ON SINGULARITY OF HARMONIC MEASURE IN SPACE

JANG-MEI WU

We construct a topological ball D in \mathbb{R}^3 , and a set E on ∂D lying on a 2-dimensional hyperplane so that E has Hausdorff dimension one and has positive harmonic measure with respect to D. This shows that a theorem of Øksendal on harmonic measure in \mathbb{R}^2 is not true in \mathbb{R}^3 . Suppose D is a bounded domain in \mathbb{R}^m , $m \ge 2$, $\mathbb{R}^m \setminus D$ satisfies the corkscrew condition at each point on ∂D ; and E is a set on ∂D lying also on a BMO₁ surface, which is more general than a hyperplane; then we can prove that if E has m - 1 dimensional Hausdorff measure zero then it must have harmonic measure zero with respect to D.

Lavrentiev (1936) found a simply-connected domain D in \mathbb{R}^2 and a set E on ∂D which has zero linear measure and positive harmonic measure with respect to D [5]. McMillan and Piranian subsequently simplified the example [6]. See also [1] and [3].

In [7], Øksendal proved that if D is a simply-connected domain in \mathbb{R}^2 , and E is a set on ∂D with vanishing linear measure, and if E is situated on a line, then E has vanishing harmonic measure $\omega(E, D)$ with respect to D. In [3], Kaufman and Wu generalized this result and proved that the theorem still holds if E is situated on a quasi-smooth curve, but no longer holds if E is situated on a quasi-conformal circle. An interesting, perhaps very difficult, question is whether the theorem is true if E lies on a rectifiable curve.

Another question is the higher dimensional generalization: if D is a topological ball in \mathbb{R}^m , $m \ge 3$, and E is a set on ∂D , situated also on an m-1 dimensional hyperplane, does the vanishing of the m-1 dimensional Hausdorff measure, $\Lambda^{m-1}(E) = 0$, imply that $\omega(E, D) = 0$?

We answer this negatively by giving the following example.

EXAMPLE. There exists a topological ball D in \mathbb{R}^3 , and a set E on ∂D , lying on a 2-dimensional hyperplane so that E has Hausdorff dimension one but has positive harmonic measure with respect to D.

We notice that dim E = 1 is much stronger than $\Lambda^2(E) = 0$; and that 1 is best possible, because if dim E < 1 then E has zero capacity in \mathbb{R}^3 , hence E has zero harmonic measure with respect to D in \mathbb{R}^3 .

JANG-MEI WU

Also this example suggests that a question left open in [1] by Carleson has no analogue in higher dimensions: if E is a set on the boundary of a Jordan domain D, and $\Lambda^{\beta}(E) = 0$ for some $1/2 < \beta < 1$, is it true that $\omega(E, D) = 0$?

The real reason behind the example is that the Carleman-Milloux type estimation of harmonic measure is no longer valid on the boundary of a topological ball in \mathbb{R}^3 . In order to obtain positive results we require the complement of the domain to be "big" near each boundary point, and allow E to lie on a surface more general than a hyperplane.

THEOREM. Suppose D is a bounded domain in \mathbb{R}^m , $m \ge 2$, whose complement $\mathbb{R}^m \setminus D$ satisfies the corkscrew condition. Let Γ be a topological sphere in \mathbb{R}^m , whose interior Ω_1 and exterior Ω_2 are both NTA domains, and on Γ ,

(0.1) $\Lambda^{m-1}(E) = 0 \Rightarrow \omega(E, \Omega_i) = 0 \quad \text{for } i = 1 \text{ and } 2.$

Then a set on $\partial D \cap \Gamma$ having zero Λ^{m-1} measure must have zero harmonic measure with respect to D.

The definitions of corkscrew condition and NTA domain are introduced by Jerison and Kenig in [2] and are given below.

Examples of Γ that satisfy the conditions in Theorem 2 are quasismooth curves (m = 2) and boundaries of BMO₁ domains $(m \ge 3)$; BMO₁ domains are domains whose boundaries are given locally as the graph of a function ϕ with $\nabla \phi \in$ BMO, see [2] for more discussions. In these examples, the harmonic measures ω_i on Γ and Λ^{m-1} are mutually absolutely continuous, in fact, $\omega_i \in A_{\infty}(\Lambda^{m-1})$.

When m = 2, the theorem by Kaufman and Wu [3] mentioned before is not comparable to Theorem 2. There, D is only simple-connected; however, Γ has a stronger property, namely, quasi-smooth.

From the Example, we see that the corkscrew condition on $\mathbb{R}^m \setminus D$ cannot be discarded even when D is a topological ball. Also condition (0.1) is necessary as one can see in the case $D = \Omega_1$ or Ω_2 . However, we do not know whether the geometric condition on $\Gamma:\Omega_i$ are NTA domains, can be weakened, or whether Γ can be replaced by a simple rectifiable curve in \mathbb{R}^2 .

1. An example. We call D a topological ball in \mathbb{R}^m if it is the image of a ball under a homeomorphism of \mathbb{R}^m . And the boundary of a topological ball is called topological sphere. For $A \in \mathbb{R}^m$, r > 0, we let $B(A, r) = \{P \in \mathbb{R}^m : |A - P| < r\}$.

For a domain D in \mathbb{R}^m , $E \subseteq \partial D$, we denote by $\omega^X(E, D)$ the harmonic measure of E at X with respect to D.

LEMMA 1. In \mathbb{R}^2 , there exists a simply-connected Jordan domain Ω , satisfying

 $(1) \ \Omega \cap \{ x: \ x_1 > 0 \} \subseteq \{ x: \ |x| < 2 \}$

- $\Omega \cap \{ x: x_1 < 0 \} = \{ x: x_1 < 0, |x| < 3 \};$
- (2) $\partial_2 \Omega$ has Hausdorff dimension 1;
- (3) $\operatorname{cap}_3(\partial_2 \Omega) > 0;$
- (4) $\operatorname{cap}_3(\Omega_{\varepsilon}) \to 0 \text{ as } \varepsilon \to 0;$

where $\Omega_{\varepsilon} = \{x \in \Omega: \operatorname{dist}(x, \partial \Omega) < \varepsilon\}, \ \partial_2 \Omega$ is the boundary of Ω relative to \mathbf{R}^2 , and cap_3 is the capacity with respect to the kernel 1/|x|.

Lemma 1 is proved at the end of this section; some readers may prefer to supply their own construction. The next lemma is the key to our example.

LEMMA 2. Let Ω be a domain in \mathbb{R}^2 with all the properties in Lemma 1. We identify it with the set $\{(x, 0): x \in \Omega\}$ in \mathbb{R}^3 . Then

$$\omega(\partial_2\Omega, B(0,20)\setminus\overline{\Omega}) > 0.$$

Proof. Choose $\varepsilon_0 > 0$ so that

(1.1)
$$\operatorname{cap}_{3}(\Omega_{2\varepsilon_{0}}) < \frac{1}{100}\operatorname{cap}_{3}(\partial_{2}\Omega).$$

Let $\Omega_{\epsilon_0,\eta} = \Omega_{\epsilon_0} \setminus \overline{\Omega}_{\eta}$, for $0 < \eta < \epsilon_0$, let μ and ν be the capacitary measures corresponding to $\partial_2 \Omega$ and $\overline{\Omega}_{\epsilon_0,\eta}$, with respect to the kernel 1/|x|, respectively. Let U and V be the corresponding equilibrium potentials:

(1.2)
$$U(x) = \int_{\partial_2 \Omega} \frac{1}{|x-y|} d\mu(y),$$

(1.3)
$$V(x) = \int_{\overline{\Omega}_{\epsilon_0,\eta}} \frac{1}{|x-y|} d\nu(y).$$

We recall from [4] that U and V are positive superharmonic on \mathbb{R}^3 bounded by 1 and are harmonic off the supports of their respective capacitary measures; moreover U = 1 on $\partial_2 \Omega$ except possibly on a set S with $\operatorname{cap}_3(S) = 0$ and V = 1 on $\overline{\Omega}_{\varepsilon_0,\eta}$ except possibly on a set T with $\operatorname{cap}_3(T) = 0$; $\mu(\partial_2 \Omega) = \operatorname{cap}_3(\partial_2 \Omega)$ and $\nu(\overline{\Omega}_{\varepsilon_0,\eta}) = \operatorname{cap}_3(\overline{\Omega}_{\varepsilon_0,\eta})$.

JANG-MEI WU

Let $u = \omega(\partial_2 \Omega, B(0, 20) \setminus \partial_2 \Omega)$ and $v = \omega(\overline{\Omega}_{\epsilon_0, \eta}, B(0, 20) \setminus \overline{\Omega}_{\epsilon_0, \eta})$. We observe from the last paragraph that

(1.4)
$$u(X) \ge U(X) - \int_{|Y|=20} U(Y) d\omega^X(Y, B(0, 20))$$

for $X \in B(0, 20) \setminus \partial_2 \Omega$; and clearly $U \ge u$ and $V \ge v$ in their common domains.

For $6 \le |X| \le 20$ it follows from Lemma 1, (1.1), (1.2) and (1.3) that

(1.5)
$$V(X) \leq \frac{1}{3} \operatorname{cap}_{3}\left(\overline{\Omega}_{\varepsilon_{0},\eta}\right) < \frac{1}{300} \operatorname{cap}_{3}(\partial_{2}\Omega)$$
$$< \frac{23}{300} U(X) < \frac{1}{10} U(X);$$

for |X| = 6, it follows from (1.2), (1.4) and (1.5) that

(1.6)
$$u(X) \ge \frac{1}{3}U(X) + \frac{2}{3}U(X) - \frac{1}{17}\operatorname{cap}_{3}(\partial_{2}\Omega)$$

 $\ge \frac{10}{3}V(X) + \frac{2}{27}\operatorname{cap}_{3}(\partial_{2}\Omega) - \frac{1}{17}\operatorname{cap}_{3}(\partial_{2}\Omega) > 3v(X).$

From the maximum principle, it follows that for |X| = 6 and $0 < \eta < \varepsilon_0$,

(1.7)
$$\omega^{X}\left(\partial_{2}\Omega, B(0,20)\setminus\left(\overline{\Omega}_{\epsilon_{0},\eta}\cup\partial_{2}\Omega\right)\right) > u - v(X) > \frac{2}{3}u(X)$$
$$> \frac{1}{100}\operatorname{cap}_{3}(\partial_{2}\Omega) > 0,$$

by the estimation in (1.6).

From (1.7) and the maximum principle, we obtain for |X| = 6,

$$\begin{split} \omega^{X} \Big(\partial_{2}\Omega, B(0,20) \setminus \overline{\Omega}_{\epsilon_{0}} \Big) &= \inf_{0 < \eta < \epsilon_{0}} \omega^{X} \Big(\Omega_{\eta} \cup \partial_{2}\Omega, B(0,20) \setminus \overline{\Omega}_{\epsilon_{0}} \Big) \\ &\geq \inf_{0 < \eta < \epsilon_{0}} \omega^{X} \Big(\partial_{2}\Omega, B(0,20) \setminus \Big(\overline{\Omega}_{\epsilon_{0},\eta/2} \cup \partial_{2}(\Omega) \Big) \Big) \\ &> \frac{1}{100} \operatorname{cap}_{3}(\partial_{2}\Omega) > 0. \end{split}$$

Let $\alpha = \sup\{\omega^{X}(\partial_{2}\Omega, B(0, 20) \setminus \overline{\Omega}_{\varepsilon_{0}}): x \in \Omega \setminus \Omega_{\varepsilon_{0}}\}$. Because $\Omega \setminus \Omega_{\varepsilon_{0}}$ has positive distance from $\partial_{2}\Omega$, we have $0 < \alpha < 1$. Choose β , $\alpha < \beta < 1$, and a point *P* in $B(0, 20) \setminus \overline{\Omega}_{\varepsilon_{0}}$ so that $\omega^{P}(\partial_{2}\Omega, B(0, 20) \setminus \overline{\Omega}_{\varepsilon_{0}}) > \beta$. By the maximum principle,

$$\omega^{P}(\partial_{2}\Omega, B(0,20)\setminus\overline{\Omega}) \geq \omega^{P}(\partial_{2}\Omega, B(0,20)\setminus\overline{\Omega}_{\varepsilon_{0}}) - \alpha > \beta - \alpha > 0.$$

This completes the proof.

LEMMA 3. Let Ω be the domain in Lemma 1. Let g(x) be a strictly positive continuous function on Ω , defined by

(1.8)
$$g(x) = \frac{1}{4} \operatorname{dist}(x, \partial_2 \Omega).$$

Let

$$G = \{(x_1, x_2, x_3) \colon (x_1, x_2) \in \Omega \text{ and } |x_3| < g(x_1, x_2)\}.$$

Then

$$\omega\big(\partial_2\Omega, B(0,20)\setminus\overline{G}\big)>0.$$

Proof. Suppose otherwise, we have

(1.9)
$$\omega(\partial_2\Omega, B(0,20)\setminus\overline{G}) = 0.$$

Let $X \in \overline{G} \setminus \overline{\Omega}$, Δ_X be the disk on $\{x_3 = 0\}$ with center $(X_1, X_2, 0)$ and of radius $|X_3|$ and B_X be the ball in \mathbb{R}^3 with center $(X_1, X_2, 0)$ and of radius $2|X_3|$. By (1.8) and the maximum principle, we have for $X \in \overline{G} \setminus \overline{\Omega}$,

(1.10)
$$\omega^{X}(\partial_{2}\Omega, B(0, 20) \setminus \overline{\Omega}) \leq \omega^{X}(\partial B_{X}, B_{X} \setminus \overline{\Delta(X)}) = C < 1,$$

where C is an absolute constant. Let A be any point in $B(0, 20) \setminus \overline{G}$. Because of (1.9) and (1.10) we have

(1.11)

$$\begin{aligned}
\omega^{A}(\partial_{2}\Omega, B(0, 20) \setminus \overline{\Omega}) \\
&= \omega^{A}(\partial_{2}\Omega, B(0, 20) \setminus \overline{G}) \\
&+ \int_{\partial G \setminus \partial_{2}\Omega} \omega^{X}(\partial_{2}\Omega, B(0, 20) \setminus \overline{\Omega}) d\omega^{A}(X, B(0, 20) \setminus \overline{G}) \\
&= 0 + C < 1.
\end{aligned}$$

From (1.10) and (1.11) we see that

$$\omega(\partial_2\Omega, B(0,20)\setminus\overline{\Omega}) < C < 1$$

everywhere in $B(0, 20) \setminus \overline{\Omega}$. Therefore, $\omega(\partial_2 \Omega, B(0, 20) \setminus \overline{\Omega}) = 0$. This contradicts Lemma 2 and proves Lemma 3.

Finally, we let Ω and G be the domains in Lemma 1 and Lemma 3,

$$D = \{(x_1, x_2, x_3): x_1^2 + x_2^2 < 8 \text{ and } |x_3| < 4\} \setminus \overline{G}$$

and

$$E = \partial_2 \Omega \cap \{ x \colon |x| \le 2 \}.$$

From the constructions of Ω and G, the domain D is a topological ball; from properties (1) and (2) in Lemma 1, dim E = 1 and

$$\operatorname{cap}_3(\partial_2\Omega \cap \{x: |x| > 2\}) = 0.$$

Therefore by Lemma 3,

 $\omega(E, B(0, 20) \setminus \overline{G}) > 0.$

Arguing as in the last paragraph of the proof of Lemma 2, we conclude

 $\omega(E,D)>0.$

Consequently all the properties of D and E in our example are justified. It remains to prove Lemma 1.

Proof of Lemma 1. All line segments considered below are closed. Let $l_{0,1}$ be the line segment with end points (0, -1) and (0, 1). Let $l_{1,m}$, m = 1, 2, be two horizontal line segments with left endpoints $(0, -\frac{1}{2})$ and $(0, \frac{1}{2})$ respectively and of length 1.

Suppose $\{l_{n-1,m}: 1 \le m \le 2^{n(n-1)/2}\}$ have been selected for some $n \ge 2$, so that length of $l_{n-1,m}$ is $2^{-(n-1)(n-2)/2}$. Subdivide each $l_{n-1,m}$ into 2^n equal subintervals, each of length $2^{-1-n(n-1)/2}$. Let $\{l_{n,j}: 1 \le j \le 2^{(n+1)n/2}\}$ be horizontal (if *n* is odd) or vertical (if *n* is even) line segments of length $2^{-n(n-1)/2}$, with left (if *n* is odd) or lower (if *n* is even) endpoints coinciding with those of the subintervals of $l_{n-1,m}$ and disjoint from any $l_{n-2,m'}$. We notice that the distance between two disjoint line segments $l_{n,m}$ and $l_{n',m'}$ ($n \ge n'$) is at least $2^{-1-n(n-1)/2}$.

Let $R_{0,1}$ be the semidisk $\{x: x_1 < 0, |x| < 3\}$ in R^2 . We shall attach a thin rectangle to each $l_{n,m}$, $n \ge 1$. Let $a_n = 2^{-2^{3n}}$ and consider, for $n \ge 1$, the rectangle with one side coinciding with $l_{n,m}$, two opposite sides of length a_n , and interior disjoint from any $l_{n',m'}$. Let $R_{n,m}$ be the interior of this rectangle together with the open line segment $S_{n,m}$ which is the side of length a_n and lies on some $l_{n-1,m'}$.

Let

$$\Omega = \bigcup_{n=0}^{\infty} \bigcup_{m=1}^{2^{n(n+1)/2}} R_{n,m}, \quad \Omega_N = \bigcup_{n=0}^{N} \bigcup_{m=1}^{2^{n(n+1)/2}} R_{n,m}.$$

We claim that Ω is simply-connected Jordan. Using induction and the fact that

$$|l_{n+1,m}| = 2^{-(n+1)n/2} < 2^{-1-n(n-1)/2} = \operatorname{dist}(l_{n,m}, l_{n,m'}) \text{ for } m \neq m',$$

we see that Ω_n is Jordan simply-connected for each *n*. Since the distance between two disjoint $l_{n,m}$ and $l_{n',m'}$ $(n \ge n')$ is at least $2^{-1-n(n-1)/2}$ and

$$\sum_{k=n+1}^{\infty} |l_{k,1}| < 2^{-1-n(n-1)/2} - a_n, \text{ for } n \ge 3,$$

it follows from the construction of Ω that Ω is simply connected Jordan. Property (1) in Lemma 1 can be verified easily.

We claim that $\partial_2 \Omega$ has Hausdorff dimension one. Let $\delta > 0$ and $r = 2^{-1-n(n-1)/2}$, which is the distance between two disjoint $l_{n,m}$ and $l_{n,m'}$. From the construction, we see that $\partial_2 \Omega$ can be covered by a family of K squares, each of side length r, and K no greater than

$$C\left(2^{n(n+1)/2} + \sum_{k=0}^{n-1} \sum_{j=1}^{2^{(k+1)k/2}} |l_{k,j}|/2^{-1-n(n-1)/2}\right) \le C2^{n(n+1)/2}.$$

Therefore the $(1 + \delta)$ -dimensional Hausdorff measure satisfies

$$\Lambda^{1+\delta}(\partial_2\Omega) \leq C \limsup_{n \to \infty} 2^{n(n+1)/2} (2^{-1-n(n-1)/2})^{1+\delta},$$

which approaches zero as $n \to \infty$. Thus $\Lambda^{1+\delta}(\partial_2 \Omega) = 0$ for every $\delta > 0$, and $\partial_2 \Omega$ has dimension at most 1. It is clear $\partial_2 \Omega$ has dimension at least 1.

Next, we claim that $\operatorname{cap}_3(\partial_2 \Omega)$ is positive. Recall that $\partial_2 \Omega$ is a Jordan curve and $S_{n,m}$ is a particular side of $R_{n,m}$ that is situated on some $l_{n-1,m'}$. Let $A_{n,m}$ and $B_{n,m}$ be the endpoints of $S_{n,m}$; from the construction of Ω , one sees that $A_{n,m}$ and $B_{n,m}$ are on $\partial_2 \Omega$. Let μ be the probability measure on $\partial_2 \Omega$ satisfying, for $n \ge 1$,

(1.12)
$$\mu(E_{n,m}) = 2^{-n(n+1)/2},$$

where $E_{n,m}$ is the subarc of $\partial_2 \Omega$ with endpoints $A_{n,m}$ and $B_{n,m}$ which does not contain the point (-3, 0).

We shall prove that

(1.13)
$$\mu(\partial_2 \Omega \cap \Delta(P, t)) \leq Ct \left(\log \frac{1}{t} \right)^{-2}$$

for every $P \in \mathbf{R}^2$ and $0 < t < t_0$. Once (1.13) is proved, we have for any $P \in \mathbf{R}^2$,

$$\begin{split} \int_{\partial_2 \Omega} \frac{1}{|P - X|} \, d\mu(X) &= \int_0^\infty \, \mu(\Delta(P, t) \cap \partial_2 \Omega) \, \frac{dt}{t^2} \\ &\leq \int_{t_0}^1 \, \frac{dt}{t^2} + \int_0^{t_0} \, \frac{1}{t \log^2(1/t)} \, dt < C(t_0) < \infty \end{split}$$

Therefore $\operatorname{cap}_3(\partial_2 \Omega) > 0$.

To prove (1.13), we assume

$$2^{-n(n-1)/2} \le t < 2^{-(n-1)(n-2)/2}.$$

For any $P \in \mathbb{R}^2$, $\Delta(P, t)$ meets at most $Ct2^{n(n-1)/2}$ arcs of the form $E_{n,m}$. Therefore by (1.12),

$$\mu(\Delta(p,t) \cap \partial_2 \Omega) \le Ct 2^{n(n-1)/2} 2^{-n(n+1)/2}$$
$$\le Ct 2^{-n} < Ct \left(\log \frac{1}{t} \right)^{-2}$$

if $0 < t < t_0$.

Finally we prove that $\operatorname{cap}_3(\Omega_{\varepsilon}) \to 0$ as $\varepsilon \to 0^+$. Because $\operatorname{cap}_3(\Omega_{\varepsilon})$ decreases as ε decreases, we need only to show that $\operatorname{cap}_3(\Omega_{a_N}) \to 0$ as $N \to \infty$. We observe, by the relative narrowness of a_N to the distance between $R_{n,m}$ and $R_{n',m'}$ (n,n' < N), that

$$\Omega_{a_N} \subseteq \bigcup_{n=0}^{N-1} \bigcup_{m=1}^{2^{n(n+1)/2}} R_{n,m,a_N} \cup \bigcup_{n=N}^{\infty} \bigcup_{m=1}^{2^{n(n+1)/2}} R_{n,m}$$

where $R_{n,m,a_N} = \{x \in R_{n,m}, \text{dist}(x, \partial R_{n,m}) < a_N\}$. By a variation of Lemma 4 below, we have the following estimation:

$$\begin{aligned} & \operatorname{cap}_{3}(\Omega_{a_{N}}) \\ & \leq C \bigg(\sum_{n=0}^{N-1} 2^{n(n+1)/2} \frac{|l_{n,1}|}{\log(|l_{n,1}|/a_{N})} + \sum_{n=N}^{\infty} 2^{n(n+1)/2} \frac{|l_{n,1}|}{\log(|l_{n,1}|/a_{n})} \bigg) \\ & \leq C \bigg(\sum_{n=0}^{N-1} \frac{2^{n(n+1)/2} 2^{-n(n-1)/2}}{\log(2^{-n(n-1)/2} 2^{2^{2N}})} + \sum_{n=N}^{\infty} \frac{2^{n(n+1)/2} 2^{-n(n-1)/2}}{\log(2^{-n(n-1)/2} 2^{2^{3n}})} \bigg) \\ & \leq \sum_{n=0}^{N-1} 2^{n} 2^{-2N} + \sum_{n=N}^{\infty} 2^{-n}, \end{aligned}$$

which approaches 0 as $N \rightarrow \infty$. This completes the proof of Lemma 1.

LEMMA 4 [4; p. 165]. Let E be an elongated ellipsoid of revolution with axes a, b (b < a). Then

$$\operatorname{cap}_{3}(E) = \frac{2}{\pi} \frac{\sqrt{a^{2} - b^{2}}}{\log\left[\left(a + \sqrt{a^{2} - b^{2}}\right)/\left(a - \sqrt{a^{2} - b^{2}}\right)\right]}.$$

2. Proof of the Theorem. Following the definition in [2], we say a domain Ω in \mathbb{R}^m is a *non-tangentially accessible* (NTA) domain if there exist fixed constants $M = M(\Omega) > 10$ and $r_0 = r_0(\Omega) > 0$ such that the following conditions are satisfied.

(2.1) corkscrew condition: for any $Q \in \partial\Omega$, $r < r_0$, there exists $A = A_r(Q) \in \Omega$ such that $M^{-1}r < |A - Q| < r$ and $dist(A, \partial\Omega) > M^{-1}r$;

(2.2) $\mathbf{R}^m \setminus \Omega$ satisfies the corkscrew condition;

(2.3) Harnack chain condition: if X_1 and $X_2 \in \Omega$, dist $(X_i, \partial D) > \varepsilon > 0$, i = 1, 2, and $|X_1 - X_2| \le K\varepsilon$, then there exist balls $B_j = B(Y_j, r_j), 1 \le j \le L$, L depending only on K, but not on ε , so that $Y_1 = X_1$ and

 $Y_L = X_2$; and the balls B_i satisfy

(2.4)
$$M^{-1}r_j < \operatorname{dist}(B_j, \partial\Omega) < Mr_j, \qquad 1 \le j \le L;$$

and

(2.5)
$$B(Y_j, r_j/2) \cap B(Y_j, r_{j+1}/2) \neq \emptyset, \quad 1 \le j \le L - 1.$$

({ B_i }) is called a Harnack chain from X_1 to X_2 of length L.)

Assuming $F \subseteq \partial D \cap \Gamma$ and $\Lambda^{m-1}(F) = 0$, we want to show $\omega(F, D) = 0$.

We claim that it is enough to prove that there exists $0 < \beta < 1$, so that

(2.6)
$$\omega^{Q}(F, D) < \beta$$
 for every $Q \in D \cap \Gamma$.

In fact, for $X \in D \cap \Omega_i$, it follows from (0.1) that

$$\omega^{X}(F, D \cap \Omega_{i}) \leq \omega^{X}(F, \Omega_{i}) = 0;$$

hence

$$(2.7) \quad \omega^{X}(F,D) = \omega^{X}(F,D\cap\Omega_{i}) + \int_{\Gamma\cap D} \omega^{Q}(F,D) d^{X}(Q,D\cap\Omega_{i})$$
$$= \int_{\Gamma\cap D} \omega^{Q}(F,D) d\omega^{X}(Q,D\cap\Omega_{i}).$$

After (2.6) is proved, we may conclude

 $\omega^{X}(F, D) < \beta < 1$ for every $X \in D$.

This is possible only when $\omega(F, D) = 0$. Therefore we need only to show (2.6).

Since Ω_i , i = 1, 2, are NTA domains and $\mathbb{R}^m \setminus D$ satisfies the corkscrew condition, we let

$$M = \max\{M(\Omega_1), M(\Omega_2), M(D)\}$$

and

$$r_0 = \min\{r_0(\Omega_1), r_0(\Omega_2), r_0(D)\}$$

from their respective definitions.

For a fixed $Q \in D \cap \Gamma$, let

$$r = \min\{r_0, \operatorname{dist}(Q, \partial D)\}.$$

From the corkscrew condition on Ω_i , we can find

$$U_i = B(A_i, r/4M) \subseteq \Omega_i$$

so that

(2.8)
$$|A_i - Q| < r/2 \quad \text{and} \quad \text{dist}(U_i, \Gamma) > r/4M.$$

Notice that $U_1 \cup U_2 \subseteq B(Q, r) \subseteq D$. Therefore we can find $\alpha, 0 < \alpha < 1$, depending on *M* only so that

(2.9)
$$\omega^{\mathbb{Q}}(F,D) \leq 1 - \alpha + \alpha \sup_{X \in \overline{U}_i} \omega^X(F,D), \text{ for } i = 1 \text{ or } 2.$$

Because of (2.7) and (2.9), in order to prove (2.6), we need only to show there exists $\eta < 1$ so that

(2.10)
$$\min\left\{\sup_{X\in\overline{U}_i}\omega^X(\Gamma\cap D,D\cap\Omega_i):i=1,2\right\}<\eta.$$

We claim that there exists a ball

$$V \equiv B(A, (4M)^{-2}r)$$

whose closure is completely in $\Omega_1 \setminus D$ or completely in $\Omega_2 \setminus D$, and

(2.11)
$$|A - Q| < Kr \text{ and } \operatorname{dist}(V, \Gamma) > (4M)^{-2}r,$$

where $K = 2 + (\operatorname{diam} D) / r_0$.

In fact, let P be a point on ∂D so that $|P - Q| = \text{dist}(Q, \partial D)$. Since $\mathbb{R}^m \setminus D$ satisfies the corkscrew condition, we can find a ball

$$W = B(Y, (2M)^{-1}r) \subseteq \mathbf{R}^m \setminus D$$

so that

$$|Y-P| < r$$
 and $\operatorname{dist}(W, \partial D) > (2M)^{-1}r$.

If $B(Y, (4M)^{-1}r) \cap \Gamma = \emptyset$ then $B(Y, (4M)^{-1}r)$ lies completely in $\Omega_1 \setminus D$ or completely in $\Omega_2 \setminus D$; we let

$$A \equiv Y$$
 and $V \equiv B(Y, (4M)^{-2}r),$

and can verify (2.11) easily.

If $B(Y, (4M)^{-1}r) \cap \Gamma$ contains some point Z, by the corkscrew condition on Ω_1 , we can find

$$V \equiv B(A, (4M)^{-2}r) \subseteq \Omega_1$$

so that

$$(8M^2)^{-1}r < |A - Z| < (8M)^{-1}r$$
 and $dist(V, \Gamma) > (4M)^{-2}r$.

Because $|A - Y| \le |A - Z| + |Z - Y| \le 3r(8M)^{-1}$, we see $V \subseteq W \subseteq \mathbb{R}^m \setminus D$. Therefore $V \subseteq \Omega_1 \setminus D$. Again (2.11) can be verified easily. This proves our claim.

From now on we assume V is contained in $\Omega_1 \setminus D$, and shall prove

(2.12)
$$\sup_{X\in\overline{U}_1}\omega^X(\Gamma\cap D, D\cap\Omega_1) < \eta < 1.$$

When V is in $\Omega_2 \setminus D$, we argue similarly.

From (2.8) and (2.11) and the assumption that Ω_1 is an NTA domain, we can find a Harnack chain $\{B_j\}_{j=1}^L$ in Ω_1 , whose length L depends on r_0 , M and diam D only, that connects A to A_1 ; moreover, we may choose

(2.13)
$$B_1 \equiv B(A, 3r(32M^2)^{-1}) \supseteq B(A, r(4M)^{-2}) = V,$$

(2.14)
$$B_L \equiv B(A_1, 3r(8M)^{-1}) \supseteq B(A_1, r(4M)^{-1}) = U_1,$$

so that (2.4) is still satisfied with a bigger constant M' dependent only on M, r_0 and diam D.

Let
$$B = \bigcup_{j=1}^{L} B_j$$
 and
 $w = \begin{cases} \omega(\Gamma \cap D, D \cap \Omega_1) & \text{on } D \cap \Omega_1, \\ 0 & \text{on } \mathbf{R}^m \setminus (D \cap \Omega_1). \end{cases}$

Since $\{B_j\}$ is a Harnack chain, $\overline{B} \subseteq \Omega_1$; hence w is subharmonic on B; and because $\overline{V} \cap D = \emptyset$, w = 0 on \overline{V} . Therefore by the maximum principle, for $X \in \overline{U}_1 \subseteq D \cap \Gamma_1$

$$\omega^{X}(\Gamma \cap D, D \cap \Omega_{1}) \leq \omega^{X}(\partial B, B \setminus \overline{V}).$$

By (2.13), (2.14), properties (2.4) and (2.5) of the Harnack chain condition, and the Harnack principle, we can find $\eta < 1$, depending on r_0 , M, diam D, so that

$$\omega^{X}(\partial D, B \setminus \overline{V}) < \eta \text{ for every } X \in \overline{U}_{1}.$$

Therefore (2.12) is proved, and thus (2.6) follows.

References

- L. Carleson, On the distortion of sets on a Jordan curve under conformal mapping, Duke Math. J., 40 (1973), 547–559.
- [2] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Advances in Math., 46 (1982), 80-147.
- [3] R. Kaufman and J.-M. Wu, Distortion of the boundary under conformal mapping, Michigan Math. J., 29 (1982), 267-280.

JANG-MEI WU

- [4] N. S. Landkof, Foundations of Modern Potential Theory, (1965), (Russian), Springer-Verlag (1972).
- [5] M. A. Lavrentiev, Boundary problems in the theory of univalent functions, Mat. Sb., 43 (1936), 815-846; (Russian), Amer. Math. Soc. Transl., 32 (1963), 1-35.
- [6] J. McMillan and G. Piranian, Compression and expansion of boundary sets, Duke Math. J., 40 (1973), 599-605.
- [7] B. Øksendal, Brownian motion and sets of harmonic measure zero, Pacific J. Math., 95 (1981), 193-204.

Received February 18, 1984. Research partially supported by the National Science Foundation.

UNIVERSITY OF ILLINOIS URBANA, IL 61801