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REPRESENTATIONS OF TERNARY QUADRATIC
FORMS AND THE CLASS NUMBER OF
IMAGINARY QUADRATIC FIELDS

THOMAS R. SHEMANSKE

In this paper, we consider the norm form of a definite rational
quaternion algebra restricted to the elements of trace zero in a maximal
order of the algebra. When the algebra has class number one, we derive
an equation which relates the representation numbers of the norm form
to the class number of imaginary quadratic extensions of the rational
numbers.

0. Introduction. Kneser [8] observed that the existence of a relation
between these two quantities is not unexpected. When compared to the
Dirichlet class number formula, the Minkowski-Siegel formulas suggest a
connection between the weighted average of the number of primitive
representations of an integer m by the different forms in the genus of a
given definite ternary quadratic form and the number of ideal classes in
an order of Q(Y-m) (e.g. see [3] Appendix B). This connection is
evidenced by comparing the local p-factors in each formula. In the case
that the genus consists of only one class, one derives information about
the representation numbers of the given form. However, this approach has
two disadvantages. First, the job of determining the p-factors for primes p
dividing twice the discriminant of the form is at best awkward, and
second, such an analytic proof would not provide as explicit a correspon-
dence between ideal classes and primitive elements as the one given by the
arithmetic approach which we shall use.

In [6], Gauss showed that the number of primitive integral solutions
(i.e. x,y,z€ Z and (x,y,z)=1) to x>+ y>+ z>=m is a constant
multiple of the class number of primitive binary quadratic forms of
discriminant —4m; the constant is 12 or 24 depending only on the
congruence class of m modulo 4. In the 1920’s, Venkov [15] elegantly
reproved Gauss’ result by viewing the ternary form as the (reduced) norm
of a generic element of trace zero in the maximal order

A= Z( 1+i+j+k
2
(Hurwitz’s quaternions) in the quaternion algebra (“'). Rehm [11]
recently reproved some of Venkov’s results in a more modern framework.

)+Zi+Zj+Zk
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In this paper, we extend the ideas of Venkov and Rehm to consider
ternary forms realized by restricting the norm form of various definite
quaternion algebras over Q to the elements of trace zero. Such a form has
the shape ax? + by? + abz? with a, b € Q™. There are two natural lines
along which to generalize the results of Gauss and Venkov. One can ask
for the number of primitive integral solutions to equations of the form
ax? + by + abz? = m, or one may take the reduced norm form of the
quaternion algebra and restrict it to the elements of trace zero in various
orders in the algebra and ask for a characterization of its representation
numbers on these orders. In [13], we considered the first question; in the
present paper, we consider the second. The questions are, of course,
intimately related—they coincide in the case of Hurwitz’s quaternions and
the maximal order A above. The main constraint to obtaining a generali-
zation of Gauss’ result using Venkov’s ideas is the need to choose a
quaternion algebra in which the (maximal) orders are principal ideal rings.
Generalizations to algebras with class numbers greater than one are under
present consideration by the author, although they require adelic methods
which we have circumvented here by restricting to the class number one
case.

Let 9 be a definite rational quaternion algebra of class number one
and A a maximal order in . It will turn out that the only such algebras
are those ramified at a unique finite prime g (and at infinity). Let m be a
positive integer not divisible by 4 and write m = m,f? with m, square-
free. Denote by T(m) the number of primitive p € A with trace 0 and
reduced norm m, and let #(m) denote the order of the ideal class group
of proper 0,-ideals in Q(/-m). Let w(m) denote the number of units in
0, and |A*| the order of the unit group, A*, of A.

We obtain the following theorem:

THEOREM. Suppose that T(m) > 0. Then

o(m)T(m) _ [IA"len  ifqim
h(m) 2|A* e, ifqgtm
where
1 ifm=1,2(mod4)
e, ={2 ifm=7(mod8)
4 ifm=3(mod3).
The idea of the proof is quite straightforward. Basically, it follows the

general plan described by Venkov and utilizes the modern framework
which Rehm has presented. Specifically, in each algebra A we first fix a
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maximal order A. For a given positive integer m, we consider all primitive
A € A such that A> = —m and form the “root bundle” [A] = {eAe7|e €
A} where A* is the unit group of A. Let W denote the set of all such
root bundles and let G denote the ideal class group of proper U, -ideals.
Following Rehm, we define a map which induces a group action of G on
W. The theorem is obtained by determining the number of orbits under
this action and the number of primitive “roots” contained in each root
bundle.

There are a number of technical difficulties which arise and encumber
the general implementation of this plan of proof. They necessitate a
detailed analysis of the arithmetic of the individual maximal orders A and
an investigation of the connection between the arithmetic of the quadratic
field Q(v—m ) and of its various embeddings in the algebra 9.

This paper is divided into four sections. The first two contain nota-
tion and general results about rational quaternion algebras. The third is
devoted to the detailed analysis of the arithmetic of the maximal order,
the definition of Rehm’s map, a study of the bundles and of the connec-
tion between the arithmetic in the maximal order and in quadratic
subfields of the algebra. An example is worked out in detail at the end of
this section. The fourth section describes the results which one obtains
regarding integral representations. In general, the notation used is that of
[11].

The author wishes to thank J. Cremona and A. Pizer for useful
conversations, and M. Kneser for comments and suggestions about [13]
which are reflected in this present work.

1. Notation. Let Z, Q, R denote the rational integers, rational num-
bers and real numbers respectively. For a finite prime p of Q, denote by
Q,, the field of p-adic numbers and by Z, the subring of p-adic integers.
We shall also let oo denote the infinite prime of Q and sometimes denote
R by Q... For a ring R, denote by R* the group of all invertible elements
of R, and by M,(R) the ring of 2 X 2 matrices with entries in R. Finally,
if A C B are groups, let [ B: A] denote the index of 4 in B.

We now remind the reader of some of the basic facts concerning
quaternion algebras. The reader is referred to [12] or [16] for more detail.
Let K be a field (of characteristic not two) and a, b € K*. We denote by

a,b
%)

the quaternion algebra over K with basis (as a K-vector space) 1, i, j, k
subject to the relations i> = a, j?> = b, ij = k = —ji. If L is an extension

-
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a,b - (4b
(%) exz= (%)

For a=w+ xi + yj + zk € A, we define the conjugate of a to be
&=w — xi — yj — zk. One verifies thata + B=a +5,a8 = Ba, @ = a
and ra = ra for r € K. Using this notion, we define the (reduced) norm
of a by N(a) = aa (= w? — ax? — by? + abz?) and the (reduced) trace
of a by Tr(a) = a + & (= 2w). In particular, N(a), Tr(a) € K. It is easy
to check that if « € A and a € K, then the minimal polynomial over K
of which a is a root is X? — Tr(a) X + N(a).

If %A is a quaternion algebra over Q, and p is a prime of Q (finite or
infinite), denote by %, the quaternion algebra ¥ ®, Q - If L is a
Z-submodule of A, and p any finite prime of Q,let L, = L ® ; Z,,. Let p
be any prime of Q. Up to isomorphism, there are precisely two quaternion
algebras over Q,: M,(Q,) and the unique quaternion division algebra
over Q,. We say that p ramifies in % if % , is a division algebra, and that
p splits otherwise. The set of ramified primes is finite, even in number
(counting o0), and characterizes 3 up to isomorphism.

Let K = Q or Q, (p finite) and let @ be the ring of integers in K. If
I is a quaternion algebra over K, then by an order in %, we shall mean a
free @-module A of rank 4 which is also a subring of I containing 1. One
can show that for a in an order A, N(a) and Tr(a) are in @. For this and
other details concerning quaternion algebras, the reader is referred to [12].

Throughout, we shall be concerned with definite quaternion algebras

- ()

We may and therefore shall assume that a, » € Z and a, b < 0. Note that
this makes the norm form positive definite and hence makes % a division
algebra. Let A C % be an order and p € A. For a finite prime p of Q we
say that p is p-primitive if whenever p = cv with c € Z, v € A, then
D + c. We say that p is primitive if it is p-primitive for all primes p.

field of K, then

2. Preliminaries. Throughout, let 2 be a definite rational quaternion
algebra. The following result is well-known.

PROPOSITION 2.1. Let p € U, p & Q. Then the centralizer of p in A is
the subfield of A, Q(pn) = {r + sp|r, s € Q}.

Let m be a positive integer and p, » € A with p? = »? = —-m. We
characterize the set 4, , = { @ € A|ap = va} with

PROPOSITION 2.2. 4, , is a right Q(p.)-vector space of dimension 1.
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Proof. Since p? = »v* = —m, the map p — » induces an isomorphism

of Q(p) and Q(») which, by the Skolem-Noether theorem [12], extends to
an inner automorphism of A. Thus there exists an a;, € A such that
v=agpay’. Let B 4,,, B # 0. Since appaz’ =» = BuB™", a;'B is in
the centralizer of p. By Proposition 2.1, we have aj'8 € Q(p) or B €
a,Q(p) from which the proposition follows.

In this paper, we are interested in definite rational quaternion alge-
bras, %, which have class number one (i.e. the maximal orders all have
class number one). Since ¥ is definite, it is ramified at infinity and hence
at an odd number of finite primes. It follows from the class number
formula [2], [S] for maximal orders, that class number one occurs if and
only if % is ramified at infinity and at precisely one of the primes ¢ = 2,
3, 5, 7, 13. A useful table of class and type numbers of Eichler (in
particular maximal) orders can be found in [9]. The case of ¢ = 2 is that
of Hurwitz’s quaternions which has been considered in [11], [15], so we
shall concern ourselves with the other four cases.

Denote by %(g) the unique (up to isomorphism) rational quaternion
algebra ramified precisely at the primes ¢, co. From Proposition 5.1, 5.2
of [10], we have that if g = 3 (4),

and if g = 5 (8),
-2, -q
u(q) = (52
(q) )
Moreover, a maximal order A(g) of A(g) (in terms of the canonical basis
of %A (q)) is given by:
14 i+ k

A(q)=Z(—T) +Z(T) +Zj+Zk ifg=3(4)or

1+]+k)+z(z+21+k

(2.1) A(q)=z( ! : )+z;+z1<

if g =5(8).
We also fix for the remainder of the paper the order
(2.2) ANy=Z+Zi+1Zj+Zk
Henceforth, we restrict to the case of class number one, i.e. ¢ = 3, 5,
7, 13. Since class number one implies that the type number is one, any two
maximal orders of A (g) are conjugate (by an element of 9(g)*).

Furthermore, since the questions which we wish to consider regard the
representation numbers of the norm form restricted to a maximal order,
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the answers will be independent of the particular maximal order we
choose. Thus for convenience, we shall restrict our attention to the
maximal order A(q) defined above.

Let % = A(q) and A = A(g). Recall that A;C A. We want to
consider the notion of primitive elements in both A, and A. We record
some elementary observations as:

LEMMA 2.3. (1) Let p € Ay andp € Z a prime. Then
() w is p-primitive in A implies p. is p-primitive in A ;
(b) p is primitive in A implies p. is primitive in A ;
(¢) p is primitive in A implies p is p-primitive in A for all primes
p>12
(d) p is primitive in A, and N(p) = 0 (4) implies p is primitive in A.
(2) Let v € A be primitive in A. Then 4v € A, and is p-primitive in
A for all primes p > 2.
Let m be a positive integer and write m = m,f? with m square-free.
Let p, v € A be primitive in A with p? = »> = —m. We wish to consider
theset 7, , = {A € A]Av =»A}. Itisclear that 7, , = 4, , N A (ie., the
intersection of a rank 4 Z-module and a two-dimensional Q-vector space)
is a free Z-module of rank 2.
Write

= x0= £

witha=1ifg=3(4),and a = 2if g = 5 (8).
LEMMA 2.4. With the above notation, suppose that (f,2q) = 1. Then
there exists a Z-basis §, v of T, , such that (N(n), f) = 1.

Proof. Let p, = 4p, vy = 4v. Then by Lemma 2.3, p,, », € A, and
are p-primitive for all primes p > 2. Let p, = x;i + x,j + x;k and
vo = i+ y,j +y;k. Then x,, y,€Z, [ =1, 2, 3 and the greatest com-
mon divisors (x;, X,, x;) and (y;, ¥,, y3) have only 2 as a possible prime
divisor. Since p? = v? = —m, one checks that for any A € A the element
Ap + vAisin T, ,. Consider the elements v;, v,, v; in 7, , defined by:

7 =4p+v)=(x, +0n)i+(x;+3)j+(x; + )k,
Y, = 4(ip + vi) = —a(x, + y;) + a(y; — x3)j +(x, = p)k,
v = 40k + 2j) = —q(x; + y,) + q(x5 = »3)i +(y, — x))k.
One computes
N(v,) = 2(16m + ax,y; + gx,y, + agx,y,),
N(v,) = 2a(16m + ax,y; — gx,y, — aqx;y,),
N(v;) = 24(16m — ax,y, + qx,y, — agx; ;).
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Let p be a prime dividing f. Then one of vy,, v,, v; has norm not divisible
by p. Otherwise, since p + 2q we have

1N a q aq
A%, =0(modp) whered=| a -q -aq
X33 -a q -aq

and since det(A4) = 2(aq)* % 0( p) we must have x,y; = x,y, = x;5, = 0
(p). Clearly, p cannot divide all the x,’s since p, is p-primitive. More-
over, p cannot divide two of the x,’s since this would imply p divides the
third. Thus p divides at most one x,. But this implies p divides at least 2
and hence all three y,’s, contradicting », is p-primitive. Thus one of v,, v,
or y; has norm not divisible by p.

It is now a standard argument which shows that a basis of the desired
type can be found.

3. The Form ax? + gy* + aqz?. For the remainder of the paper we fix
....a’ ...q
() )

witha=1if g=3,7,and a=21if g =5, 13. We let A = A(q) be the
maximal order given in (2.1) and A the suborder given in (2.2). Observe
that for a = w + xi + yj + zk € A, N(a) = w? + ax? + qy? + aqz?, so
that the norm form restricted to elements of trace zero yields the ternary
form of interest.

Let m be a positive integer not divisible by 4. We are interested in
characterizing the number of primitive elements p in A which satisfy
Tr(p) = 0 and N(p) = m, ie., p* + m = 0. By a primitive root of X*> + m,
we shall always mean a p as above. Note that if we were interested in
characterizing the number of primitive integral solutions (i.e., x, y, z € Z
and (x, y,z)=1) to the equation ax?+ gy* + aqz?> = m, then since
there is an obvious correspondence between the solution (x, y, z) and the
element p = xi + yj + zk € A, (of norm m), we would seek our char-
acterization (as above) in terms of the elements of A, (see [13]).

3.1. The Arithmetic of A. We begin with a study of the arithmetic of
the maximal order A.

PROPOSITION 3.1. (1) Every left A-ideal is principal. (2) A%, the group
of units in A, is a finite group.

Proof. The first statement is true since A has class number one. For
the second, recall that e € A is a unit if and only if N(e) = 1. Since the
norm form is positive definite and A a lattice, the result is clear.
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PROPOSITION 3.2. Let A € A, N(A) =0 (mod q). Then A € Aj = jA
where j is the element of the canonical basis of U satisfying j* = —q.

Proof. Since N(j) =g, A,j=jA, (see Theorem 13.2 of [12]), and
for primes p # q, j € A, whence jA = Aj={A € AIN(A) =0 (q)}
since it is true in all localizations. Here we use the local-global correspon-

dence of orders and ideals (see Proposition 5.1 of [16]).

PROPOSITION 3.3. There are precisely three integral left A-ideals of
(reduced) norm 2, denoted At,, At,, At,. The union of these ideals
contains all the elements of A of even norm.

Proof. Since 2 is a split prime in ¥, A, is isomorphic to M,(Z,), and
therefore contains 3 distinct integral left A ,-ideals of norm 2 (Theorem
2.3 of [16]). From the local-global correspondence, it follows that there are
at most 3 integral left A-ideals of norm 2. One then checks directly that in
each of our four algebras, there are 3 distinct ideals. The second statement
follows from Theorem 19.6 of [12].

Now let m be a positive integer not divisible by 4 and write m = m f>
with m,, square-free. Let p be a primitive root of X? + m in A. We want
to connect the arithmetic of the quadratic field Q(V/-m) with that of
Q(p) € A. We begin with

PROPOSITION 34. Let 0,= AN Q(p). Then Z+ZpC J,C Z +
Z(1 + p)/2. Moreover, O, =7 + Z(1 + p)/2 if and only if (1 + p)/2
€ A. In particular, if m = 1,2 (4), then 0, = Z + Zyp.

Proof. Clearly, Z + Zp. C @, and 0, is an order in Q(p). Let w = u
ifm=1,24)orw=(f+ p)/2if m = 3 (4). Then the maximal order of
Q(p)isZ + Zf'w, so that 0,=1+1lf ~lw for some non-zero integer /.
It follows from the primitivity of p that If ! € Z, from which the first
statement is immediate. The second statement is obvious. Finally, since
1+ p)/2€ A implies N(1+ p)/2) =1+ m)/4 € Z, we have
(1 + pn)/2 € A onlyif m = 3 (4), which completes the proof.

3.2. The Map A. For m and p as above, let ¢,: Q(V-m) = Q(p) be
the canonical embedding sending V-m to p. For a Z-submodule M of
Q(V-m), denote by M,, the image ¢,(M). Write m = m,f* where m, is
square-free and let

{-mq my=m=1,2(4)
w = 1+\/—_m0
2

my=m=3(4).
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Denote by 0, = Z + Zlw the uniquely determined suborder of index / in
the maximal order Z + Zw of Q(Y-m). Since 2 + f, 0, can also be written
as
Z+ZV-m m=1,2(4)
% z+z1+2—m m=3(4).
By Proposition 3.4, A N Q(p) equals @, , if m=1,2 (4) or m = 3 (4)
and (1 + p)/2 € A, and 0,,, otherwise.

When m is not square-free, we must extend our notion of the ideal
class group of Q(/-m). In the case of imaginary quadratic fields, there
are several equivalent formulations. We shall consider the ideal class
group of (fractional) proper 0-ideals (see §4.4 of [14]) where by proper
0,-ideal we mean a fractional O-ideal whose coefficient ring is @, or
equivalently, in terms of adeles, a “locally principal” @,-ideal. In this
setting, two proper 0-ideals I, J are equivalent if and only if 7/ = AJ for
some A € Q(V-m)*. All ideals are assumed to be non-zero. An equiva-
lent notion and one which we shall also use is that of a regular ideal. We
shall discuss regular 0-ideals in more detail somewhat later. For the
equivalence of the notions of regular and proper 0-ideals, see §10 of [4]
and Proposition 4.11 of [14]. Also note that the class number which arises
here is also equal to the number of equivalence classes of primitive binary
quadratic forms of discriminant —4m (or —m) (see Chapter 15 of [4] or
§2.7 of [1)).

PROPOSITION 3.5. Let 0, = A N Q(p) and let J be a fractional proper
O,-ideal. Then AJ N Q(p) = J.

Proof. Rehm’s proof [11] of the analogous proposition for Hurwitz’s
quaternions remains valid here, however for the convenience of the reader
we sketch the argument. We may assume that J C ¢,. By AJ we mean the
Z-module of A generated by all elements of the form Aa, A € A, a € J.

Since 1 € A we have J € AJ N Q(p). Conversely, since J is invert-
ible, there is a Z-module J ' € Q(u) such that J - J ™' = @,. NowJ C 0,
sothat AJ N Q(u) € AN Q(p) = 0,. Thus

AT N Q(p) = (AT N Q(k)) -0,
=(AJNQ(r) =TV c (AT NQ(p)I)-J
=(AG,NQ(p)=0,-J=1J.
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Fix m, p as above and let G denote the ideal class group of proper
0,-ideals in Q(V-m). For any p € A with p*> = —-m, denote by [u] =
{epe e € A} and call [p] the bundle of the root p. Denote by W =
{[pllp € A, p?> = -m}, the set of root bundles. We want to define an
action of G on W and from this to deduce a relation between |G| and the
number of primitive representations of ax? + gy + aqz?. Following [11],
we define a map A: G X W — W as follows.

For a proper 0;-ideal I and a primitive root p of X 24+ min A, the
set A, is a fractional left A-ideal and, by Proposition 3.1, it is principally
generated, say Al, = Ax where k = k(/, p) depends both upon the ideal
I and the element p. k is determined up to left multiplication by elements
of A* and so » = «kpk! is determined up to inner automorphisms
induced by the units of A. We shall subsequently show that kpk™ € A.
Define A by A(Z, [p]) = [kpx'].

Rehm’s proof [11] that the map A is well-defined when A is Hurwitz’s
quaternions remains valid in our present context, however since this map
is central to this paper, we shall sketch the proof.

With 7, p and « as above, we see that

Axpr? - ALpc™ = ApLk™ € ALk™ = Ak = A

since I, € Q(p) centralizes p (Proposition 2.1). Thus kpx™ € A and
since norm and trace are preserved under conjugation, A(Z, [u]) =
[kpuk~'1 € W. We have already observed that [kux~!] is independent of
the choice of k in AI, = Ax.

The image of A depends only on the bundle [1] and not on the choice
of element used to define it. If ¢ € A* and v = eue™! € [p] we can
choose k(I,»)= ke =«k(I,p)e’! since Al, = Ael e’ = Axe™'. Thus
A(L [v]) = [ketvex™] = [kpe!].

If I =00, « € Q(W-m)” is a principal ideal, then I, = ¢,(I) =
0; .B, B = ¢,(@). We may choose k = 8 € Q(p), the centralizer of , and
hence A(Z,[p]) = [p]. It follows that A depends only upon the ideal class
and we may therefore restrict ourselves to integral proper 0;-ideals. Thus
A is a well-defined map. Also, if I, J € G and [p] € W, then a straight-
forward computation shows that A(ZJ, [p]) = A(Z, A(J, [n]).

In particular, A induces an action of the ideal class group G on the
set of root bundles W. Later, we shall restrict A to a subset of W on which
the left kernel of A will consist of the set of principal proper ¢-ideals.
This will imply that all orbits under this action have the same size (= |G)).
To proceed, we need information on the root bundles of primitive
elements in A.
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3.3. The Root Bundles. Throughout this section, let m be a positive
integer not divisible by 4 and p a primitive root of X% + m in A.

PROPOSITION 3.6. Let 0, = A N Q(p). Then [p] consists of |A*|/|O]
elements.

Proof. By definition, A* acts transitively on [u] by conjugation. The
stabilizer of p consists of the set of ¢ € AX such that epe = p. By
Proposition 2.1, ¢ € Q(p) and hence & € @;°. Conversely, every element
of O stabilizes p and is in A*. The result is now immediate.

REMARK 3.7. By Proposition 3.4, |0;| = 2 with 2 exceptions: |0)| = 4
if m=1and, |0;|=6if m=3and (1 + p)/2 € A.

The following is an elementary, but technical lemma which we re-
quire.

LeMMA 3.8. Let m and p be as above. Then
(1) m = N(p) # 0 (mod ¢2).
(2) The prime q does not split in Q(v-m).

Proof. p. primitive in A implies that 4u € A, and 4p is g-primitive in
A.Letdp = xi + yj + zk, x, y, z € Z. Clearly N(p) = 0 (¢?) if and only
if N(4p)=0 (g%, and N(4p) = ax*+ qy* + aqz* where a=1 if
g=3 (4 and a=2 if g=5 (8). N(4p)=0 (g°) implies g|x and
hence, y? + az? = 0(q). Since q + a, we see that g|y < g|z. Moreover, if
q tyz, then y*+ az>=0 (q) yields (3#) = -1, a contradiction. Thus
q|x, q|y, and q|z. But this contradicts that 4u is g-primitive, hence (1).
For (2), observe that since g+ m, the prime g ramifies in Q(V-m) if
and only if g||m. If g + m, then since 16m = N(4p) = ax? (g), g + x and
s0 () = (%) = -1 which implies that g is inert in Q(vV-m). This
yields (2).

PROPOSITION 3.9. Let k € U™ be such that kux™ € A. Then kux™" is
primitive in A.

Proof. Write kuk™! = cv with ¢c € Z, » € A primitive and write

m = m,f? with m, square-free. Since N(v) € Z and m = m,f? = N(p)
= N(xkpx~1) = c>N(»), we have c|f. By Lemma 3.8, g ¢ f, and since m
# 0 (4), 2 +f. Thus (f,2¢q) = 1 and so, by Lemma 2.4, there exists an
m € A such that qun™! = kpk™! and (N(7), f) =1. Now p=
cenlvn = ¢ - (qyn/N(n)) € A, and since (N(n),f) =1 and c|f, it fol-
lows that n7'vyn € A. Since p is primitive, ¢ = +1, and so kuk™! is
primitive.
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REMARK 3.10. It is clear that if p is a primitive root of X? + m in A,
that the same is true of every element of [p]. In view of Proposition 3.9,
we can (and shall) restrict the map A to the set of bundles of primitive
roots of X2 + m, and hence obtain an induced group action on this
smaller set.

There is one further complication which is suggested by Proposition
3.4. We wish to further restrict our attention to the subset of the
“primitive bundles” [p] for which 0, , = A N Q(p) and still to be able to
infer information about the set of all primitive bundles. There is no
problem when m =1, 2 (4), so we restrict our attention to the case
m = 3 (4).

Let Ar, A7), Ar, be the three integral left A-ideals of norm 2 given
in Proposition 3.3. We fix this notation, so that any subsequent reference
to 7, refers to these ;.

LeMMA 3.11. Let v € A, Tr(v) = 0. Then there exists a T, equal to one
of the 7, for which Tvr™! € A.

Proof. If N(v) = 0 (2), then by Proposition 3.3, » € At for 7 = some
7, j =1,2,0r 3. Since 7 € A, itis clear that A7 C 77'A7, and hence that
rvrt € A.If N(v) =1(2), then N(1 + ») = 0(2),sothat1 + v € 77 'A7
as above. Since 7 A7 is an order, the result follows.

Let T, =AnN 77'A7, j=1, 2, 3. Since A7, has index 4 in A
(N(7)=12), and Ar, ¢ T, A, T has index 1 or 2 in A. However,
A =T, implies 7,A = A7, is a two-sided A-ideal of norm 2, which is
impossible since even A, = A ® ,Z, has no two-sided ideals of norm 2
[16]. Thus each I is an Eichler order of index 2 in A.

Lemma 3.12. T, T, and T} are distinct suborders of A.

Proof. It suffices to show that their localizations I, ® , Z, are distinct.
By elementary divisors, we have [A,: I, ® ;Z,] = 2. Since I, ® ;Z, C A,
N 77'A,m, € A,, and since A, has no two-sided ideals of norm 2, we have
T, ®,Z,= A, N 77'A,7. Since the prime 2 splits in 9, A, is isomorphic
to R = M,(Z,), so that T, ® , Z, = R N ¢;'Ret; where Rt,j=1,2,3, are
the three integral left R-ideals of norm 2. We may assume that

_ (1 O _(2 0 _(1 1
tl_(O 2), 1y (0 1) and 1, (() 2).
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Then
L,=RN'Ry = {(‘c’ Z) ERpb=0 (2)};

b
d

b
d

These are clearly distinct, which establishes the claim.

(31) L,=RnNt;'Rt,= {(‘c‘ ) ER|c=0 (2)};

L3=Rnt;1Rt3={(‘; )ER]a+b+c+dEO(2)}.

PROPOSITION 3.13. Let m be a positive integer not divisible by 4 and p
a primitive root of X*> + m in A. Then

(1) p is an element of precisely one or all three of the T';s.

Qurel,n,nTifandonlyif (1 + p)/2 € A.

B)Ifm=1,24) orm=3(4) and (1 + p)/2 & A, then there is a
unique j = 1,2, or 3 such that p € T; (i.e., such that Tp1" € A).

Proof. We have previously observed that (1 + p)/2 € A only if
m = 3 (4). The third statement is now immediate from the first two. Also
observe that if p is an odd prime, I; ® ; Z, = A, so by the local-global
correspondence of orders, p € I; if and only if p € I, ® ;, Z, and simi-
larly, (1 + p)/2 € Aifandonlyif (1 + n)/2 € A,.

It is an elementary exercise in group theory that if G is a group with
subgroups H, K of finite index, then H N K has finite index in G and
[G: HN K] <[G: H]G: K]. Thus I; N I, N T, has at most index 8 in
A. Clearly (I, NT, NT3) ®, Z, c N3_(T;, ®, Z,), and since
I['®,Z, =L, (see(3.1)) and

L,NL,NL= {(2"6 2;) eR|a:—:d(2)}
has index 8 in R, we have (I, NI, NT)®,Z, =N_(T; ®,Z,).
Thus, p € T} N T, N T; if and only if p € N3_,(T; ® 5 Z,). Since A, = R
= M,(Z,), we translate our questions to R. Under the isomorphism, let p
correspond to 4 € R.

By Lemma 3.11, p is an element of at least one I; and hence 4 is an
element of at least one L;. It is clear from the characterization of the L;
and of L, N L, N L, above, that since Tr(A4) = 0, if 4 is contained in
two of the L;s, it is contained in the third. This establishes the first claim.

Now if 4 = (2 2)e L, NL,N L,, then since m = N(4) = ad =
-a?>=0,3(4) and m = 0 (4), 2 + a, whence (1 + 4)/2 € R. Conversely,
if A=(“% e R with Tr(4) =0 and (1 + 4)/2 € R, then 2 ta, 21b
and 2 | ¢ which implies that A € L, N L, N L,. This completes the proof
of the proposition.
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Let m be a positive integer not divisible by 4 and write m = m,f?
with m, square-free. Let Wy, = {[p] I p € A, p*> + m = 0, and p primitive
in A} Also, let W} = {[p]€ W, AN Q(p) =0, ,} andlet W, = {[p] €
Wyl AN Q(p) = 0,,,}. By Proposition 3.4, W, is the disjoint union of
W, and W,, and if m=1, 2 (4), W, = &. So we again restrict our
attention to the case m = 3 (4).

PROPOSITION 3.14. There is a correspondence between the elements of
W, and W,. If m =7 (8), this correspondence is 1-1, while if m = 3 (8),
m > 3, the correspondence is 1-3.

We observe that this correspondence is to be expected since if 4(0)
denotes the order of the ideal class group of proper (-ideals in Q(vV-m),
then it is well known [14] that

3h(0,) ifm=3(8), m>3;

h(02f) = h(0) ifm=7(8) orm=3.

Proof. Let [u] € W,. Then p is a primitive root of X? + m for which,
by Proposition 3.4, (1 + p)/2 € A. By Proposition 3.13, there exists a
unique 7,(j = 1,2,3) such that 'rjwrj‘1 € A. It is a straightforward local
computation which verifies that ['rjp.'rj“] € W,. Conversely, suppose [p] €
W,. Let p,=ru7™", j=1, 2, 3. By Proposition 3.13, p, € A for all
Jj =1, 2, 3. Another easy local computation shows that if m = 3 (8), then
all three [p ;] are in W,, whereas if m = 7 (8), there is a unique j such that
[u,]1€ W,.

It remains to show that these “maps” provide the desired correspon-
dences. First, we consider the case of m = 7 (8). Given [u] € W,, there
exists a unique 7 (equal to some ;) such that [tpr~'] € W, and given
this bundle in W), there exists a unique p (equal to some 7,) such that
[p7u(p7)"'] € W,. We claim that [prp(p7)™'] = [p].

We have previously chosen the 7; so that Ar; > A,7, > R¢; under
localization and identification of A, with R = M,(Z,) where the ¢, are as
in (3.1). One checks that #,¢,, #;¢, and #,¢; are all in 2 - R*. Thus, given
any 7, there exists a 7, such that 7,7, € 2 - A7, and since the 7’s all have
norm 2, 7,7, € Ay =2 Ay for all primes p > 2. Now for the 7 chosen
above, there exists a § (equal to some 7,) such that {7 €2 - A7 for all
primes p. From the local-global correspondence, it follows that {7 € 2 -
A%, and hence that [£7u(§7)™"] € W,. Since p is the unique 7, such that
[oTn(pT)™'] € W,, we have ¢ = p, and our claim is established. A similar
argument establishes the other half of the 1-1 correspondence in the case
m =7 (8).
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Next, suppose that m = 3 (8). Exactly as above, the composite “map”
W, > W, = W, is the identity. Let [n] € W). As we saw above, p, =
frjp,'rj'1 € A and [p;] € W, for all j. We need to verify that all the bundles
[p,] correspond (i.e., map back) to [n] and that the three bundles [p] are,
in fact, distinct. In answer to the first, we see that given any [p ] there
exists a unique p (equal to some 7,) such that [pu p™'] € W,. On the
other hand, there exists a § (equal to some ;) such that {7, € 2 - A* and
hence for which [{u ji'l] = [u] € W,. Thus p = §{ by uniqueness and so
each [p ;] corresponds to [u]. If the three bundles [p,] are not distinct, then
two of them must coincide, say [p,] = [p,]. But this is true if and only if
p;=ep (& for some e € A, and hence if and only if a = 'rj‘le'rk
normalizes p. By Proposition 2.1, @ € Q(p). Now 2a € AN Q(p) =Z
+ Z(1 + p)/2 and using this and the fact that N(2a) = 4 (and m > 3)
we deduce that @ = +1. Thus A7, = Aer, = A7, whence j = k. This
completes the proof.

3.4. The set T, ,. To recall the notation, let

(%Y

with a=1if g=3 (4) and a=2 if g=5 (8); let A be the maximal
order given in (2.1). Let m be a positive integer not divisible by 4 and let
p, v be primitive roots of X? + m in A.

In order to obtain information on the number of orbits into which the
set of root bundles W, decomposes under the action of the ideal class
group G, we must analyze theset 7, , = {A € A | Ap = »A}.

AT, ,, the Z-module generated by all elements of the form yz, y € A,
t € T, ,, is an integral left A-ideal and so by Proposition 3.1 is principally
generated, say AT, , = Ap. We shall show that the only possible prime
divisors of the norm of p, N(p), are 2 and g and we shall discuss the
conditions for and implications of each occurrence.

LEMMA 3.15. With the notation as above, the only possible prime
divisors of N(p) are 2 and q.

Proof. Since T, ,=T,, ,, for a € Q* and 4y, 4v € A, we may
assume that p,» € A, and are p-primitive for all primes p > 2. Suppose
that there is a prime p # 2,q such that N(p) = 0 (mod p). Since p is a
common right divisor of every element of 7, ,, it follows that N(y) =0

(mod p) for all y € AT, ,. It is easy to check that Ap + »A € T, , for any
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A € A. Put

v, =a(p +v) +i(ip + vi)
Y2 =q(p +») +j(ju + vj)
v, = aq(p + v) + k(kp + vk).

Then v,,7,,v; € AT, ,. Setting v = ui + vj + wk € A, ( p-primitive), and
N(v)) =0(p)forl=1,2, 3 we have the system

2
2

u
Al p2 | =0(p) where A4 =
w

R =O

1
0
q

o Q

2

Since det(A) = 2aq, one can view A4 as an element of GL(3,Z/pZ), hence
u, v, w must be divisible by p contradicting p-primitivity of ». This
completes the proof.

LEMMA 3.16. Let the notation be as above. If q | m then q + N(p) for
any primitive integral roots n, v. Conversely, if q + m then there exist p, v
primitive roots of X* + min Awith A - T, , = Ap and N(p) = q.

Proof. Let p, v be given. By Proposition 2.2, 7, , = A,Q(p) N A
where A, is any element of %> such that A uAy = ». We may assume
that A, = w + xi + yj + zk is a primitive element of A .

Suppose g | m. Since p is a common right divisor of every element of
T, ,, we need only show that there exists an element of 7, , with norm not
divisible by g. Thus we consider elements of the form A (r + su); r,
s € Q.

If N(A,) # 0 (g) then A, will do, so we assume N(A,) = w? + ax?
+ gy? + aqz* = 0(q). Since (32) = -1, we must have w = x = 0 (g), and
since A, is primitive in Ay, N(A,) # 0 (g?). As in the previous lemma,
we may assume that p, » € A, and are p-primitive for all primes p > 2.
Let p=ri + sj + tk € A,. Using the g-primitivity of p and that m =
N(p) = ar? + gs? + aqt*> = 0 (q), we have g r, g> + m and hence that
N(Aon/q) = 0 (q). Moreover, we easily see that Ajp/q € A since it is in
A, for all primes p-recall, that since g ramifiesin %, A, = {a € ¥ |
N(a)€Z,}. Thus App/q € ANAQ(p) =T,,.

To prove the converse, we assume g + m. Let p be a primitive root of
X2+ m in A and » = juj~'. By Propositions 3.2 and 3.9, » is also a
primitive root of X2 + m in A. We show that every element of T,, has
norm divisible by g.
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T,,= Ty 4, 5O letting 4p = ri + sj + tk, every element of T,, is of

the form
(WY .
Y=J] (— + —Z(I'l +s1+tk))

where w, x, y, z € Z, (w, x) = (y, z) = 1. Also note that 4y is p-primi-
tive for all primes p > 2. We shall show that there is not choice of w, x,
y, z for which y € A and N(y) # 0(g).

o= |

(xz)
so in order to have N(y) # 0 (¢q), we must have g | xz. However, since
vy € A implies N(y) € Z, we must also have (wz)? + 16m(xy)> = 0 (q).
Since 16m = ar* + gs> + aqt* = ar? (q) and since ¢+ m, g +r. Thus
(wz)?* + a(rxy)? = 0 (q). However, (3#) = -1 which implies that g | wz
and ¢l xy. Now glw e gqly. If gl w (and hence ¢q | y), then ¢q + xz so
that N(y) = 0 (g). Thus we may assume that g+w, gty, qlx, qlz
Now

y = 9, Kj_ Qk’
z z X z
and since the coefficient of j is w/x with g|x and ¢ + w, v &€ A. Thus
every element of 7, , has norm divisible by g.

Finally, we consider the ideal AT, ,. A typical element is of the form
2\t with A, € A, t, € T, ,. By Proposition 3.2 we may write Az, = A
for some A, € A and so j is a common right divisor of every element of
AT, ,. Thus Ap = AT, ,C Aj. Since j € T, , the opposite inclusion is
immediate, and this completes the proof.

With p as above, we consider the case of N(p) = 2". Let » be a
primitive root of X2+ m in A. We are interested in characterizing the
bundle [prp~!] when prp! € A. By Proposition 3.3, we may write p =
0,0,_; -+ 0, where each o, is one of the 7, of Proposition 3.3 (the
generators of the integral left A-ideals of norm 2). Let »,=» and
v,=o»,_,0;', 1 << n. Since conjugation by o, does not induce an
automorphism of A, it is not clear that », € A. We begin with

LEMMA 3.17. Let the notation be as above, and assume that pvp™ € A.
Then we may assume v, € A foralll,0 <[ < n.

Proof. The general idea is that if »,_; € A and », & A, then since
v, = prp"! € A there is a smallest p > 1 such that »,, , € A. In fact, we
shall show that »,,, € A and [v,,,]=[v,_;], so that we may write
p=¢€0, - 06,,,0,_, - 0, for some ¢ € A%, eliminating that portion of
the »,’s outside A.
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Formally we proceed by induction on n. For n = 0 the result is clear.
Now assume n > 0 and that the lemma is true for any p with prp™! € A
and N(p) =2*, h < n. Suppose that »,, »; --- »,_; € A and », & A.
Since », € A, I < n, so there is a smallest p > 1 such that »,, , € A. We
claim that 0, 6, ,_; € 2 - A™ from which it follows that [»,, ] = [7,, ,_,]
and hence that v, ,_, € A. By the minimality of p, we have p =1 so
that [»,,,] = [v,_1]- If 6,06, = 2 for some w € A, then

= -1 _ -1
Vi = 207 1(20)7 = oy

and

Vivs = 01aVie10/42 = 014 0¥ 107 /0.
By Proposition 3.3, 6,0, , -*- 0,.,0 = €0, --- 0/,, for some ¢ € A*
and where each o; is one of the 7.’s. Setting p’ =0, - 6/,,0,_; - 0y,

we have [p’vp’!] = [prp!], and we are done by induction. It remains
only to verify the claim.

As we saw in Proposition 3.14, given a 7;, there exists a 7, such that
7,7, € 2 - A*. To show that if ¢, ,0,,, | & 2A™ implies »,, , & A re-
duces to a local question at the prime 2 which, using the ¢; of (3.1), is
easily resolved.

3.5. The Image of Oy-ideals in A. Let m be a positive integer not
divisible by 4 and write m = m,f? with m, square-free. Let 0; be the
uniquely determined suborder of index f in the maximal order of Q(v-m ).

We have previously defined the sets:

Wo={[plpe A, p*+ m=0,and p primitive in A },
w, = {[I‘] € Wl AN Q(n) = 0f,p,} and

w,= {[ﬂ'] € Wyl AN Q(p) = (92f,,;}-

Recall, that if m = 1, 2 (4), then W, = &. By Remark 3.10, the map
A induces a group action of the ideal class group G of proper 0;-ideals on
the set W,. We shall later show that this action restricts to one on W,. For
the moment, we content ourselves with properties of W,.

Let [u] € W,. In this section, we closely examine the correspondence
between proper O-ideals I and the generator of the left A-ideal Al,. In
the case of Hurwitz’s quaternions, the following lemma is implicit in
Venkov’s work (see p. 242 of [15]) and a proof for that case is given in [7].

LEMMA 3.18. Let I be a proper Or-ideal and assume that A1, = Ak.
Then A°(I) = N(k) (i.e., the norm of the fractional ideal I is equal to the
quaternion norm of the generator of the ideal A1,).
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Proof. It is clear that the restriction of the quaternion norm to Q(p) is
the “field” norm from Q(p) to Q. We may assume that 7 is an integral
ideal so that in this case A"(1) = [O;: I] = [0, 1 ]. It now follows easily
(see §24 of [12]) that N(x) = N(Ax) = N(AL) =[0;,: 1,]-Z where N
here represents both the norm of elements and of ideals, which completes
the proof.

We now discuss some implications of this proposition. Let the nota-
tion be as above and let @ denote the maximal order of Q(Y-m ). Recall
[4], (Th 10.19) that there is a 1-1 correspondence between regular ideals
of 0 and 0, where by a regular (~ideal we mean an integral ideal I with
[O: I] relatively prime to f, and by a regular 0;-ideal we mean 0, N [
where I is a regular (-ideal. Moreover under this correspondence [@: ]
=[0;: 0,N I].

The prime 2Z ramifies in @ if and only if m =1, 2 (4), splits
completely if m = 7 (8), and is inert if m = 3 (8). By Lemma 3.8, the
prime gZ ramifies if and only if g||m. Since m = 0 (4), both 2 and g are
prime to f, whence any prime divisor of 2Z or ¢Z is a regular ideal.

It follows that if 2,120 or gim and 2,140, then £, N O, and
2, N 0O, are regular -ideals of norms 2 and g respectively. Moreover, if
g + m, then there are no 0-ideals of norm ¢ since such an ideal would
necessarily be regular and hence, would imply the existence of an (-ideal
of norm gq. By Lemma 3.8, this is impossible since ¢ is inert in Q(vV-m ).

CoRrOLLARY 3.19. If qIm, P is a prime divisor of q0; in O, and
[u] € Wy, then AP, = Aj.

Proof. By Lemma 3.18, A%, = Ak with k € A and N(k) = gq. By
Proposition 3.2, k = «’j for some k" € A. Since N(k) = q = N(j) we
have N(k’) = 1 so that K’ € A* and Ak = A as desired.

COROLLARY 3.20. Let m = 1, 2 (4) and p a primitive root of X* + m
in A. If P is a prime divisor of 20f in 0f, then A.@M = A1, where AT is the
unique ideal of norm 2 for which tur™! € A.

Proof. AP, = Ax where N(k) = 2. By Proposition 3.3, Ax = A,
Ar,, or A7;. By Proposition 3.13, there is a unique 7, such that r,u7,! € A,
and since kpk~! € A, Ak = A,

Let m = 7 (8) and [p] € W,. By Proposition 3.13, m,ur, ! € A for all
three 7, as above, but by Proposition 3.14, there is a unique 7, (call it 7)
for which [tur!] € W,. Let {p,0,7} = {7, 75, 73}.
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COROLLARY 3.21. Let m = 7 (8) and the notation be as above and let
20,{ =A .4’11.\@2 be the prime factorization of 20, in O,. Then { AP, ,, AP, ,}
= {Ap, Ao}

Proof. We may take

1+v-m

2 1)

) and £,=20,+ @(
Let A, =Ax;, j=1 2. (1+p)/2€ A implies (1 + p)/2 €
k;'Ak,, which in turn implies that [« ux;'] € W,. Thus (AP, ,, AP, ,}
C {Ap,Ao}. We observe that AP,  + AP, otherwise (1 + p)/2,
(1 — p)/2 € Ak, which implies 1 € Ax;, a contradiction. This completes

the proof.

3.6. Determination of the orbits. Let m be a positive integer not
divisible by 4 and write m = m,f* with m, square-free. Let 0, be the
unique suborder of index f in the maximal order of Q(/-m) and G the
ideal class group of proper 0s-ideals. At the beginning of the last section,
we redefined the sets W,,, W,, W, and remarked that the map A restricted
to a map A: G X W, » W,. We now show that we can further restrict A
to a map A: G X W, — W,. Thereis no issue if m = 1, 2 (4) since, in that
case W, = W,, so we restrict our attention to m = 3 (4).

PROPOSITION 3.22. Let m = 3 (4) be as above and let [p] € W,. Then
AL, [p]) € W, forallI € G.

Proof. Let I € G. We may assume that I is an integral proper
0O,-ideal and write 1 = J#[P; where 2 + [0, J], 20, =P, P, f m=1T7
(8) and r, s > 0. If m = 3 (8), we may assume that I =J. Set [v] =
A(P]25, (k). If m = 3(8), » = p, and it is obvious that [»] € W,, while
if m=7 (8), Lemma 3.21 implies [»] € W,. Thus, A(I, [u])) =
A(J, [»]) = [kvx'] where AJ, = Ax. Note that 2 + N(x). Now [kvk~'] €
W, if an only if r(kvk~)7™! € A for all 7 = 7., the generators of the left
A-ideals of norm 2. As we previously observed, since N(7) = 2, the above
will be true if and only if 7(kvk')7! € A, for all 7 as above. Now by
Proposition 3.3, 7k = x’7’" for some ¥’ € A (2 + N(x")) and 7’ one of the
7.’s. Thus 7(kvx~t)r~* = (k'7")p(x’'7")"). [¥] € W, implies that 7'»7' €
A and, since 2 + N(x’), k¥’ € A¥ so that k’r'v(k'7")™* € A,, which com-
pletes the proof.

Thus the map A induces a group action of G on W;.
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LEMMA 3.23. Let m be a positive integer not divisible by 4 and write
m = mf? with m, square-free. Let [p] € W,. Let I be a proper O-ideal
and suppose that A(I, [p]) = [pvp™'] where [v] € W, and N(p) = 2",
n > 0. Then [v] and [pvp~'] are in the same orbit under the action of G.

Proof. If m = 3 (8), then since 2 is inert in Q(V—m), I = 2'J where
r>=0and2 +[0;: J]and so prp~' = ». Thus we consider m = 3 (8).

By Proposition 3.3, p may be written in the form p =o0,0,_, --- 0,
where each o, is one of the generators 7, 7,, or 7; of the left A-ideals of
norm 2. Let »,=» and »,=o,_;0;', 1 <! < n. By Lemma 3.17, we
may assume that all », € A. If, in addition, each [»,] € W], then it follows
from Propositions 3.13, 3.14 and Corollaries 3.20, 3.21 that given [»,_,] €
W,, there exists a prime # | 20, such that A(Z, [v,_,]) = [»,]. From this it
follows that [»] and [prp~!] are in the same orbit.

Now, we show that we can reduce to the above case. Since W, = W,
if m =1, 2 (4), we may restrict to m = 7 (8). Suppose that [»],...,[r,_]
€ W, and [»,] € W,. By Proposition 3.22, / < n. Now it follows Proposi-
tion 3.13 and from the proof of Proposition 3.14 that together, [v, ;] € A
and [v,] € W, imply o,,,0, € 2A%, whence [v, ] =[v,_;] € W,. The
proof is completed by induction on .

We have shown that the map A restricts to a map (also called A), A:
G X W, — W,. The next proposition says that all of the orbits of the
group action have the same ( = |GJ) size.

PROPOSITION 3.24. The left kernel of A is the set of principal proper
Or-ideals.

Proof. If A(1, [p]) = [u], then AI, = Ax where k may be chosen so
that kuk™ = p. By Proposition 2.1, k € Q(u) so that 0, « is a fractional
0, ,-ideal in Q(p). By Proposition 3.5,

I,=AL N Q(p)= A0, kN Qp) = 0 k.

Thus 1, and I = ¢, '(1,) are principal ideals. This completes the proof of
the assertion.
Note that here we use ¢,'¢,(0;) = 0;, which is not true if [u] € W,.
Now we completely describe the orbits of G acting on W,.

PROPOSITION 3.25. Let m be as above and [p] € W,. If g | m, then
W, = {A(I, [u])|I € G}; whileif g + m, then
wy = {A(, [sD)1 € G} u{A(L, [jnj ]I € G}.
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Proof. The construction below is analogous to the one given in [11].
Let [»] be any other element of W). Theset 7, , = {A € A]Av =pA}isa
free Z-module of rank 2 (see discussion prior to Lemma 2.4), say 7, , =
Z£ + Zn. Note that by Lemma 2.4, we may and do assume that N(7) =
is relatively prime to f. Put I, = 0,67 + O, where 0, = A N Q(p)
0, It is easy to see that a« € T, , iff @ € T, , so that £n centralizes p,
and so by Propositions 2.1 and 3.5, {7 € Q(p) N A = 0,. Trivially,
nm € QN A c 0,. 1t follows that I, is an integral 0,-ideal.

AL = A(0,£7 + On) = (A¢ + An)7

(=1

= (AT,,,#)"ﬁ and letting AT, , = Ap

= Ap7.

Let I = ¢,'(1,). By Lemma 3.15, the only possible prime divisors of N(p)
are 2, g so that (N(p7), f) = 1. Since by Lemma 3.18, [0,: 1,] = N(p7),
I is a regular (i.e., proper) 0, -ideal.

Suppose ¢ | m. By Lemma 3.16 we may assume that N(p) = 2",
n=0.1f n =0, AI, = Ay so that A(I, [p]) = [Mun~'] = [»] as desired. If
n > 0, then by Lemma 3.23 thereis a J € G such that A(JI, [u]) = [»].

Next suppose g + m. Here we may assume N(p) =27¢* >0, s=0,1
by Proposition 3.15. If s = 0, we are reduced to the above case, so we
consider N(p) = g - 2". From the previous case and Proposition 3.2 we
can assume the existence of an ideal J € G such that A(JI, [p]) = [jvj!].
We shall show that [v] € {A(Z, [jpj )| € G}.

To accomplish this, we need to look at the set 7, , . First we claim
that j - T, ;, .+ = T, ,. One inclusion is obvious. For the other, let y € T, .
Then y €T, ,,;+ if and only if j~'y € A. Now T,, = Z¢ + Zn and
AT, , = Ap with N(p) = 0 (g). Thus both £ and 7 have norms divisible
by g and so by Proposition 3.2 we may write T, , = j(Z§, + Zn,) for
some &, n; € A. It follows that j™'y ej‘lﬂ’“ =j(Z§ + Zn) C A
which establishes the claim.

With T, . =j7'T,, =Z¢ + Zy, we put I, =0, &7 +

0,,;-mM;- Then as above,
ALyj»=A-T ;2 = Aj_lTv,;I'_?l

= Aj7'AT, %, (by Proposition 3.2)
= Aj"Apm,

= Aj %, (by Proposition 3.2)



TERNARY QUADRATIC FORMS 245

= 4-1
Let I = ¢;1(1,

(2

AlL (jui™)] = [j‘lm‘h(juj'l)(j‘lpﬁl)-ll

-1). Then

= [77%a Ui )G e
= [/ o7 07Y]

= [ 7r7Y]

= [owei] (o =Jp).

But N(p,) = 2', so the above arguments show that [p,7p;'] and [»] are in
the same orbit.

PrOPOSITION 3.26. If gt m and [p)l € W,, then the two orbits
(AL, [pD € G} and (AL, [jpj DI € G} are disjoint.

Proof. We need only show that the orbits do not coincide. If they did,
then there would be an integral proper 0y-ideal I, such that A(Z, [p]) =
[jwj™), so that AI, = Ak and expx~'e™! = juj~" for some ¢ € A*. Thus
ex € T, ,, - and as we saw in the proof of Lemma 3.16, ex = jA for some
A € A. In particular, ¢ | N(x) and hence g divides the norm of the ideal
I. Let s = ord  N(«). If 5 is even, then k may be written as k = k,q°/°
with k; € A, g + N(x;). But in that case ex; € T, , ;» and so must have
norm divisible by ¢, a contradiction. Thus s must be odd, and since
s = ord [0 I, this implies the existence of a proper ¢,-ideal of norm g,
which is impossible since g is inert in Q(Y-m) (Lemma 3.8). Thus, the

orbits are disjoint.

THEOREM 3.27. Let m be a positive integer not divisible by 4 and write
m = myf?* with m, square-free. Let T(m) denote the number of primitive
roots of X* + min A and let h(m) denote the order of the ideal class group
of proper O ideals in Q(Y-m). Finally, let w(m) denote the number of
units in O; and |A*| the order of the unit group A*. Suppose that
T(m) > 0. Then

‘*’_('”M_ |[A e, ifqim
h(m) 2|A* e, ifgtm
where
1 ifm=1,2(mod4)
e, ={2 ifm=7(mod8g)
4 ifm=3(mod8).
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Proof. In view of Proposition 3.14, the case of m = 3 is special and is
most easily checked by hand. Let #(m) denote the number of primitive
roots p of X* + m in A with [p] € W,. Proposition 3.24 implies that all
orbits of the ideal class group G of proper 0;-ideals acting on the set W,
have h(m) elements. Thus,

t(m) = (the number of orbits of G acting on W)
X (the number of bundles per orbit)

X (the number of primitive roots per bundle)

1 gqim [ A
B {2 gtm X h(m) x w(m)
by Propositions 3.6, 3.24, 3.25, and 3.26.

Moreover, by Proposition 3.14 and the discussion preceding it, 7(m)
=t(m)if m=1,24); T(m)=2t(m) if m =7 (8); and T(m) = 4t(m)
if m = 3 (8). Here, the factors of 2 (=1 + 1) and 4 (= 1 + 3) reflect the
1-1 and 1-3 correspondences of the bundles in W, and W,. This com-

pletes the proof.

REMARK 3.28. It is interesting to observe that in the statement of the
theorem, the left hand side depends upon the exact value of m whereas
the right hand side depends only on the congruence class of m modulo 84.

ExampLE 3.29. Consider the quaternion algebra

()
(ie., i2 = -2, j? = -5) and a maximal order
A= z(l“z—“”‘) +z(%’—+—’i) VZj+ Tk

in Y. When restricted to the elements of trace zero in U, the reduced
norm has the form 2x2 + 5y% + 10z2 In this example, we shall illustrate
our results in the case m = 55. It is easy to check directly that there are
precisely 24 primitive elements of A with trace zero and reduced norm 55.
We now wish to see how these elements are distributed throughout the
bundles in the sets W, and W,.

Recall that W, denotes the set of all bundles [p] of primitive elements
p € A with u2 + 55 = 0. Since A* is a cyclic group of order 6, generated
by ¢ = (2 + i — «)/4, each bundle [p] contains 3 elements (Proposition
3.6) and the elements of the bundle will be listed in the following order:
[p] = {p,epne!, &ue'}). Also recall that by Proposition 3.4, W, is the
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disjoint union of the sets W, and W, where, in this example,

w, = {[u] € WA 0 Qw) = 2 + 2254

W, = {lp] € WA N Q(p) =Z + Zp}.

By Proposition 3.14, since m = 55 = 7 (8), there is a 1-1 correspon-
dence between the elements of W, and W,. To establish the correspon-
dence, we need to determine the three left A-ideals of norm 2, Ar, A,
and Ar, in the notation of Proposition 3.3. They are Ai, Aie, and Aiz
where ¢ is the generator of A* specified above.

Since 5 | m, Proposition 3.25 says that the map A induces a transitive
group action of the ideal class group G of Q(V-55) on W,. Specifically,
W, = {A(1, [p])|I € G} where p is any fixed primitive root of X? + 55
with [u] € W,. We shall take p = 3j + k as our fixed element.

The ideal class number of Q(vV-55) is 4 and representatives of the
ideal classes may be taken to be:

} and

Ils<9=z+z1+T V=5 | p =20+ @LtT“ V=23
I, =20+ (91;2—— V=35 I, =50+ 0y=55.

Note that 20 = 1,1, and 50 = I and the norms of the ideals I,, I,, I,
1, are respectively 1, 2, 2, 5.

To employ the map A we need to compute k;, where Al = Ak,
/1=1,2,3, 4. By Lemma 3.18, the reduced norm of k, equals the norm of
1, which greatly simplifies the chore. k; can obviously be chosen to be 1
and, by Corollary 3.20, k, can be chosen to be j. One computes [p] =
{(0,3,1), (3,-2,3), (-5,-1,0)} where we use (a, b,c) to represent the
element ai + bj + ck in A. Since

1+iepei'  245i+4- 3k
2 4

by Corollary 3.21 we may take k, = i and k; = i&.
Thus W, = {[x,ux;*]|l = 1, 2, 3, 4}. Explicitly, we have:

[pxit] = {(0,3,1), (3,-2,3), (-5,-1,0)},
[km5t] = {(0,-3,-1), (5,2, %), (5,1,0)},
[kexst] = {(-5,1,0), (£,2,1), (0,-3,1)},
[kaui'] = {(0,3,-1), (5,-1,0), (3, -2, 3)).

& A,
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According to Proposition 3.14, for each /=1, 2, 3, 4, there is a
unique 7,(h = 1, 2, 3) such that [7,(x,pk;")7,'] € W,. It is easy to check
that if » is a primitive root of X> + 55in A and » € Zi + Zj + Zk, then
(1 +»)/2 € A, ie., [v] € W,. Because the elements 7, are all of the form
iw, w € A and i(ai + bj + ck)i™' = ai — bj — ck, the action of the ,
on the bundles is easy to determine. Thus, by the above comment, there is
for each bundle [,uk; '] only one viable candidate for 7, (and it works).

The elements of W, are [v,], [»,], [7;], [7,] where v, = 7, k,px; 7, for
the appropriate 7, (7, =ie for /=1, 2, 3 and 7, = ig for | = 4). Ex-
plicitly,

[7] =

["4] = {( ,2,3), (

This yields the 24 primitive elements A of A w1th A% + 55 = 0. Note
that while it may seem that “obvious solutions” to A* + 55 =0 are

missing from the above lists (e.g., A = (3, 3, 7)), these elements are not in
A.

4. Integral representations. A question related to Theorem 3.27, which
was considered in [13], is to determine the number of primitive integral
solutions (i.e. x, y, z € Z and (x, y,z) = 1) to ax? + qv° + aqz*> = m.
Since there is an obvious correspondence between a primitive integral
solution (x, y, z) and a primitive root xi + yj + zk of X* + m in A, it
is natural to try to imitate the results of section 3 by focusing on A,
rather that A. However, since A, does not, in general, have class number
one, the work must still be done in A. One needs to investigate how many
(if any) elements in a given bundle [p] (p € A) are actually in A . Also,
one needs to show that the group action induced by the map A restricts to
one on the set of bundles which contain elements of A,

It turns out, somewhat curiously, that results regarding integral repre-
sentations seem to hold for only two of the four algebras (and also
Hurwitz’s quaternions) which were considered in this paper. It is also of
interest to note that it is precisely these three algebras for which a
maximal order is a Euclidean ring [16]. We state the final results for the

algebras
o) = ()

The results for Hurwitz’s quaternions are due to Venkov [15].
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Let m be a positive integer not divisible by 4 and write m = mf?
with m, square-free. Denote by T3(m) (resp. Ts(m)) the number of
primitive integral solutions to x2 + 3y% + 3z2=m (resp. 2x? + 5y% +
10z2 = m). Let 0; be the uniquely determined suborder of index f in the
maximal order of Q(»/_ ) and h(m) the order of the ideal class group of
proper 0,-ideals.

THEOREM 4.1. Suppose that T;(m) > 0. Then T,(m) = c;(m)h(m)

where:

2 if3im;

4 if3+m.

12 if31m;

24 if 3+ m.

8 if3im;

16 if3+m.

THEOREM 4.2. Suppose that Ty(m) > 0. Then Ti(m) = cs(m)h(m)
where:

Ifm = 1,2 (mod4) then c;(m) = {
If;? = )3 (mod 8) then cy(m) = {

If m = 7 (mod 8) then c;(m) = {

Ifm = 1,2 (mod 4) then c;(m) = {; i;; I‘f’::l’
If m = 7 (mod 8) then cs(m) = {421 ijfrg :’:ln’

N.B.(1) If m = 3 (mod 8) or 25 | m then Ty3(m) =0
(2) If 9 I m then T;(m) = 0.
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