ON SINGULARITY OF HARMONIC MEASURE IN SPACE

Jang-Mei Wu

Abstract

We construct a topological ball D in \mathbf{R}^{3}, and a set E on ∂D lying on a 2-dimensional hyperplane so that E has Hausdorff dimension one and has positive harmonic measure with respect to D. This shows that a theorem of \varnothing ksendal on harmonic measure in R^{2} is not true in \mathbf{R}^{3}. Suppose D is a bounded domain in $\mathbf{R}^{m}, m \geq 2, \mathbf{R}^{m} \backslash D$ satisfies the corkscrew condition at each point on ∂D; and E is a set on ∂D lying also on a BMO_{1} surface, which is more general than a hyperplane; then we can prove that if E has $m-1$ dimensional Hausdorff measure zero then it must have harmonic measure zero with respect to D.

Lavrentiev (1936) found a simply-connected domain D in \mathbf{R}^{2} and a set E on ∂D which has zero linear measure and positive harmonic measure with respect to D [5]. McMillan and Piranian subsequently simplified the example [6]. See also [1] and [3].

In [7], Øksendal proved that if D is a simply-connected domain in \mathbf{R}^{2}, and E is a set on ∂D with vanishing linear measure, and if E is situated on a line, then E has vanishing harmonic measure $\omega(E, D)$ with respect to D. In [3], Kaufman and Wu generalized this result and proved that the theorem still holds if E is situated on a quasi-smooth curve, but no longer holds if E is situated on a quasi-conformal circle. An interesting, perhaps very difficult, question is whether the theorem is true if E lies on a rectifiable curve.

Another question is the higher dimensional generalization: if D is a topological ball in $\mathbf{R}^{m}, m \geq 3$, and E is a set on ∂D, situated also on an $m-1$ dimensional hyperplane, does the vanishing of the $m-1$ dimensional Hausdorff measure, $\Lambda^{m-1}(E)=0$, imply that $\omega(E, D)=0$?

We answer this negatively by giving the following example.
Example. There exists a topological ball D in \mathbf{R}^{3}, and a set E on ∂D, lying on a 2-dimensional hyperplane so that E has Hausdorff dimension one but has positive harmonic measure with respect to D.

We notice that $\operatorname{dim} E=1$ is much stronger than $\Lambda^{2}(E)=0$; and that 1 is best possible, because if $\operatorname{dim} E<1$ then E has zero capacity in \mathbf{R}^{3}, hence E has zero harmonic measure with respect to D in \mathbf{R}^{3}.

Also this example suggests that a question left open in [1] by Carleson has no analogue in higher dimensions: if E is a set on the boundary of a Jordan domain D, and $\Lambda^{\beta}(E)=0$ for some $1 / 2<\beta<1$, is it true that $\omega(E, D)=0$?

The real reason behind the example is that the Carleman-Milloux type estimation of harmonic measure is no longer valid on the boundary of a topological ball in \mathbf{R}^{3}. In order to obtain positive results we require the complement of the domain to be "big" near each boundary point, and allow E to lie on a surface more general than a hyperplane.

Theorem. Suppose D is a bounded domain in $\mathbf{R}^{m}, m \geq 2$, whose complement $\mathbf{R}^{m} \backslash D$ satisfies the corkscrew condition. Let Γ be a topological sphere in \mathbf{R}^{m}, whose interior Ω_{1} and exterior Ω_{2} are both NTA domains, and on Γ,

$$
\begin{equation*}
\Lambda^{m-1}(E)=0 \Rightarrow \omega\left(E, \Omega_{i}\right)=0 \quad \text { for } i=1 \text { and } 2 \tag{0.1}
\end{equation*}
$$

Then a set on $\partial D \cap \Gamma$ having zero Λ^{m-1} measure must have zero harmonic measure with respect to D.

The definitions of corkscrew condition and NTA domain are introduced by Jerison and Kenig in [2] and are given below.

Examples of Γ that satisfy the conditions in Theorem 2 are quasismooth curves $(m=2)$ and boundaries of BMO_{1} domains $(m \geq 3)$; BMO_{1} domains are domains whose boundaries are given locally as the graph of a function ϕ with $\nabla \phi \in \mathrm{BMO}$, see [2] for more discussions. In these examples, the harmonic measures ω_{i} on Γ and Λ^{m-1} are mutually absolutely continuous, in fact, $\omega_{i} \in A_{\infty}\left(\Lambda^{m-1}\right)$.

When $m=2$, the theorem by Kaufman and Wu [3] mentioned before is not comparable to Theorem 2. There, D is only simple-connected; however, Γ has a stronger property, namely, quasi-smooth.

From the Example, we see that the corkscrew condition on $\mathbf{R}^{m} \backslash D$ cannot be discarded even when D is a topological ball. Also condition (0.1) is necessasry as one can see in the case $D=\Omega_{1}$ or Ω_{2}. However, we do not know whether the geometric condition on $\Gamma: \Omega_{i}$ are NTA domains, can be weakened, or whether Γ can be replaced by a simple rectifiable curve in \mathbf{R}^{2}.

1. An example. We call D a topological ball in \mathbf{R}^{m} if it is the image of a ball under a homeomorphism of R^{m}. And the boundary of a topological ball is called topological sphere. For $A \in \mathbf{R}^{m}, r>0$, we let $B(A, r)=\left\{P \in \mathbf{R}^{m}:|A-P|<r\right\}$.

For a domain D in $\mathbf{R}^{m}, E \subseteq \partial D$, we denote by $\omega^{X}(E, D)$ the harmonic measure of E at X with respect to D.

Lemma 1. In \mathbf{R}^{2}, there exists a simply-connected Jordan domain Ω, satisfying
(1) $\Omega \cap\left\{x: x_{1}>0\right\} \subseteq\{x:|x|<2\}$
$\Omega \cap\left\{x: x_{1}<0\right\}=\left\{x: x_{1}<0,|x|<3\right\}$;
(2) $\partial_{2} \Omega$ has Hausdorff dimension 1 ;
(3) $\mathrm{cap}_{3}\left(\partial_{2} \Omega\right)>0$;
(4) $\operatorname{cap}_{3}\left(\Omega_{\varepsilon}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$;
where $\Omega_{\varepsilon}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)<\varepsilon\}, \partial_{2} \Omega$ is the boundary of Ω relative to \mathbf{R}^{2}, and cap $_{3}$ is the capacity with respect to the kernel $1 /|x|$.

Lemma 1 is proved at the end of this section; some readers may prefer to supply their own construction. The next lemma is the key to our example.

Lemma 2. Let Ω be a domain in \mathbf{R}^{2} with all the properties in Lemma 1. We identify it with the set $\{(x, 0): x \in \Omega\}$ in \mathbf{R}^{3}. Then

$$
\omega\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}\right)>0 .
$$

Proof. Choose $\varepsilon_{0}>0$ so that

$$
\begin{equation*}
\operatorname{cap}_{3}\left(\Omega_{2 \varepsilon_{0}}\right)<\frac{1}{100} \operatorname{cap}_{3}\left(\partial_{2} \Omega\right) . \tag{1.1}
\end{equation*}
$$

Let $\Omega_{\varepsilon_{0}, \eta}=\Omega_{\varepsilon_{0}} \backslash \bar{\Omega}_{\eta}$, for $0<\eta<\varepsilon_{0}$, let μ and ν be the capacitary measures corresponding to $\partial_{2} \Omega$ and $\bar{\Omega}_{\varepsilon_{0}, \eta}$, with respect to the kernel $1 /|x|$, respectively. Let U and V be the corresponding equilibrium potentials:

$$
\begin{align*}
& U(x)=\int_{\partial_{2} \Omega} \frac{1}{|x-y|} d \mu(y), \tag{1.2}\\
& V(x)=\int_{\bar{\Omega}_{\varepsilon_{0}, \eta}} \frac{1}{|x-y|} d \nu(y) . \tag{1.3}
\end{align*}
$$

We recall from [4] that U and V are positive superharmonic on \mathbf{R}^{3} bounded by 1 and are harmonic off the supports of their respective capacitary measures; moreover $U=1$ on $\partial_{2} \Omega$ except possibly on a set S with $\operatorname{cap}_{3}(S)=0$ and $V=1$ on $\bar{\Omega}_{\varepsilon_{0}, \eta}$ except possibly on a set T with $\operatorname{cap}_{3}(T)=0 ; \mu\left(\partial_{2} \Omega\right)=\operatorname{cap}_{3}\left(\partial_{2} \Omega\right)$ and $\nu\left(\bar{\Omega}_{\varepsilon_{0}, \eta}\right)=\operatorname{cap}_{3}\left(\bar{\Omega}_{\varepsilon_{0}, \eta}\right)$.

Let $u=\omega\left(\partial_{2} \Omega, B(0,20) \backslash \partial_{2} \Omega\right)$ and $v=\omega\left(\bar{\Omega}_{\varepsilon_{0}, \eta}, B(0,20) \backslash \bar{\Omega}_{\varepsilon_{0}, \eta}\right)$. We observe from the last paragraph that

$$
\begin{equation*}
u(X) \geq U(X)-\int_{|Y|=20} U(Y) d \omega^{X}(Y, B(0,20)) \tag{1.4}
\end{equation*}
$$

for $X \in B(0,20) \backslash \partial_{2} \Omega$; and clearly $U \geq u$ and $V \geq v$ in their common domains.

For $6 \leq|X| \leq 20$ it follows from Lemma 1, (1.1), (1.2) and (1.3) that

$$
\begin{align*}
V(X) & \leq \frac{1}{3} \operatorname{cap}_{3}\left(\bar{\Omega}_{\varepsilon_{0}, \eta}\right)<\frac{1}{300} \operatorname{cap}_{3}\left(\partial_{2} \Omega\right) \tag{1.5}\\
& <\frac{23}{300} U(X)<\frac{1}{10} U(X)
\end{align*}
$$

for $|X|=6$, it follows from (1.2), (1.4) and (1.5) that

$$
\begin{align*}
u(X) & \geq \frac{1}{3} U(X)+\frac{2}{3} U(X)-\frac{1}{17} \operatorname{cap}_{3}\left(\partial_{2} \Omega\right) \tag{1.6}\\
& \geq \frac{10}{3} V(X)+\frac{2}{27} \operatorname{cap}_{3}\left(\partial_{2} \Omega\right)-\frac{1}{17} \operatorname{cap}_{3}\left(\partial_{2} \Omega\right)>3 v(X) .
\end{align*}
$$

From the maximum principle, it follows that for $|X|=6$ and $0<\eta<\varepsilon_{0}$,

$$
\begin{align*}
\omega^{X}\left(\partial_{2} \Omega, B(0,20) \backslash\left(\bar{\Omega}_{\varepsilon_{0}, \eta} \cup \partial_{2} \Omega\right)\right) & >u-v(X)>\frac{2}{3} u(X) \tag{1.7}\\
& >\frac{1}{100} \operatorname{cap}_{3}\left(\partial_{2} \Omega\right)>0,
\end{align*}
$$

by the estimation in (1.6).
From (1.7) and the maximum principle, we obtain for $|X|=6$,

$$
\begin{aligned}
& \omega^{X}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}_{\varepsilon_{0}}\right)=\inf _{0<\eta<\varepsilon_{0}} \omega^{X}\left(\Omega_{\eta} \cup \partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}_{\varepsilon_{0}}\right) \\
& \quad \geq \inf _{0<\eta<\varepsilon_{0}} \omega^{X}\left(\partial_{2} \Omega, B(0,20) \backslash\left(\bar{\Omega}_{\varepsilon_{0}, \eta / 2} \cup \partial_{2}(\Omega)\right)\right) \\
& \quad>\frac{1}{100} \operatorname{cap}_{3}\left(\partial_{2} \Omega\right)>0 .
\end{aligned}
$$

Let $\alpha=\sup \left\{\omega^{X}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}_{\varepsilon_{0}}\right): x \in \Omega \backslash \Omega_{\varepsilon_{0}}\right\}$. Because $\Omega \backslash \Omega_{\varepsilon_{0}}$ has positive distance from $\partial_{2} \Omega$, we have $0<\alpha<1$. Choose $\beta, \alpha<\beta<1$, and a point P in $B(0,20) \backslash \bar{\Omega}_{\varepsilon_{0}}$ so that $\omega^{P}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}_{\varepsilon_{0}}\right)>\beta$. By the maximum principle,

$$
\omega^{P}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}\right) \geq \omega^{P}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}_{\varepsilon_{0}}\right)-\alpha>\beta-\alpha>0 .
$$

This completes the proof.

Lemma 3. Let Ω be the domain in Lemma 1. Let $g(x)$ be a strictly positive continuous function on Ω, defined by

$$
\begin{equation*}
g(x)=\frac{1}{4} \operatorname{dist}\left(x, \partial_{2} \Omega\right) \tag{1.8}
\end{equation*}
$$

Let

$$
G=\left\{\left(x_{1}, x_{2}, x_{3}\right):\left(x_{1}, x_{2}\right) \in \Omega \text { and }\left|x_{3}\right|<g\left(x_{1}, x_{2}\right)\right\}
$$

Then

$$
\omega\left(\partial_{2} \Omega, B(0,20) \backslash \bar{G}\right)>0 .
$$

Proof. Suppose otherwise, we have

$$
\begin{equation*}
\omega\left(\partial_{2} \Omega, B(0,20) \backslash \bar{G}\right)=0 \tag{1.9}
\end{equation*}
$$

Let $X \in \bar{G} \backslash \bar{\Omega}, \Delta_{X}$ be the disk on $\left\{x_{3}=0\right\}$ with center $\left(X_{1}, X_{2}, 0\right)$ and of radius $\left|X_{3}\right|$ and B_{X} be the ball in \mathbf{R}^{3} with center ($X_{1}, X_{2}, 0$) and of radius $2\left|X_{3}\right|$. By (1.8) and the maximum principle, we have for $X \in \bar{G} \backslash \bar{\Omega}$,

$$
\begin{equation*}
\omega^{X}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}\right) \leq \omega^{X}\left(\partial B_{X}, B_{X} \backslash \overline{\Delta(X)}\right)=C<1 \tag{1.10}
\end{equation*}
$$

where C is an absolute constant. Let A be any point in $B(0,20) \backslash \bar{G}$. Because of (1.9) and (1.10) we have

$$
\begin{align*}
& \omega^{A}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}\right) \\
&=\omega^{A}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{G}\right) \\
&+\int_{\partial G \partial_{2} \Omega} \omega^{X}\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}\right) d \omega^{A}(X, B(0,20) \backslash \bar{G}) \tag{1.11}\\
&= 0+C<1
\end{align*}
$$

From (1.10) and (1.11) we see that

$$
\omega\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}\right)<C<1
$$

everywhere in $B(0,20) \backslash \bar{\Omega}$. Therefore, $\omega\left(\partial_{2} \Omega, B(0,20) \backslash \bar{\Omega}\right)=0$. This contradicts Lemma 2 and proves Lemma 3.

Finally, we let Ω and G be the domains in Lemma 1 and Lemma 3,

$$
D=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}^{2}+x_{2}^{2}<8 \text { and }\left|x_{3}\right|<4\right\} \backslash \bar{G}
$$

and

$$
E=\partial_{2} \Omega \cap\{x:|x| \leq 2\}
$$

From the constructions of Ω and G, the domain D is a topological ball; from properties (1) and (2) in Lemma 1, $\operatorname{dim} E=1$ and

$$
\operatorname{cap}_{3}\left(\partial_{2} \Omega \cap\{x:|x|>2\}\right)=0
$$

Therefore by Lemma 3,

$$
\omega(E, B(0,20) \backslash \bar{G})>0 .
$$

Arguing as in the last paragraph of the proof of Lemma 2, we conclude

$$
\omega(E, D)>0
$$

Consequently all the properties of D and E in our example are justified.
It remains to prove Lemma 1.
Proof of Lemma 1. All line segments considered below are closed. Let $l_{0,1}$ be the line segment with end points $(0,-1)$ and $(0,1)$. Let $l_{1, m}$, $m=1,2$, be two horizontal line segments with left endpoints $\left(0,-\frac{1}{2}\right)$ and ($0, \frac{1}{2}$) respectively and of length 1 .

Suppose $\left\{l_{n-1, m}: 1 \leq m \leq 2^{n(n-1) / 2}\right\}$ have been selected for some $n \geq 2$, so that length of $l_{n-1, m}$ is $2^{-(n-1)(n-2) / 2}$. Subdivide each $l_{n-1, m}$ into 2^{n} equal subintervals, each of length $2^{-1-n(n-1) / 2}$. Let $\left\{l_{n, j}: 1 \leq j \leq\right.$ $\left.2^{(n+1) n / 2}\right\}$ be horizontal (if n is odd) or vertical (if n is even) line segments of length $2^{-n(n-1) / 2}$, with left (if n is odd) or lower (if n is even) endpoints coinciding with those of the subintervals of $l_{n-1, m}$ and disjoint from any $l_{n-2, m^{\prime}}$. We notice that the distance between two disjoint line segments $l_{n, m}$ and $l_{n^{\prime}, m^{\prime}}\left(n \geq n^{\prime}\right)$ is at least $2^{-1-n(n-1) / 2}$.

Let $R_{0,1}$ be the semidisk $\left\{x: x_{1}<0,|x|<3\right\}$ in R^{2}. We shall attach a thin rectangle to each $l_{n, m}, n \geq 1$. Let $a_{n}=2^{-2^{3 n}}$ and consider, for $n \geq 1$, the rectangle with one side coinciding with $l_{n, m}$, two opposite sides of length a_{n}, and interior disjoint from any $l_{n^{\prime}, m^{\prime}}$ Let $R_{n, m}$ be the interior of this rectangle together with the open line segment $S_{n, m}$ which is the side of length a_{n} and lies on some $l_{n-1, m^{\prime}}$.

Let

$$
\Omega=\bigcup_{n=0}^{\infty} \bigcup_{m=1}^{2^{n(n+1) / 2}} R_{n, m}, \quad \Omega_{N}=\bigcup_{n=0}^{N} \bigcup_{m=1}^{2^{n(n+1) / 2}} R_{n, m}
$$

We claim that Ω is simply-connected Jordan. Using induction and the fact that

$$
\left|l_{n+1, m}\right|=2^{-(n+1) n / 2}<2^{-1-n(n-1) / 2}=\operatorname{dist}\left(l_{n, m}, l_{n, m^{\prime}}\right) \text { for } m \neq m^{\prime}
$$

we see that Ω_{n} is Jordan simply-connected for each n. Since the distance between two disjoint $l_{n, m}$ and $l_{n^{\prime}, m^{\prime}}\left(n \geq n^{\prime}\right)$ is at least $2^{-1-n(n-1) / 2}$ and

$$
\sum_{k=n+1}^{\infty}\left|l_{k, 1}\right|<2^{-1-n(n-1) / 2}-a_{n}, \quad \text { for } n \geq 3
$$

it follows from the construction of Ω that Ω is simply connected Jordan.
Property (1) in Lemma 1 can be verified easily.

We claim that $\partial_{2} \Omega$ has Hausdorff dimension one. Let $\delta>0$ and $r=2^{-1-n(n-1) / 2}$, which is the distance between two disjoint $l_{n, m}$ and $l_{n, m^{\prime}}$ From the construction, we see that $\partial_{2} \Omega$ can be covered by a family of K squares, each of side length r, and K no greater than

$$
C\left(2^{n(n+1) / 2}+\sum_{k=0}^{n-1} \sum_{j=1}^{2^{(k+1) k / 2}}\left|l_{k, j}\right| / 2^{-1-n(n-1) / 2}\right) \leq C 2^{n(n+1) / 2}
$$

Therefore the $(1+\delta)$-dimensional Hausdorff measure satisfies

$$
\Lambda^{1+\delta}\left(\partial_{2} \Omega\right) \leq C \limsup _{n \rightarrow \infty} 2^{n(n+1) / 2}\left(2^{-1-n(n-1) / 2}\right)^{1+\delta}
$$

which approaches zero as $n \rightarrow \infty$. Thus $\Lambda^{1+\delta}\left(\partial_{2} \Omega\right)=0$ for every $\delta>0$, and $\partial_{2} \Omega$ has dimension at most 1 . It is clear $\partial_{2} \Omega$ has dimension at least 1 .

Next, we claim that $\operatorname{cap}_{3}\left(\partial_{2} \Omega\right)$ is positive. Recall that $\partial_{2} \Omega$ is a Jordan curve and $S_{n, m}$ is a particular side of $R_{n, m}$ that is situated on some $l_{n-1, m^{\prime}}$. Let $A_{n, m}$ and $B_{n, m}$ be the endpoints of $S_{n, m}$; from the construction of Ω, one sees that $A_{n, m}$ and $B_{n, m}$ are on $\partial_{2} \Omega$. Let μ be the probability measure on $\partial_{2} \Omega$ satisfying, for $n \geq 1$,

$$
\begin{equation*}
\mu\left(E_{n, m}\right)=2^{-n(n+1) / 2} \tag{1.12}
\end{equation*}
$$

where $E_{n, m}$ is the subarc of $\partial_{2} \Omega$ with endpoints $A_{n, m}$ and $B_{n, m}$ which does not contain the point $(-3,0)$.

We shall prove that

$$
\begin{equation*}
\mu\left(\partial_{2} \Omega \cap \Delta(P, t)\right) \leq C t\left(\log \frac{1}{t}\right)^{-2} \tag{1.13}
\end{equation*}
$$

for every $P \in \mathbf{R}^{2}$ and $0<t<t_{0}$. Once (1.13) is proved, we have for any $P \in \mathbf{R}^{2}$,

$$
\begin{aligned}
\int_{\partial_{2} \Omega} \frac{1}{|P-X|} d \mu(X) & =\int_{0}^{\infty} \mu\left(\Delta(P, t) \cap \partial_{2} \Omega\right) \frac{d t}{t^{2}} \\
& \leq \int_{t_{0}}^{1} \frac{d t}{t^{2}}+\int_{0}^{t_{0}} \frac{1}{t \log ^{2}(1 / t)} d t<C\left(t_{0}\right)<\infty
\end{aligned}
$$

Therefore $\operatorname{cap}_{3}\left(\partial_{2} \Omega\right)>0$.
To prove (1.13), we assume

$$
2^{-n(n-1) / 2} \leq t<2^{-(n-1)(n-2) / 2}
$$

For any $P \in \mathbf{R}^{2}, \Delta(P, t)$ meets at most $C t 2^{n(n-1) / 2} \operatorname{arcs}$ of the form $E_{n, m}$. Therefore by (1.12),

$$
\begin{aligned}
\mu\left(\Delta(p, t) \cap \partial_{2} \Omega\right) & \leq C t 2^{n(n-1) / 2} 2^{-n(n+1) / 2} \\
& \leq C t 2^{-n}<C t\left(\log \frac{1}{t}\right)^{-2}
\end{aligned}
$$

if $0<t<t_{0}$.

Finally we prove that $\operatorname{cap}_{3}\left(\Omega_{\varepsilon}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$. Because $\operatorname{cap}_{3}\left(\Omega_{\varepsilon}\right)$ decreases as ε decreases, we need only to show that $\operatorname{cap}_{3}\left(\Omega_{a_{N}}\right) \rightarrow 0$ as $N \rightarrow \infty$. We observe, by the relative narrowness of a_{N} to the distance between $R_{n, m}$ and $R_{n^{\prime}, m^{\prime}}\left(n, n^{\prime}<N\right)$, that

$$
\Omega_{a_{N}} \subseteq \bigcup_{n=0}^{N-1} \bigcup_{m=1}^{2^{n(n+1) / 2}} R_{n, m, a_{N}} \cup \bigcup_{n=N}^{\infty} \bigcup_{m=1}^{2^{n(n+1) / 2}} R_{n, m}
$$

where $R_{n, m, a_{N}}=\left\{x \in R_{n, m}, \operatorname{dist}\left(x, \partial R_{n, m}\right)<a_{N}\right\}$. By a variation of Lemma 4 below, we have the following estimation:

$$
\begin{aligned}
& \operatorname{cap}_{3}\left(\Omega_{a_{N}}\right) \\
& \quad \leq C\left(\sum_{n=0}^{N-1} 2^{n(n+1) / 2} \frac{\left|l_{n, 1}\right|}{\log \left(\left|l_{n, 1}\right| / a_{N}\right)}+\sum_{n=N}^{\infty} 2^{n(n+1) / 2} \frac{\left|l_{n, 1}\right|}{\log \left(\left|l_{n, 1}\right| / a_{n}\right)}\right) \\
& \quad \leq C\left(\sum_{n=0}^{N-1} \frac{2^{n(n+1) / 2} 2^{-n(n-1) / 2}}{\log \left(2^{-n(n-1) / 2} 2^{2^{2 N}}\right)}+\sum_{n=N}^{\infty} \frac{2^{n(n+1) / 2} 2^{-n(n-1) / 2}}{\log \left(2^{-n(n-1) / 2} 2^{2^{3 n}}\right)}\right) \\
& \quad \leq \sum_{n=0}^{N-1} 2^{n} 2^{-2 N}+\sum_{n=N}^{\infty} 2^{-n},
\end{aligned}
$$

which approaches 0 as $N \rightarrow \infty$. This completes the proof of Lemma 1 .
Lemma $4[4 ;$ p. 165]. Let E be an elongated ellipsoid of revolution with axes $a, b(b<a)$. Then

$$
\operatorname{cap}_{3}(E)=\frac{2}{\pi} \frac{\sqrt{a^{2}-b^{2}}}{\log \left[\left(a+\sqrt{a^{2}-b^{2}}\right) /\left(a-\sqrt{a^{2}-b^{2}}\right)\right]} .
$$

2. Proof of the Theorem. Following the definition in [2], we say a domain Ω in \mathbf{R}^{m} is a non-tangentially accessible (NTA) domain if there exist fixed constants $M=M(\Omega)>10$ and $r_{0}=r_{0}(\Omega)>0$ such that the following conditions are satisfied.
(2.1) corkscrew condition: for any $Q \in \partial \Omega, r<r_{0}$, there exists $A=$ $A_{r}(Q) \in \Omega$ such that $M^{-1} r<|A-Q|<r$ and $\operatorname{dist}(A, \partial \Omega)>M^{-1} r ;$
(2.2) $\mathbf{R}^{m} \backslash \Omega$ satisfies the corkscrew condition;
(2.3) Harnack chain condition: if X_{1} and $X_{2} \in \Omega, \operatorname{dist}\left(X_{i}, \partial D\right)>\varepsilon>0$, $i=1,2$, and $\left|X_{1}-X_{2}\right| \leq K \varepsilon$, then there exist balls $B_{j}=B\left(Y_{j}, r_{j}\right), 1 \leq j$ $\leq L, L$ depending only on K, but not on ε, so that $Y_{1}=X_{1}$ and
$Y_{L}=X_{2}$; and the balls B_{j} satisfy

$$
\begin{equation*}
M^{-1} r_{j}<\operatorname{dist}\left(B_{j}, \partial \Omega\right)<M r_{j}, \quad 1 \leq j \leq L \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(Y_{j}, r_{j} / 2\right) \cap B\left(Y_{j}, r_{j+1} / 2\right) \neq \varnothing, \quad 1 \leq j \leq L-1 \tag{2.5}
\end{equation*}
$$

($\left\{B_{j}\right\}$ is called a Harnack chain from X_{1} to X_{2} of length L.)
Assuming $F \subseteq \partial D \cap \Gamma$ and $\Lambda^{m-1}(F)=0$, we want to show $\omega(F, D)$ $=0$.

We claim that it is enough to prove that there exists $0<\beta<1$, so that

$$
\begin{equation*}
\omega^{Q}(F, D)<\beta \quad \text { for every } Q \in D \cap \Gamma \tag{2.6}
\end{equation*}
$$

In fact, for $X \in D \cap \Omega_{i}$, it follows from (0.1) that

$$
\omega^{X}\left(F, D \cap \Omega_{i}\right) \leq \omega^{X}\left(F, \Omega_{i}\right)=0
$$

hence

$$
\begin{align*}
\omega^{X}(F, D) & =\omega^{X}\left(F, D \cap \Omega_{i}\right)+\int_{\Gamma \cap D} \omega^{Q}(F, D) d^{X}\left(Q, D \cap \Omega_{i}\right) \tag{2.7}\\
& =\int_{\Gamma \cap D} \omega^{Q}(F, D) d \omega^{X}\left(Q, D \cap \Omega_{i}\right)
\end{align*}
$$

After (2.6) is proved, we may conclude

$$
\omega^{X}(F, D)<\beta<1 \quad \text { for every } X \in D
$$

This is possible only when $\omega(F, D)=0$. Therefore we need only to show (2.6).

Since $\Omega_{i}, i=1,2$, are NTA domains and $\mathbf{R}^{m} \backslash D$ satisfies the corkscrew condition, we let

$$
M=\max \left\{M\left(\Omega_{1}\right), M\left(\Omega_{2}\right), M(D)\right\}
$$

and

$$
r_{0}=\min \left\{r_{0}\left(\Omega_{1}\right), r_{0}\left(\Omega_{2}\right), r_{0}(D)\right\}
$$

from their respective definitions.
For a fixed $Q \in D \cap \Gamma$, let

$$
r=\min \left\{r_{0}, \operatorname{dist}(Q, \partial D)\right\}
$$

From the corkscrew condition on Ω_{i}, we can find

$$
U_{i}=B\left(A_{i}, r / 4 M\right) \subseteq \Omega_{i}
$$

so that

$$
\begin{equation*}
\left|A_{i}-Q\right|<r / 2 \quad \text { and } \quad \operatorname{dist}\left(U_{i}, \Gamma\right)>r / 4 M \tag{2.8}
\end{equation*}
$$

Notice that $U_{1} \cup U_{2} \subseteq B(Q, r) \subseteq D$. Therefore we can find $\alpha, 0<\alpha<1$, depending on M only so that

$$
\begin{equation*}
\omega^{Q}(F, D) \leq 1-\alpha+\alpha \sup _{X \in \bar{U}_{i}} \omega^{X}(F, D), \quad \text { for } i=1 \text { or } 2 \tag{2.9}
\end{equation*}
$$

Because of (2.7) and (2.9), in order to prove (2.6), we need only to show there exists $\eta<1$ so that

$$
\begin{equation*}
\min \left\{\sup _{X \in \bar{U}_{i}} \omega^{X}\left(\Gamma \cap D, D \cap \Omega_{i}\right): i=1,2\right\}<\eta \tag{2.10}
\end{equation*}
$$

We claim that there exists a ball

$$
V \equiv B\left(A,(4 M)^{-2} r\right)
$$

whose closure is completely in $\Omega_{1} \backslash D$ or completely in $\Omega_{2} \backslash D$, and

$$
\begin{equation*}
|A-Q|<K r \quad \text { and } \quad \operatorname{dist}(V, \Gamma)>(4 M)^{-2} r \tag{2.11}
\end{equation*}
$$

where $K=2+(\operatorname{diam} D) / r_{0}$.
In fact, let P be a point on ∂D so that $|P-Q|=\operatorname{dist}(Q, \partial D)$. Since $\mathbf{R}^{m} \backslash D$ satisfies the corkscrew condition, we can find a ball

$$
W=B\left(Y,(2 M)^{-1} r\right) \subseteq \mathbf{R}^{m} \backslash D
$$

so that

$$
|Y-P|<r \quad \text { and } \quad \operatorname{dist}(W, \partial D)>(2 M)^{-1} r
$$

If $B\left(Y,(4 M)^{-1} r\right) \cap \Gamma=\varnothing$ then $B\left(Y,(4 M)^{-1} r\right)$ lies completely in $\Omega_{1} \backslash D$ or completely in $\Omega_{2} \backslash D$; we let

$$
A \equiv Y \quad \text { and } \quad V \equiv B\left(Y,(4 M)^{-2} r\right)
$$

and can verify (2.11) easily.
If $B\left(Y,(4 M)^{-1} r\right) \cap \Gamma$ contains some point Z, by the corkscrew condition on Ω_{1}, we can find

$$
V \equiv B\left(A,(4 M)^{-2} r\right) \subseteq \Omega_{1}
$$

so that

$$
\left(8 M^{2}\right)^{-1} r<|A-Z|<(8 M)^{-1} r \quad \text { and } \quad \operatorname{dist}(V, \Gamma)>(4 M)^{-2} r
$$

Because $|A-Y| \leq|A-Z|+|Z-Y| \leq 3 r(8 M)^{-1}$, we see $V \subseteq W \subseteq$ $\mathbf{R}^{m} \backslash D$. Therefore $V \subseteq \Omega_{1} \backslash D$. Again (2.11) can be verified easily. This proves our claim.

From now on we assume V is contained in $\Omega_{1} \backslash D$, and shall prove

$$
\begin{equation*}
\sup _{X \in \bar{U}_{1}} \omega^{X}\left(\Gamma \cap D, D \cap \Omega_{1}\right)<\eta<1 . \tag{2.12}
\end{equation*}
$$

When V is in $\Omega_{2} \backslash D$, we argue similarly.
From (2.8) and (2.11) and the assumption that Ω_{1} is an NTA domain, we can find a Harnack chain $\left\{B_{j}\right\}_{j=1}^{L}$ in Ω_{1}, whose length L depends on r_{0}, M and diam D only, that connects A to A_{1}; moreover, we may choose

$$
\begin{equation*}
B_{1} \equiv B\left(A, 3 r\left(32 M^{2}\right)^{-1}\right) \supseteq B\left(A, r(4 M)^{-2}\right)=V, \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
B_{L} \equiv B\left(A_{1}, 3 r(8 M)^{-1}\right) \supseteq B\left(A_{1}, r(4 M)^{-1}\right)=U_{1} \tag{2.14}
\end{equation*}
$$

so that (2.4) is still satisfied with a bigger constant M^{\prime} dependent only on M, r_{0} and $\operatorname{diam} D$.

Let $B=\bigcup_{j=1}^{L} B_{j}$ and

$$
w=\left\{\begin{array}{cl}
\omega\left(\Gamma \cap D, D \cap \Omega_{1}\right) & \text { on } D \cap \Omega_{1}, \\
0 & \text { on } \mathbf{R}^{m} \backslash\left(D \cap \Omega_{1}\right) .
\end{array}\right.
$$

Since $\left\{B_{j}\right\}$ is a Harnack chain, $\bar{B} \subseteq \Omega_{1}$; hence w is subharmonic on B; and because $\bar{V} \cap D=\varnothing, w=0$ on \bar{V}. Therefore by the maximum principle, for $X \in \bar{U}_{1} \subseteq D \cap \Gamma_{1}$

$$
\omega^{X}\left(\Gamma \cap D, D \cap \Omega_{1}\right) \leq \omega^{X}(\partial B, B \backslash \bar{V}) .
$$

By (2.13), (2.14), properties (2.4) and (2.5) of the Harnack chain condition, and the Harnack principle, we can find $\eta<1$, depending on r_{0}, M, $\operatorname{diam} D$, so that

$$
\omega^{X}(\partial D, B \backslash \bar{V})<\eta \quad \text { for every } X \in \bar{U}_{1} .
$$

Therefore (2.12) is proved, and thus (2.6) follows.

References

[1] L. Carleson, On the distortion of sets on a Jordan curve under conformal mapping, Duke Math. J., 40 (1973), 547-559.
[2] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Advances in Math., 46 (1982), 80-147.
[3] R. Kaufman and J.-M. Wu, Distortion of the boundary under conformal mapping, Michigan Math. J., 29 (1982), 267-280.
[4] N. S. Landkof, Foundations of Modern Potential Theory, (1965), (Russian), SpringerVerlag (1972).
[5] M. A. Lavrentiev, Boundary problems in the theory of univalent functions, Mat. Sb., 43 (1936), 815-846; (Russian), Amer. Math. Soc. Transl., 32 (1963), 1-35.
[6] J. McMillan and G. Piranian, Compression and expansion of boundary sets, Duke Math. J., 40 (1973), 599-605.
[7] B. Øksendal, Brownian motion and sets of harmonic measure zero, Pacific J. Math., 95 (1981), 193-204.

Received February 18, 1984. Research partially supported by the National Science Foundation.

University of Illinois
Urbana, IL 61801

