove the following theorem.

THEOREM 1.1. Let (X, μ) be a regular locally compact σ-finite measure

space, Z a Banach space, and fn\ X -> Z a sequence of Borel measurable

functions. Suppose the series Σn>λfn(x) diverges μ-a.e. Then the set of π's

in G so that Σ n > 1 / 7 r ( π ) (x) diverges μ-a.e. is a residual set in G.

The only precedent for this theorem seems to be a result of R. P.

Agnew [1], who proved a similar theorem for sequences of complex

numbers.

Theorem 1.1. has an immediate application to an open question about

L2-Fourier series. In 1927 Kolmogorov stated ([4], Theoreme III), but did

not prove, that there exists an lAFourier series such that some rearrange-

ment of it diverges almost everywhere. Zahorski [8] sketched a proof of

this fact. Zygmund ([7], p. 34) and Kac ([7], pp. 21-22) asked if the set of
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rearrangements which make this series diverge almost everywhere is first
category or second category. Theorem 1.1 implies that the set of re-
arrangements in question is in fact residual.

Another main result of this paper is a category analogue of Theorem
1.1. Let X be a Polish space. A subset A of X is said to have the Baire
property if there exists an open set U in X so that AAU is first category.
The collection of subsets of X with the Baire property is a σ-algebra which
includes the analytic sets in X (Kuratowski [5]). Let Z be any other Polish
space. A function/: X -> Z is said to have the Baire property if U open in
Z implies that f~ι(U) has the Baire property in X. Clearly, any Borel
function /: X -> Z is a function with the Baire property. The following
theorem is then a category analogue of Theorem 1.1.

THEOREM 1.2. Let X be a Polish space, Z a separable Banach space,

and fn\ X —> Z a sequence of functions with the Baire property. Suppose that

the series Σn>ιfn(x) diverges on a residual subset of X. Then the set ofπ's

in G so that Σ r t > 1 / w ( r t ) (x) diverges on a residual subset of X is itself a

residual subset of G.

Section 2 is devoted to recalling a variant of a category 0-1 law and
giving simple applications of it. Theorem 1.1 is proved in §3, and Theorem
1.2 is proved in §4.

2. A Category 0-1 Law and Some Applications. The following

proposition is a great aid in proving Theorem 1.1 and Theorem 1.2. A
variant of half of it may be found in Gottschalk and Hedlund [2], but a
slightly different, condensed proof is given because of its central impor-
tance for this paper.

PROPOSITION 2.1. Let X be a Polish space, F a countable group of

homeomorphisms of X with at least one dense orbit, and A an F-invariant

subset of X with the Baire property. Then A is either first category or

residual. If every F-orbit is dense, Ac is the union of F-invariant G$s, and A

is residual, then A = X. If A is any subset of X such that Ac contains an

F-invariant Gδ which contains a dense F-orbit, then A is first category.

Proof. To prove the first statement, choose an open set U so that AAU
is first category. If U = 0, then A = AAU is first category. If U Φ 0, let
V = F - U. Since F is a group of homeomorphisms and has at least one



REARRANGEMENTS AND CATEGORY 43

dense orbit, Vis open and dense in X AAVIS contained in

U)= \Jf.AA(f U)= \Jf (AAU),
/in F /in F /in F

a first category set. Therefore, Ac = AAX is contained in the union of
AAV and Vc\ which is first category. So A is residual.

To prove the second statement, if one of the F-invariant Gδ's in Ac is
not empty, then it is dense, and therefore Ac is residual. But this is a
contradiction.

The third assertion follows from the same line of reasoning. This
proves Proposition 2.1.

The following sequence of corollaries are simple applications of
Proposition 2.1, and are illustrative of its power. A typical example of the
situation where the hypotheses of Proposition 2.1 hold is the following:
Let / be a Polish group, K a closed subgroup, X = J/K, and F a
countable dense subgroup of /.

COROLLARY. 2.2. Let Z be a Banach space, and Σn>λzn a series in Z.

Let A = [TΓ in G \ JLn^ιztn{n) converges]. Then either A = G or A is first

category.

Proof. Use the Cauchy criterion for convergence to check that

e- u n u
N>1 m,n

N<m<n

77 in G

m<j<n

Check easily that this displays Acas a countable union (over k) of
i/-invariant Gδ's. Proposition 2.1 then implies that A is either first
category or A = G. This proves Corollary 2.2.

The only precedent for Corollary 2.2 seems to be a result of Agnew
[1], who proves a similar result by different methods for the special case in
which Z is the complex numbers.

Next, let Ω be a set, 3$ a σ-algebra of subsets of Ω, and v and v' two
countably additive probability measures on 9&. Kakutani [3] has defined,
via the Hellinger integral, an inner product p(*>, v') which satisfies 0 <
ρ(v, v') < 1, and also that p(*>, v') = 0 if and only if v and v' are mutually
singular. For each integer n > 1, let Ωw = Ω, Ω* = Γln^1Ώn, and ̂ ?* =
X\n>Y3&. Let μn and μ'n (n > 1) be two sequences of probability measures
on 38, all equivalent to one another, and let μ = Y\n>ιμn and μf = Y\n^ιμ

f

n

be the corresponding product measures on ̂ ?*. If m is in G, let ̂ (μ') =
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COROLLARY 2.3. Let A = [πinG\ μ is equivalent to τr(μ')]. Then A is
either first category or A = G.

Proof. The main theorem of Kakutani [3] implies that

Ac= Π U
k>\

This shows that Ac is a Gδ in G. No factor p(μy, μ'^ ^is 0. Hence, ̂ 4C is
iZ-invariant. Proposition 2.1 now implies that A is either first category or
A = G. This proves Corollary 2.3.

Another general setup where Proposition 2.1 has applications is the
following one. Let 7 be a Polish space and X = Y\n>{Y. G acts on X by
permuting coordinates. Note that H has at least one dense orbit. For let y.
(j > 1) be a countable dense subset of Y, and let x be any member of X
so that each ̂  occurs as a coordinate of x infinitely often. Check that the
closure of Hx is X. In particular, take Yλ = (1, -1} or take Y2 to be the
unit circle, and let At = [xin Xi \ Σj^Xj/j converges] (i = 1,2).

COROLLARY 2.4. At is of first category in Xt (/' = 1,2).

4 = u n u . .. - ,
A; > 1 TV > 1 m,n I m<i<n J

N<m<n

for i = 1,2. This demonstrates that 4̂f is a Borel set which is a countable
union (over k) of //-invariant Gδ's. A[ contains a dense //-orbit, for let
x = (1, -1,1,1, -1,1,1,1, -1,...). A\ also contains a dense //-orbit, for if
yj (j > 1) is a countable dense subset of the unit circle, take x to be that
element of X2 all of whose entries consist of Γs, except for those entries
which are perfect squares, in which the yfs each occur infinitely often.
Proposition 2.1 now implies that each At is first category. This proves
Corollary 2.4.

This corollary shows immediately the otherwise known result that
there is no category analogue of the three series theorem, the strong law of
large numbers, or the ergodic theorem.

3. Proof of Theorem 1.1. Define a block to be a finite sequence of
consecutive positive integers. If B is a block and TV is a positive integer,
say that B is greater than or equal to N (written N < B) if j in B implies
that N < j . It is convenient to prove the following very special case of
Theorem 1.1 first.
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LEMMA 3.1. Let K be a compact Hausdorff space, Z a Banach space, fn:

K —> Z a sequence of continuous functions, and δ > 0. Suppose that for

every x in K and positive integer N, there exists a block B so that N < B and

\\ΣjmBfj(x)\\ > δ. Then the set of'π in G so that Σn^Jπ(n)(x) diverges for

every x in K is a residual subset of G.

Proof. If B is a block, define U{B) = [x'm K | | | Σ 7 i n 5 / / x ) | | > δ].

U(B) is an open subset of ̂ Γ(it may well be empty). Consider

= n u n
N<B1,...,Bp

)Ό ••• UU(Bp) =

U(Bt)Φ 0

l<ι<p

X πinG Σ /„<„(*) > δ for all x in

This displays A as an //-invariant Gδ. A in fact is nonempty, for a simple

argument using the compactness of K and the continuity of the/^'s shows

that the identity of G is in A. Hence, Proposition 2.1 shows that A is

residual. Check easily that A is contained in the set of ΊT in G so that

Σn>ιf7r(n)(x) diverges for every x in K. This proves Lemma 3.1.

To prove Theorem 1.1, first note that we may assume that μ is a

probability measure since μ is σ-finite. Let

= n u
m,n

N<m<n

X Σ /,(*)
m <j < n

1
> —

q a positive integer. Each Dq is a Borel subset of X, and Uq^ιDq is the set

of x in X so that Σn>λfn{x) diverges. For each q, choose a compact subset

Kq of Dq so that each/JΛΓ^ is continuous and μ(Dq - Kq) < 1/q, using a

vector-valued version of Lusin's theorem. Lemma 3.1 implies that

Rq = 7rinG I Σ fπ(n)(x) diverges for every x in KΛ
L n>\ J

is residual. Hence, R = Πq>ιRq is residual, and is contained in

l^rinG\Σn^Jπ(n)(x) diverges /x-a.e.], for μ(Όq^Kq) = l. This proves

Theorem 1.1.

4. Proof of Theorem 1.2. Easily check that for each n > 1, the

mapping (x, 77) -* fπ(n)(x), X X G -» Z, is a function with the Baire
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property. Hence,

B = \(x,v) I Σ /»(„)(*) diverges
L n>l J

m<j<n 'I J

is a subset of X X G with the Baire property. For each x in X, let

Bc

x = Bc Π ((x) X G). The hypotheses of Theorem 1.2 plus Corollary 2.2

imply that each Bc

x is a first category subset of G, except for a first

category set of JC'S. But then Bc itself is a first category subset of X X G

(Oxtoby [6], Theorem 15.4), and so Bc

m = Bc Π (X X (π)) is a first cate-

gory subset of JΓ, except for a first category set of π's (theorem of

Kuratowski-Ulam, Oxtoby [6], Theorem 15.1). Hence, B^ is a residual

subset of X for all except a first category set of π 's. This proves Theorem

1.2.
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