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METRICALLY INVARIANT MEASURES ON
LOCALLY HOMOGENEOUS SPACES

AND HYPERSPACES

CHRISTOPH BANDT AND GEBRESELASSIE BARAKI

We compare different invariance concepts for a Borel measure μ on
a metric space, μ is called open-invariant if open isometric sets have
equal measure, metrically invariant if isometric Borel sets have equal
measure, and strongly invariant if any non-expansive image of A has
measuure < μ(A). On common hyperspaces of compact and compact
convex sets there are no metrically invariant measures. A locally compact
metric space is called locally homogeneous if any two points have
isometric neighbourhoods, the isometry transforming one point into the
other. On such a space there is a unique open-invariant measure, and this
measure is even strongly invariant.

1. Introduction. There are two important classes of spaces with a
"natural volume function": locally compact groups with Haar measure
and Riemannian manifolds with their volume form. Since in everyday life
volume of sets is calculated from length measurements, we consider
measures invariants with respect to a metric structure rather than a group
structure or differentiable structure. We deal with Borel measures on
locally compact metric spaces which are finite on compact sets and
metrically invariant in the sense that

"congruent sets have equal measure".

Two sets in a metric space are congruent if there is an isometry/from one
onto the other. In Euclidean Rn such/can be extended to an isometry/
from the whole space onto itself but in general this is not the case (cf.
Example 2).

If on a metric space (X, d) there is a unique (up to a constant factor)
metrically invariant measure, it can be considered as the "natural volume
function" of the space. This is the case for locally compact metric groups
with left-invariant metric [2]. The volume form on Riemannian manifolds
is metrically invariant with respect to the interior metric [18], and the
volume form on manifolds in Rn is invariant with respect to the Euclidean
metric [10]. However, in general it is not uniquely determined by this
property (cf. Example 1).
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Let us state our main result. (X, d) is called locally homogeneous if
for any two points x, y in X there is an ε = ε(jc, y) > 0 and an isometry
between the ε-neighbourhoods of x and>> which sends x toy.

THEOREM 1. Let (X, d) be locally compact and locally homogeneous,
and let Aobe a compact subset of X with non-empty interior. Then there is a
unique metrically invariant Borel measure λ on Xwith λ(A0) = 1.

Mycielski [22] proved a much more general existence theorem (see
§2). However, his invariance condition for measures is weaker than ours:

"congruent open sets have equal measure".

Measures with this property will be called open-invariant. Mycielski's
open invariant measures are in general not unique. Under the assumptions
of Theorem 1, however, uniqueness can already be shown if only con-
gruent ε-neighbourhoods have equal measure. In fact, our uniqueness
result is quite related to theorems of Loomis [19], Christensen [6] and
Mattila [21].

Thus, our essential contribution to Theorem 1 is the proof that the
open-invariant measure which exists by Mycielski is actually metrically
invariant. Examples in §2 will show that in general there is considerable
difference between the two invariance concepts. Ulam asked whether
Lebesgue product measure on [0,1]00 is metrically invariant with respect
to metrics of the type

(d(x, y)) = (Σ*2

n •(*„ - ynf)
l/\ a = (aιt a2t...) e l2.

Open invariance was verified by Mycielski [23] but metric invariance
could only be proved for very fast decreasing sequences a by Fickett [11].
Our present paper also results from an attempt to answer this question of
Ulam. We would like to express our gratitude to Professor Mycielski for a
very stimulating correspondence on these topics.

It should be noted that Theorem 1 also contributes to the solution of
an old problem by Banach and Ulam [1]: Does every compact metric
space (X, d) admit a finitely additive, metrically invariant and finite Borel
measure? For countable X, where a positive answer was found recently [8],
such measure will not be σ-additive. Our class of locally homogeneous
spaces yields σ-additive invariant measures.

Although this class includes all metric groups with left-invariant
metric, it is rather small. Among Riemannian manifold with interior
metric it contains only those with constant curvature (theorema egregium,
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cf. [17], Theorem 12.4.2), and among C2-curves in the Euclidean plane it
contains only open line segments and circular arcs. The following example
shows, however, that a strong homogeneity condition is needed for
uniqueness of a metrically invariant measure.

EXAMPLE 1. The half-parabola X = {(t, t2)\0 < t < 00} contains no
two sets with more than four points which are congruent in the Euclidean
sense. (The isometry would extend to an isometry / of the whole plane
which transforms parabolas onto parabolas. Since five points determine a
parabola, / maps X onto itself, hence / = id.) Thus all non-atomic Borel
measures on X are metrically invariant.

To get a unique volume function for such spaces, one has to utilize
the stronger invariance concept introduced by Kolmogoroff [16] (cf. §6).

A very interesting fact is that even the existence of a metrically
invariant measure requires a certain degree of homogeneity of the underly-
ing space. In §3 we show that many hyperspaces of compact sets and of
compact convex sets with Hausdorff metric do not admit σ-finite, metri-
cally invariant measures due to their inhomogeneous metric structure.
This generalizes a result of Boardman [5] and answers a question by
McMullen.

2. Open-invariant and metrically invariant measures. A Borel mea-

sure μ on a metric space (X, d) is called metrically invariant if for any
pair of isometric Borel sets A, B we have μ(A) = μ(B). This implies
μ*(M) = μ*(N) for any isometric subsets M, N of X. μ is called open-in-
variant if μ(A) = μ(B) whenever A, B are isometric open subsets of X.
Clearly, metric invariance implies open-invariance, but the converse does
not hold. Even in "good" spaces an isometry/: A. -> B need not extend to
an isometry/between open neighbourhoods of A and B.

EXAMPLE 2. Consider R2 with maximum metric

d(x,y) = maxd*! - yτ\9 \x2 - y2\).

The sets A = {(x,0)\x e R} and B = {(JC, x)\x e R} are isometric, an
isometry is given by /(JC,O) = (x, x). But there are no points p £ A,
q & B such that A U { p} is isometric to B U {q}. The reason is that B
has exactly one point of shortest distance from q (for ε = d(q, B) the
closed square Uε(q) intersects B in one point), but A has many points of
shortest distance from/?.
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The following result implies that there is an open-invariant proba-
bility measure on each compact metric space. For a compact set C in a
metric space (X, d) let E(C, t) denote the minimum cardinality
of a covering of C by sets of diameter < t. C is called thick in X if
there is an open neighbourhood U of C in X and a constant c with
E(D,t) < c - E(C, t) for all compact sets D c Uand 0 < t < 1.

THEOREM (Mycielski). Let C be a thick set in a metric space (X, d).
Then there is a regular open-invariant Borel measure μon X with μ(C) = 1.

The proof in [22] uses generalized limits. Halmos's existence proof for
Haar measure ([14], §58) can also be adapted but it needs the axiom of
choice, too.

Note that open-invariant measures sometimes can be rather trivial. If
X = [l/n\n e N) U {0}, or X = [0,1), the point measure δ0 is open-in-
variant. Namely, two open isometric sets in X either both contain 0, or
both do not contain 0.

Next, let X be a triangle with interior in the Euclidean plane. Let Y
denote the boundary of the triangle and α, b, c the vertices. There are
three types of points: vertices, edge points and interior points. Points of
different types will never have isometric neighbourhoods in X. Thus if /:
A -> B is an isometry between two open subsets of X, f maps A Π Y onto
B Π Y, and/transforms the vertices in A onto vertices in B.

It follows that there are three open-invariant measures: the discrete
measure 8a + 8h + δc, the one-dimensional Lebesgue measure con-
centrated on Y and the two-dimensional Lebesgue measure on X. Only the
last one is metrically invariant. Let us add that linear combinations of
open-invariant measures are open-invariant, and that Sa, δb and δc alone
are open-invariant if X has three different angles.

A metrically invariant measure on an arbitrary metric space must be
non-atomic, however, unless all infinite sets have measure oo.

On very inhomogeneous metric spaces metrically invariant measures
may not exist. Our next example reflects the structure we shall find in
hyperspaces.

EXAMPLE 3. Let X = U^= 1Cn, where Cn is the ^-dimensional cube
[0, l/n]n. Let d be the Euclidean metric on every Cn and let d(x, y) =
max{l/fl,l/m} for JC e Cn9 y e Cw, m Φ n. For every «, the Lebesgue
measure λn on Cn induces an open-invariant λ'M on X. All linear combina-
tions of the λ^ with positive coefficients are open-invariant, and there are
other open-invariant measures concentrated on the edges and vertices of
the C
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On the other hand, there is no σ-finite metrically invariant measure

μ Φ 0 on (ΛΓ, d). If μ(Cn) > 0, a subcube of Cn with side length l/(n + 1)

will have positive measure, and C Λ + 1 contains an uncountable number of

pairwise disjoint isometric copies of that subcube.

We have made use of the following well-known fact.

LEMMA 1. A measure cannot be σ-finite if there is an uncountable

number of pairwise disjoint sets with positive measure.

3. Non-existence of metrically invariant measures on hyperspaces.
A situation similar to Example 3 occurs for quite familiar hyperspaces.

The following theorem extends and simplifies a result of Boardman [5]

concerning Hausdorff measures on F([0,1]). F(X) denotes the system of

all compact subsets of (X, d), equipped with the Hausdorff metric

dH(A, B) = max/ sup d(a, B), supd(b, A)\.
^a&A b^B '

THEOREM 2. Let (X, d) be a locally compact separable metric space

without isolated points. Then there is no σ-finite, metrically invariant Borel

measure μ Φ 0 on (F(X)9 dH).

Proof. Let S be a countable dense set in X. For s in S, let Ms = {A e

F(X)\s <£ A}. The open sets Ms cover F(X) - { X). Let μ be a positive

metrically invariant measure on F(X). Then we have μ{Ms) > 0 for at

least one s. (Note that μ({ X}) = 0 in the case of compact X) If we write

Ms as the union of closed sets Msn = {A\d(s, A) > l / « ) , we get μ(Msn)

> 0 for one n ^ N. Since X has no isolated points, the neighbourhood

U = Uι/n(s) in X is uncountable. For x e U let Nx = {A U {x}\A e
Msn}. The natural map /: Msn -> Nx is not necessarily a ί/^-isometry but it

preserves all distances smaller than a = \/n — d(x, s). Since F(X) is a

separable metric space, Msn admits a countable partition into sets of

diameter < a. The invariance of μ implies then μ(Nx) = μ(Msn) > 0 for

all x e U. Since the Nx are pairwise disjoint, μ is not σ-finite by Lemma 1.

The next theorem also extends a result on Hausdorff measures, and it

answers in the negative a question by McMullen (see [13], problem 54).

For U c Rn let K(U) denote the system of all compact convex subsets of

U. We consider the locally compact space (K(Rn), dH), where the

underlying metric d is given by a norm || || on Rn. For the Euclidean

norm, Gruber and Lettl [12] have shown that each isometry from the



18 CHRISTOPH BANDT AND GEBRESELASSIE BARAKI

hyperspace K(Rn) into itself can be written as composition of a mapping
f(A) = f(A) induced by a Euclidean isometry/: Rn -> Rn and a mapping
g(A) = A + C = {a + c\a e A, c e C}, where C is a fixed compact
convex set. / is onto, but g is not surjective unless C is a singleton. Here
we shall only use the fact that in the case of an arbitrary norm, g is an
isometry on K(Rn).

THEOREM 3. For n > 1 there is no σ-finite Borel measure on
(K(Rn), dH) which is invariant with respect to all isometries from the whole
space into itself.

Proof. Let Sp = {JC| ||JC|| </?}. Then K(Rn) = U™=1K(Sp). If μ is a
positive measure, μ(K(Sp)) > 0 for one/?. It suffices to show that K(S3p)
contains an uncountable number of mutually disjoint isometric copies of
K(Sp). For each x e Rn with ||x|| = 2p let Dx = {tx\0 < t < 1}. We
prove that the sets K(Sp) + Dx are mutually disjoint. To this end let jμ Φ x
and y Φ —x (the case y = — x is easy) be vectors with norm 2p, and
assume there are elements A, B in K(Sp) such that
(i) A + Dx = B + Dy.

Take a basis of Rn containing x and j> as first and second element, and let
a{z) denote the first coordinate of z with respect to that basis. Thus
a(x) = 1, a(y) = 0. By compactness we find an α* e A with α(α*) =
min{a(a)\a e A}. By (i) there is Z> <Ξ £ and s e [0,1] with a* + 0 x =
6 + 5 y and hence α(α*) = a(b). Again by (i) there is a e A and
t €Ξ [0,1] with 0 + ί jc = & + l j \ Now α(α) + / = α(Z>) = α(α *) <
a(a) implies t = 0. Thus a = b + y which yields the contradiction || j | | <
||α|| + \\b\\ < 2p. TheDx are disjoint.

Let us note that (K(Rι), dH) is isometric to the half-plane
{(a, b)\a < b) with maximum metric on which Lebesgue measure is
metrically invariant.

An open-invariant measure λ on K(Rn) is induced by ^-dimensional
Lebesgue measure: λ(C) = λn({x\{x] G C}). We omit the proof.

4. Locally homogeneous metric spaces. Having shown that metri-
cally invariant measures do not exist on very inhomogeneous spaces, we
now turn to the other extreme. A metric space (X, d) is called (metrically)
homogeneous if for any two of its points JC, y there is an isometry /:
X -> X which is onto and sends x into y. Let Uε(p) = {q\d(p, q) < ε}.
We call (X> d) locally homogeneous (abbrev. l.h.) if for any x9 y there
exists an ε = ε(x, y) > 0 and an isometry/: Uε(x) -> Uε(y) which is onto
and sends x intoy. This implies f(Uδ(x)) = Uδ(y) for 0 < δ < ε.
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We have not tried to avoid the condition f(x) = y and require that
Uδ(x) and Uδ(y) are isometric for all δ < ε, or only for arbitrary small δ.
(The latter holds for Cantor's middle-third set with Euclidean metric.) We
have chosen the definition with/(x) = y since it seems technically con-
venient, in particular for Theorem 4 below.

If in a l.h. space there is a compact set with non-empty interior, the
space must be locally compact. Hence we shall restrict our attention to
locally compact spaces.

Metric groups with left-invariant metric are examples of homoge-
neous metric spaces. More generally, if a uniformly equicontinuous group
of one-to-one and onto mappings acts on a space (7, d0) (cf. [27], §7.3),
the metric d(x, y) = supf€ΞFd0(f(x), f{y)) is uniformly equivalent to dQ,

and every/in F is a J-isometry. So (7, d) is homogeneous whenever the
F-orbit of a point is dense in 7 and 7 is locally compact (cf. Lemma 2
below).

Any open subset U of a homogeneous metric space (X, d) is locally

homogeneous. (Let ε(x, y) = min{d(x, X — U), d(y, X — U)}.) The

converse is not true.

EXAMPLE 4. Let C = {(xv x2, x3)\ - oc < x3 < 1, (1 — x3)
2 = x[ 4-

x\} be the surface of an unbounded cone, and let d be the interior metric.
That is, d(x, y) is the length of the shortest arc in C connecting x and y.

The cone without peak p = (0,0,1) is developable into the plane [17].
That is, small neighbourhoods of points in X = C — {p} are isometric to
open subsets of Euclidean i?2. This is not true for neighbourhoods of p. So
X is l.h. but C is not. X is not homogeneous, only rotations around the
jc3-axis are isometries of X.

Now C is the completion of X. Thus when X is imbedded in a larger

l.h. space Y as an open subset then X will be closed, too. So X is not

isometric to an open subset of a homogeneous space.

Local homogeneity does not only carry over to open subspaces but
also to finite products. Suppose/: \Ji -> Vt are isometries in (Xn dt) for
i = 1,2. Then

/: U.XU^V.X V2, f(xl9 x2) = (ΛU), f2(x2))

is an isometry with respect to the maximum metric as well as to any other
metric on Xλ X X2 which has the form d(x, y) = g(d1(x1, yλ), d2(x2, J^))-
Thus if (Xι9 dt) are l.h. then Xι X X2 is l.h. with respect to any of the
familiar metrics. Moreover, local homogeneity carries over to so-called
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symmetric products:

EXAMPLE 5. Let m be a positive integer, let Fm(X) denote the family
of ra-point subsets of the metric space (X, d), and let dmax on Xm be
defined by

dmaχ(x>y) = m a x { d(xi>yi)\i = l , . . . , / w ) .

Let

Xm = { (xl9... ,xm)\Xi e X, x. # x, for i Φj).

Then the mapping /: ( l m , J m a x ) -» (FJX), dH) with /(x 1 ?...,xm) =
{x l9... ,xw} is m!-to-one and onto, and/is a local isometry: if ε < εΛ =
I min{d(xi9 Xj)\l < i <j < m}, f maps Ue(xl9... 9xm) in Xm isometri-
cally onto Ue({xl9... 9xm}) in Fm(X).

If (X, d) is locally homogeneous, then (Xw, dm a x), the open subset
(Xm, dmax) and hence (Fm(X)9 dH) become l.h. spaces, too.

In contrast to the results of §3 we have found a l.h. hyperspace.
Unfortunately, Fm(X) is only a very small part of F(x). It would be
interesting to know whether F([0,1])—that is, the Hubert cube—has a l.h.
metric. Is one of the familiar metrics for hyperspaces of convex bodies (cf.
[28]) l.h.? An l.h. metric on such a "space of shapes" by Theorem 1 would
yield a natural measure for "shapes", and this is what people working in
convex geometry [13] and integral geometry (cf. the first two papers in [0])
are looking for. More generally,

Problem. When does a topological space X admit a compatible l.h.
metric?

Clearly it is necessary that X is l.h. in the topological sense (for any
x, y there is a homeomorphism between neighbourhoods U(x) and V(y)
which sends x into y). But is that enough? A classical result of Dantzig
and van der Waerden [7] says that the sphere with two handles does not
possess a homogeneous metric although it is homogeneous in the topologi-
cal sense. However, it admits a l.h. metric, since every Riemann surface
admits a l.h. Riemannian metric ([9], Theorem IV.8.6).

A Riemannian metric on a manifold is l.h. if and only if it has
constant curvature ([17], Theorem 12.4.2).

The ε in the definition of l.h. space depends on x and y. But for all
points of a compact set we find a common ε.
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THEOREM 4. Let e be a point and A a compact set in a locally compact
and locally homogeneous space (X, d). Then there is an ε = εA > 0, such
that Uε(x) and U€(e) are isometric for every xin A, where the isometry sends
x into e.

LEMMA 2. Let a > 0 be so small that Ua(e) is compact. Then
Da = {x\there is an isometry f: Ua(e) -» Ua(x) withf(e) = x] is closed.

Proof of Lemma 2. This is an application of Ascoli's theorem ([26], p.
179). Let (xn) be a sequence in Da converging to x e X, and let fn:
Ua(e) -> Ua(xn) be isometries onto withfn(e) = xn. For z e Ua(e) choose
β with d(e, z) < β < a and n0 with d(xn9 xno) < β - d(e9 z) = β -
d(xn, fn{z)) for all n > n0. Then {fn(x)\n e N} is relatively compact
since almost all fn(z) lie in the compact set Uβ(xno). Any family of
isometries is equicontinuous, so a subsequence / converges pointwise to a
map /. Obviously / is an isometry and f(e) = x, f(Ua(e)) c Ua(x). It
remains to show that / is a map onto Ua(x). Let y e Ua(x) and γ =
d(y, x). Since fnk maps Uy(e) onto Uγ(xnk) and the convergence fΛk ->/is
uniform on ί/γ(e), every neighbourhood of j contains a point of f(Uy(e)).
Thus ^ itself belongs to this compact set, / is onto and x e Da.

Proof of Theorem 4. Apply Baire's category theorem to the sets Dι/m,
m <E N, which cover X. There is « G iV, w G I and δ > 0 with U8(w) c
Z)1/rt. For α < η = ^ min{δ, 1/Λ} every point z in ί/ft(e) has an a-
neighbourhood isometric to Ua(e). (Take isometries g: C/2«(e) "* Uia(w)
c J51 / n with g(e) = w and A: ί/α(e) -> t/β(g(z)) with A(β) = g(z) and
consider g-1A: £4(β) -> ί/α(z).)

For every x in 4̂ we find α̂ . > 0 such that the α^-neighbourhood of e
and x are isometric with/(e) = x. Let εx = min{| aχ9 η}. Every point
of UEχ(x) has an εx-neighbourhood isometric to Uε(e). The open cover
{U(x)\x&A} contains a finite subcover {U (X;)\i = 1,...,/?}. Now
ε̂  = min{ ε |/ = 1,...,/?} is the number we were looking for.

5. Haar measure on locally homogeneous spaces. Let Ao be a
compact set with non-empty interior in a locally homogeneous (hence
locally compact) space X. To show the existence of an open-invariant
measure λ with λ(^40) = 1 we apply Mycielski's theorem (cf. §2). We only
have to show that Ao is thick in X. Let e be an interior point of Ao, and let
8 < εA be chosen so that Uδ(e) c Ao. By Theorem 4, Ao is covered by
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n = n(δ) isometric copies of Uδ(e). Let C/be their union. Then

E(D, t) < E(U, t)<n E(U&), t) < n E(Aθ91)

for compact D c U and 0 < t < 1. Ao is thick.
It is easy to see that our measure λ is positive on open sets and finite

on compact sets. (Since l/n(δ) < λ(Uδ(e)) < 1, we have λ(F) > l/n(8)
whenever V contains a copy of Uδ(e), and λ(C) < m whenever C is
covered by m such copies.) λ is regular since it is a Baire measure [14].

Now we want to show that λ is uniquely determined by the require-
ment that isometric ε-neighbourhoods have equal measure and λ(A0) = 1.
Christensen [6] called a Borel measure on (X, d) uniform if for every
ε > 0, all ε-neighbourhoods of points in X have the same finite measure,
say/(ε). He proved that on any metric space such a measure is unique.
This applies to our situation only if X is (globally) homogeneous, but we
could use more general and sophisticated results of Mattila ([21], Corollary
4.5).

We prefer a simple uniqueness argument. The following approxima-
tion theorem is proved in §7. 1A denotes the characteristic function of A
(lA(x) = 1 for x e A and 0 otherwise).

THEOREM 5. In a locally homogeneous and locally compact space let e be
a point, A a compact set, V an open neighbourhood of A and ε > 0. Then
there is an η > 0 such that for every open set L c Uη(e) there exist integers
n, k and isometries j]: Uη(e) —> Vwith

h and \ Σ
1 = 1 ι = l

(Forλ(A) = 0 write ε instead of λ(A) - (1 4- ε).)

For the uniqueness proof we need the case L = Uη(e). Let/,(e) = jcf.
Then/Z(L) = Lζ,(*,•). Given A, we choose Fsuch that Fis compact, and
we take η < εp. Now all l̂ (-x,-) are isometric to L. Since isometric
neighbourhoods should have equal measure, the right-hand inequality of
Theorem 5 becomes (n/k) λ(L) < λ(^4) (1 + ε). Applying λ (or more
exactly, the corresponding integral) to the left inequality of Theorem 5 we
get (n/k) λ(L) > λ(Λ). Thus

( i ) j ; (l + e y l l

If η was chosen small enough, we have a similar estimation for Ao.

(ii) ^ ^ 1
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Dividing (i) by (ii) and using λ(^40) = 1,

kn kn

If μ would be another measure with μ(A0) = 1 which assumes equal

values on isometric ε-neighbourhoods, we obtain the same inequality for

μ(A) instead of λ(^4). Hence

and this implies λ(A) = μ(A) since e can be chosen arbitrarily. So λ and μ

agree on all compact and by regularity on all Borel sets.

6. Hausdorff measures and strong invariance. Hausdorff found a

method to construct metrically invariant measures [25] Let h: [0, oo) ->

[0, oo) be a non-decreasing function with limt_+0 h(t) = h(0) = 0. The

Λ-dimensional Hausdorff measure on (X, d) is defined for Borel sets D by

μh{D)= Iiminf(f *(«(*y))| U BJ ,Ώ D,

Here δ ( # ) denotes the diameter of the set B in {X, d). Since δ(B Γ\ D) <

δ(B), we can require that Bj c Z) for all j . Now it is easy to see that

Hausdorff measures are metrically invariant. And we can say more.

Following Kolmogoroff [16] we call a Borel measure μ on (X, d)

strongly invariant ifμ(C) < μ(D) whenever C, D are Borel sets and C is a

non-expansive image of D. That is, there is a map /: D -» C with

d(f(x), f(y)) * d(x, y) for ^ J E Λ

Obviously strong invariance implies metric invariance. Example 1

shows that the converse is not true: the measure μ o n l = {(/, / 2 ) |0 < /

< oo} given by μ(C) = λι({t\(t, t2) G C}) is not strongly invariant since

the mapping g: [2,3] -> [0,2], g(t) = 2/ - 4 induces a non-expansive map

between the respective parts of the parabola.

LEMMA 3a. Hausdorff measures are strongly invariant.

Proof. If /: D -> C is non-expansive and D = U 5 y , we have C =

U/(J? y) and 8(f(Bj)) < δ(Bj). Thus to every sum for ju*(£>) we get a

corresponding sum for μh(C) which is smaller or equal. Consequently,

μh{C) < μh{D).

To show that our measure λ on a l.h. space is metrically invariant, it

suffices to find some function h with λ = μh. Sometimes this is easy.
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EXAMPLE 6. If X is an open set in an ^-dimensional normed space, the
w-dimensional (with h{t) = tn) Hausdorff measure fulfils 0 < μn(X) < oo
[25]. Furthermore, on the space (Fm(X), dH) of m-point subsets of X the
(n - ra)-dimensional Hausdorff measure fulfils

(

To prove this fact we use the m!-to-one map/: (Xm, dmax) -» (Fm(X)9 dH)
of Example 5. We partition Fm(X) into Vl9 F 2 , . . . such that, for each /,
f~ι{Vi) consists of m! isometric copies of Vt. We omit the details.

For the general l.h. space it will be better to work with a modified
Hausdorff measure vh [2].

= liminfίf Cj h{δ{Bj))\lD ί
' " * 0 l y = l

LEMMA 3b. For each h and each (X, d),vh is strongly invariant.

The proof is similar to that of Lemma 3a.

LEMMA 4. Let Ao be compact with non-empty interior in the l.h. space
(X, d), and let λ be the unique open-invariant measure with λ(A0) = 1.
Then λ = ph, where

h(t) = sup{ \{B)\B closed, 8(B) < t,B Γ\A0Φ 0 } .

Proof. We show vh(A0) = λ(A0) and apply the uniqueness argument.
If lAo < E*Lx Cj 1B with BjΠA0Φ 0, it follows that

λ(A0) = jlAodλ< f Σ>, \Bd\ = Σcj ' λ{Bj)

So all sums in vh(A0) and hence vh(A0) itself are >
To show the reverse inequality, let ε > 0 and choose t < min{ 7j(ε), ε,

εA0] (εA0 from Theorem 4 and η(ε) from Theorem 5 with A = Ao and
K = X), such that /* is continuous in /. We take an open set L c Ut(e)
with δ(L) < / and h(t) < (1 + ε)2λ(L). (Let ί' < ί with h(t) < (1 + ε)
Λ(O, l e t C be a set with C ΠAQΦ 0, δ(C) < t' and Λ(ί') < (1 + ε)
λ(C), and let B = {jc|rf(x, C) < i(ί - ^)} Since 8(B) < t < εAo, there is
an open set L in Ut{e) isometric to B and therefore assuming the same δ-
and λ-values.)



METRICALLY INVARIANT MEASURES 25

The covering (I/A:) Σ 1 / ( L ) > 1̂  from Theorem 5 fulfils δ(/z(L)) < ε
and

Σ \ • h(δ(fέ(L))) < I h{t) < (1 + ε)2 f λ(L)

< ( l + ε)3 λ(,40).

Since this holds for every ε, it follows that vh(A0) < λ(A0).

Collecting the results of §§5 and 6, we see that we have not only
proved Theorem 1 but a stronger statement:

THEOREM V. Let Ao be a compact set with non-empty interior in a

locally homogeneous space (X, d). Then there is a unique Borel measure λ

on X with λ(A0) = 1 which assumes equal values on isometric ^-neighbour-

hoods, λ is regular, positive on open sets, finite on compact sets and—most

notably—strongly invariant.

7. Proof of the approximation theorem. It remains to show Theo-

rem 5. We derive it from a similar theorem which does not involve any
measure λ.

THEOREM 6. In a locally homogeneous and locally compact space (X, d)

let e be a point, A a compact set and W a neighbourhood of A. Then there is

an η > 0 such that for all open sets K, L with K c L c Uη(e) there exist

positive integers n, k and isometries f: Uη(e) -> W with
n n

k'lA and Σ

Theorems 5 and 6 can be considered as modifications of a classical
theorem of H. Cartan (cf. [2], [24]). Concerning the above-mentioned
problem of Ulam we note that these theorems do not hold for the Hubert
cube with certain maximum metrics ([3], Example 1).

To derive Theorem 5 from Theorem 6, let ε, A and V be given, and
take γ > 1 with γ 2 < 1 + ε. Choose open sets W, K with A c W c V,
λ(W) < γ λ(A), K c L, λ(L) < γ λ(K). Now open isometric sets
have equal measure, and λ can be applied to the second inequality of
Theorem 6:

T λ ( L ) < γ Y 'λ(K) = y Y |
K K . _ 1 K

: (1 + e ) λ ( ^ ) .
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If we wanted to prove Theorem 5 only for L = Uη(e) (the case used
in the uniqueness proof), we could choose K as some Ua(e), and we need
only assume that isometric α-neighbourhoods have equal measure. The
proof of Theorem 6 becomes also much easier for this case, it is the same
as for groups [4]. The difficulty of our situation is that there is no uniquely
determined "translate xL of the set L". For this reason we have to work
with spaces of isometries.

Proof of Theorem 6. We can assume W is compact. Let η < \ εψ
such that U5η(A) c W. We consider

F = {/ |/:l/ η (e)-> ^,/isometry}

with the metric

J(/,g)= sup d(f(x),g(x)).

(F, d) is precompact. (Given a > 0 take Ua(Xj), i = l,...,p9 covering
Uη(e), and Ua(yj),j = 1,. ..,<?, covering W and show that not more than
qp functions in F can have pairwise J-distance > 4a.)

Choose β < η with U2β(K) c L and let C = {/ e F\f(Uη(e)) Π A Φ
0}. Let n denote the minimal number of β-neighbourhoods with respect
to d necessary to cover C, and let # = {Vβ(f)\i = 1,...,«} be a minimal
covering of C. Then ^ ( / ^ ΠC Φ 0 which implies f(Uη(e)) c [/3r?(y4) so
that all ^(/^) are subsets of F. Since we assume K Q L c: U(e), we have
proved that

) = 0 forjcί l/

For x e C/3r?(v4) define Fx = {/e F|JC e/(AΓ)}. Let A: denote the
minimal number of ^-neighbourhoods with respect to d needed to cover
Vβ{Fx). In fact k does not depend on x as we will show later. We have

= c a r d ( i\x*f£K)} = card{ i\f

Namely, if /: < cardl/'l/^ G F J , we could replace all the correspond-
ing Vβ(f) in ^by a ^-element covering of Vβ(Fx) Since fι G i^ implies
Vβ(f-)Q Vβ(Fx), this would give another covering # ' of C, contradicting
the minimality of #. With this, the second inequality of Theorem 6 is
verified.

We continue with points in U3η(A) defining Gx = {g e F\x G g(L)}.
Clearly FXQ GXQ F. For any two points JC, j the sets Gx and Ĝ  are
J-isometric: There is a d-isometry Λ: U2η(x) -> ί^ηίj7) w i ^ ̂ ( x ) = »̂ s o

h(g) = h - g defines a J-isometry h: Gx -* Gv.
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Let us show V2β(Fx) c Gx. Then h maps J^(FΛ) onto Vβ(Fy)9 and the
A: defined above does not depend on x. We have

V2β(Fx) c {g G inhere i s / e F with/"H-*) = z G ^

and</(/(z),g(z))<2jβ}.

No

implies

g'ι(x) e U2β(K) Q L

and

Finally let x (Ξ A. Then ^( .FJ c Gx c C, and ^ ( J F J will be covered
by the Vβ(fi) in #. For every / used in this covering, Vβ{ft) Π Vβ(Fx) Φ 0
and hence/ e V2β(Fx) c Ĝ  and x G /(L) . This proves the first inequal-
ity of Theorem 6:
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